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OBJECTIVES: 

 To make the students effectively to achieve an understanding of
mechanics.

 To enable the students to gain knowledge of electromagnetic waves
and its applications.

 To introduce the basics of oscillations, optics and lasers.

 Equipping the students to be successfully understand the
importance of quantum physics.

 To motivate the students towards the applications of quantum
mechanics.

UNIT I: MECHANICS 9 

Multiparticle dynamics: Center of mass (CM) – CM of
continuous bodies – motion of the CM – kinetic energy of system of
particles. Rotation of rigid bodies: Rotational kinematics – rotational
kinetic energy and moment of inertia - theorems of M .I –moment
of inertia of continuous bodies – M.I of a diatomic molecule - torque
– rotational dynamics of rigid bodies – conservation of angular
momentum – rotational energy state of a rigid diatomic molecule -
gyroscope - torsional pendulum – double pendulum –Introduction to
nonlinear oscillations. 

UNIT II: ELECTROMAGNETIC WAVES 9 

The Maxwell’s equations - wave equation; Plane electromagnetic
waves in vacuum, Conditions on the wave field - properties of
electromagnetic waves: speed, amplitude, phase, orientation and
waves in matter - polarization - Producing electromagnetic waves -
Energy and momentum in EM waves: Intensity, waves from localized
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sources, momentum and radiation pressure - Cell-phone reception.
Reflection and transmission of electromagnetic waves from a
non-conducting medium-vacuum interface for normal incidence. 

UNIT III: OSCILLATIONS, OPTICS AND LASERS 9 

Simple harmonic motion - resonance –analogy between
electrical and mechanical oscillating systems - waves on a string -
standing waves - traveling waves - Energy transfer of a wave - sound
waves - Doppler effect. Reflection and refraction of light waves - total
internal reflection - interference – Michelson interferometer –Theory
of air wedge and experiment. Theory of laser - characteristics -
Spontaneous and stimulated emission - Einstein’s coefficients -
population inversion - Nd-YAG laser, CO2 laser, semiconductor laser
–Basic applications of lasers in industry. 

UNIT IV: BASIC QUANTUM MECHANICS 9 

Photons and light waves - Electrons and matter waves –
Compton effect - The Schrodinger equation (Time dependent and time
independent forms) - meaning of wave function - Normalization –
Free particle - particle in a infinite potential well: 1D, 2D and 3D
Boxes - Normalization, probabilities and the correspondence principle.

UNIT V: APPLIED QUANTUM MECHANICS 9 

The harmonic oscillator (qualitative)- Barrier penetration and
quantum tunneling (qualitative) - Tunneling microscope - Resonant
diode - Finite potential wells (qualitative) - Bloch’s theorem for
particles in a periodic potential – Basics of Kronig-Penney model and
origin of energy bands. 

OUTCOMES: 

After completion of this course, the students should be able to

 Understand the importance of mechanics. 

 Express their knowledge in electromagnetic waves. 

 Demonstrate a strong foundational knowledge in oscillations, optics
and lasers. 

 Understand the importance of quantum physics. 

 Comprehend and apply quantum mechanical principles towards the
formation of energy bands. 

                      Total: 45 Periods



1. Mechanics

Multiparticle dynamics: Center of mass (CM) – CM of
continuous bodies – motion of the CM – kinetic energy
of system of particles. Rotation of rigid bodies:
Rotational kinematics – rotational kinetic energy and
moment of inertia – theorems of M.I – moment of inertia
of continuous bodies – M.I of a diatomic molecule –
torque – rotational dynamics of rigid bodies –
conservation of angular momentum – rotational energy
state of a rigid diatomic molecule – gyroscope –
torsional pendulum – double pendulum – Introduction
to non-linear oscillations.

Introduction
 Inertia is the reluctance of the system to change its state

of rest or of uniform motion. In case of linear motion mass
is the inertia of the system.

 But in the case of rotational motion inertia of rigid body plays
a very important role in the industrial applications where both
rotational and translational operations are to be coupled. 

 Its principle is also used widely in the design, fabrication and
working of several machines of common use namely cranes,
motors, lathes, lifting devices, soil testing machines, hydraulic
systems, in the design of and fixing the position of huge
reactors, etc.

 Thus, being the student of technology one should
understand the role of moment of inertia in rotational
motion as well as the relation between translational and
rotational motion of a rigid body.

 Many equations of rotational motion could be written by
simply replacing the parameters in the equations of linear
motion with the appropriate analogous parameters in the
rotational motion. 

Some of the pairs of analogous parameters are given below,
followed by their definitions.



Definition of Terminology in Linear Motion
Displacement: The change of position of a particle in a
particular direction is called displacement. If the direction is along
x-axis, then the displacement is x. It is measured in metre (m).

Velocity v : The rate of change of displacement is called
velocity. It is given by,

v

    

dx


dt

S.I unit of velocity is m / s or ms
 1

Acceleration  a

  : The rate of change of velocity is called

acceleration.

a


    
d v


dt

S.I unit of acceleration is m / s2
 (or) ms

 2

Momentum  p

  : The product of mass and velocity of the

particle or of a body is called momentum. It is given by

p


    m v


p


    m 
dx


dt

S.I unit is kg ms
 1
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Force F : The product of mass and acceleration of a particle
or a body is called force. It is given by,

F


    m a


F


    m 
d v


dt
                    . . .  a


    

d v


dt


    m 
d
dt

 

 
dx
dt

 


F


    m 
d

2
 x


dt
2

S.I unit is kg ms
 2

 (or) newton (or) N

Definition of terminology in rotational motion

Angular displacement  : The angle described by a rigid
body from its rest position in given time is called angular
displacement. Its unit is radian.

Angular velocity  : The rate of change of angular
displacement is called angular velocity. It is given by

    
d 
dt

S.I unit of angular velocity is radian / s

Angular acceleration  : The rate of change of angular
velocity is called angular acceleration. It is given by

    
d 
dt

S.I unit of angular acceleration is radian / s
2

Angular momentum L : The moment of momentum is called
angular momentum. It is given by

L


    r

    p



L


    r

    m v


[. . . p


    m v


]
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L


    m r

    v




It is unit is kg m
2
 s
 1

Torque  : The moment of the applied force about the axis
of rotation is called torque. It is given by

    r

    F



S.I. unit is Nm

(i) Relation between linear velocity and angular velocity

Linear velocity, v

  

dx
dt

 

But, dx  r d  


 . . . d     

dx
r

 


  v

    r 

d 
dt

v

    r 

  angular velocity 


 . . . 

d 
dt

     




(ii) Relation between linear acceleration and angular
        acceleration a and 

The linear acceleration is given by

a


    
dv


dt

F


 – Force

r

 – r distance

Fig. 1.1

1.4 Engineering Physics



    
d
dt

 r      r 
d
dt

a


    r  


 . . .  


    

d
dt

 




1.1 MULTIPARTICLE DYNAMICS

A mechanical system consists of two or more
particles is called multiparticle system.

Let us consider two particles of mass m1 and m2 moving in

one-dimension with co-ordinates x1 and x2 as shown in fig. 1.2.

F


1 is the force acting on body m1, then according to

Newton’s Law,

m1 a


1    F


1

m1 
d

2
 x1

dt
2     F1   or   m1 x


1    F1 ... (1)

where 
d

2
 x1

dt
2  is denoted as x


1




 . . . a


    

d2 x


1

dt2
 




The force F


1 can be divided into two parts like 

F


1    F


12    F


1e ... (2)

where F12


 is the internal force on particle 1 by particle 2. F


1e

is the sum of all external force (like gravity, etc).

Fig. 1.2
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Eqn (1) becomes

m2 x


2    F


12    F


1e
... (3)

Similarly, for particle 2,

m2 a


2    F


2

m2 
d

2
 x2

dt
2     m2 x


2    F


2    F


21    F


2 e ... (4)

Total force on system of the two particle is given by adding
Eqns (3) and (4), we get

m1 x


1    m2 x


2    F


12    F


21    F


1e    F


2e
... (5)

By Newton’s third law of motion F


12     F


21

 m1 x


1    m2 x


2    F


12     F


12    F


1 e    F


2 e
... (6)

m1 x


1    m2 x


2    F


1e    F


2e    F


e
... (7)

where F


e is net external force on system of two particles.

Let the total mass of the system (body) is equal to 

M    m1    m2 ... (8)

Multiplying and dividing eqn (7) by M in L.H.S,

M 
m1 x


1    m2 x


2

M
    F


e

... (9)

or        M X


    F


e
... (10)

M 









 
m1 

d
2
 x1

dt
2     m2 

d
2
 x2

dt
2

M
 









    F


e
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M 
d

2

dt
2 



 
m1 x1    m2 x2

M
 



    F


e

        M 
d

2
 X

dt
2     F


e

or       Mx

    F


e

where, X    
m1 x1    m2 x2

M

    
m1 x1    m2 x2

m1    m2
... (11)

is called the center of mass CM.

Thus, CM has a location X which is a weighted average
of x1 and x2:

X    
m1 x1

m1    m2
    

m2 x2

m1    m2
... (12)

If m1    m2    m, then M    2m and

X    
x1    x2

2 ... (13)

lies midway between the two particles.

If m1  m2, then X is closer to x1 and vice-versa.

According to eqn.(10), CM is a fictitious body whose
acceleration is controlled by only the external force and not by
the internal forces between the particles.

In general, the CM for a system (body) of N number of
particles is obtained by extending eqn (1) as

X    
m1 x1    m2 x2    m3 x3        mN xN

m1    m2    m3     mN
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X    

      
i    1

N

  mi xi

 mi

or          X    

    
i    1

N

 mi xi

M

. . .  mi    M

For a continuous distribution of masses, for example in an
one-dimension, the CM is represented as

X       lim   
 m  0

  

      
i  1

N

    mi xi

M

... (14)

Here, we consider an infinite sum. Further for continuous
distribution of mass, the summation is changed into integration.

   X    
 x dm

 dm
    

 x dm

M
. . .  dm    M

Example
So in the case of a uniform rod

Mass per unit length of the rod     
M
L

Mass of the elemental length dx of the rod dx   

 
M
L

 

 dx

Mass of the whole length of the rod is obtained by
integrating between limits x    0 and x    L)

Fig. 1.3
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X    

    
0

L

  
x M
L

 dx

M
    




 
1
L

 



 
x

2

2
 



 


0

L

    
L
2

... (15)

Fig. 1.4

For N particles in three dimensions (3D)

For x-direction

X
CM

    

      
i

 mi xi

M

For y-direction,

Y
CM

    

      
i

 mi yi

M

For z-direction,

Z
CM

    

      
i

 mi zi

M
... (16)

Fig. 1.5 Centre of mass for distributed point masses
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Thus in vector rotation r


i    xi î    yi ĵ    zi k̂ is the position

vector of the particle. So the position of the CM is

r


CM
    

      
i

 mi r


i

M

and for continuous object as shown in fig. 1.6.

r


CM
    

1
M

  r dm ... (17)

Centre of Mass : Definition
Consider the motion of a system consisting of a large

number of particles. There is one point in it which behaves
as though the entire mass of the system were concentrated
there and all the external forces were acting at this point.
This point is called the centre of mass of the system.

Note
The external force acting on a system (body) at an arbitrary

point (other than CM), produces both rotational and
transnational motions. On the other hand the force acting at
CM of a system produces only transnational motion.

Fig. 1.6

Fig. 1.7
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1.2 CENTRE OF MASS (CM)

Every system or body is a collection of large number of
tiny particles. In translatory motion of a body, every particle
experiences equal displacement with time. Therefore, the motion
of the whole body may be represented by a particle.

But when the body rotates or vibrates during translatory
motion, then its motion can be represented by a point that moves
in the same way as that of a single particle subjected to the
same external forces would move. This point is called centre
of mass of a system.

Definition

A point in the system at which whole mass of the body
is supposed to be concentrated is called centre of mass of
the body.

Therefore, if a system contains two or more particles, its
translatory motion can be described by the motion of the centre
of mass of the system.

Examples for motion of centre of mass

(i) Motion of planets and its satellite

 Let us consider the motion of the centre of mass of the
Earth and moon system (Fig 1.8). The moon moves round
the Earth in a circular orbit and the Earth moves round
the sun in an elliptical orbit.

Fig. 1.8 Centre of mass of Earth - Moon system
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It is more correct to say that the Earth and the moon
both move in circular orbits about their common centre of mass
in an elliptical orbit round the Sun.

For the system consisting of the Earth and the moon, their
mutual gravitational attractions are the internal forces. The
gravitational attraction by the Sun attraction on both the Earth
and moon are the external forces acting on the centre of mass
of the system.

(ii) Projectile Trajectory
 When a cracker is fired at an angle with the horizontal

and when it explodes in the air, then different pieces of
the cracker follows different parabolic paths.

The centre of mass of all the pieces of the cracker continue
to move in the initial parabolic path as shown by a dotted line
in fig. 1.9. This is because the different pieces of the cracker
move under the effect of internal forces only.

(iii) Decay of a Nucleus

 Let us consider a spontaneous decay of a radioactive
nucleus into two fragments as shown in fig. 1.10. The
two fragments move apart in opposite directions obeying
the laws of conservations of energy and momentum.

Since the parent nucleus is at rest, therefore, the centre
of mass of the system remains at rest.

Fig. 1.9
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The nucleus decays under the effect of internal forces. The
heavier fragment moves with less speed while the lighter
fragment moves with high speed.

Centre of mass of two point masses

With the equations for centre of mass, let us find the centre
of mass of two point masses m1 and m2, which are at positions

x1 and x2 respectively on the X-axis.

For this case, we can express the position of centre of mass
in the following three ways based on the choice of the co-ordinate
system.

(i) When the masses are on positive X-axis

The origin is taken arbitrarily so that the masses m1 and

m2 are at positions x1 and x2 on the positive X-axis as shown

in figure 1.11 (a).

The centre of mass is on the positive X-axis at X
CM

 and

it is given by the equation,

X
CM

    
m1 x2    m2 x2

m1    m2

(ii) When the origin coincides with any one of the masses

The calculation is minimised if the origin of the coordinate
system is made to coincide with any one of the masses as shown
in figure 1.11(b).

Fig. 1.10
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When the origin coincides with the point mass m1, its

position x1 is zero, (i.e. x1    0). Then,

X
CM

    
m1 0    m2 x2

m1    m2

The equation further is simplified as,

X
CM

    
m2 x2

m1    m2

Fig. 1.11 Centre of mass of two point masses determined by
shifting the origin                 
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(iii) When the origin coincides with the centre of mass
          itself

If the origin of the coordinate system is made to coincide
with the centre of mass then, X

CM
    0 and the mass m1 is found

to be on the negative X-axis as shown in fig. 1.11(c). Hence, its
position x1 is negative, (i.e.,  x1).

0    
m2  x1    m2 x2

m1    m2

0    m1  x1    m2 x2

m1 x1    m2 x2

The equation given above is known as principle of moments.

1.3 MOTION OF CENTRE OF MASS

When a rigid body moves, it centre of mass will also move
along the body.

For kinematic quantities like velocity v


CM
 and acceleration

a


CM
 of the centre of mass, we can differentiate the expression

for position of centre of mass with respect to time once and
twice respectively.

For simplicity, let us take the motion along X direction
only.

v


CM
    

d x


CM

dt
 
d
dt

  



 
 mi xi

 mi
 



    

 mi 



 
d x


i

dt
 




 mi

v


CM
    

 mi v


i

 mi
... (1)
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a


CM
    

d
dt

 



 
d x


CM

dt
 



    




 
d v


CM

dt
 



    

 mi 



 
d v


i

dt
 




 mi

a


CM
    

 mi a


i

 mi
... (2)

In the absence of external force, F


ext    0, the individual

rigid bodies of a system can move or shift only due to the
internal forces.

This does not affect the position of the centre of mass. This
mean that the centre of mass is in a state of rest or uniform
motion.

Hence, a


CM
 is zero when centre of mass is at rest or has

uniform motion v


CM
    0 or v


CM

  constant). There is no

acceleration of centre of mass, a


CM
    0.

From equations (1) and (2),

v


CM
    

 mi v


i

 mi
    0 (or) v


CM

  constant

It shows that

a


CM
    

 mi a


i

 mi
    0 ... (3)

Here, the individual particles may still move with their
respective velocities and accelerations due to internal forces.

In the presence of external force, (i.e. F


ext  0, the centre

of mass of the system will accelerate as given by the following
equation.
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F


ext     mi a


CM
 ;     F


ext    M a


CM

  ;

  a


CM
    

F


ext

M
... (4)

1.4 CENTRE OF MASS (CM) OF CONTINUOUS
BODIES (RIGID BODIES)

Experimental location of the centre of mass

 The centre of masses of homogeneous and regular shaped
bodies coincides with their geometrical centre. Hence it can
be easily located; but if the body is of irregular shape the
location of its centre of mass is difficult.

However, since the centre of mass is found to coincide with
centre of gravity of the bodies, it can be easily obtained either
by pivoting the body to a balanced position or suspending it
from some fixed point in it. Basically, both are similar methods.

As an illustration, we describe below the method of
suspension to locate the centre of mass of any regular or
irregular shaped body.

The body of first hung from some (any) point P and a
vertical line PQ is drawn when the body is in equilibrium. The
body is then hung from some other point R and a vertical line
RS is drawn (Fig 1.12).

The point of intersection C of these two lines PQ and
RS gives the position of centre of mass.

Fig. 1.12 Body hung from different points P and R
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Centre of mass of a solid cone

Fig. 1.13 shows a right circular solid cone of base radius
a and height h. Let  be the density of the material of the
cone.

If the solid cone is homogeneous, then its mass

m    
1
3

  a
2
 h  .

The centre of mass lies on the axis of symmetry AO. The
cone is considered to be made up of large number of circular
discs, each of thickness dy.

Let us consider one such elementary disc of radius x at a
distance y from the vertex A of the solid cone. The mass of this
elementary disc is 

dm      x
2 dy ... (1)

From the figure 1.13, 

        
x
a

    
y
h

[ In similar triangles AEB and AFO ]

x    
a
h

 y

Fig. 1.13 Right circular solid cone
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      dm       

 
a
h

 y 


2

  dy
... (2)

Now from equation (1), we have for the distance of centre
of mass on the axis of symmetry AO as measured from the
vertex A as

Y
CM

    
1
M

  y dm ... (3)

On substituting the value of dm, we get

Y
CM

    
1
M

  
0

h

 y   

 
a
h

 y 


2

 dy

      or Y
CM

    
  a

2

M h
2       

0

h

  y
3
 dy

... (4)

where the limits of y is taken from y    0 to y    h to cover the
entire solid cone filled with such elementary discs. It gives

    Y
CM

    
  a

2

Mh
2  



 
y

4

4
 


 0

 h

 
  a

2
 

Mh
2  

h
4

4
    

  a
2
 h

2

4M
... (5)

     But M    Total mass of the solid cone    
1
3

  a
2
 h

hence Y
CM

    
  a

2
 h

2
  3

4   a
2
 h
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The CM of cone from its vertex Y
CM

 is written as R
CM

R
CM

    
3
4

 h

Thus, CM of a solid cone is at a distance of 
3
4

 h from vertex

of the cone along its axis.

Centre of mass of a triangular lamina

The medians of the triangle are axes of symmetry in the
base of triangular sheets. We simply draw any two medians of
the triangle which intersect at a point. This point is the centre
of mass of the triangular body (Fig. 1.14). 

We know that the medians bisect each other in the ratio
of 2 : 1 the position of centre of mass on any medians is obtained
by dividing that median in the ratio 2 : 1 the larger portion being
towards the vertex. That point is the centre of mass.

Howevever, the position of centre of mass can also be
calculated by assuming the triangle to be made up of large
number of strips parallel to one side of the triangle and placed
one above the other as shown in the fig. 1.14.

Fig. 1.14 The point of intersection of the medians of a
         triangle gives the position of centre of mass 
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Centre of mass of some regular objects

Fig 1.15. shows the centre of masses of some regular
shaped homogeneous rigid bodies.

 For a rigid body, the centre of mass is a point at a fixed
position with respect to the body as a whole. Depending
on the shape of the body and the way the mass is
distributed in it, the centre of mass is a point may or
may not be within the body.

 If the shape is symmetrical and the mass distribution
is uniform, we can usually find the location of the centre
of mass quite easily.

 For a long thin rod of uniform cross section and density,
the centre of mass is at the geometrical centre.

 For a thin circular plane ring, It is again at the
geometrical centre of the circle.

 For a flat circular disc or rectangle, again the centre of
mass is at the geometrical centre.

Fig. 1.15 The dot shows of the centre of mass of the rigid body
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S.No. Shape of the body Position of centre of mass

1. uniform rod Middle point of rod

2. Circular disc Centre of the disc

3. Circular ring Centre of the ring

4. Sphere Centre of sphere

5. Hollow sphere Centre of sphere

6. Cylinder Middle point of the axis

7. Cubical Block Point of intersection of diagonals
joining opposites corners

8. Plane lamina Point of intersection of two
diagonals

9. Cone of pyramid On line joining the apex to the
centre of the base of the cone at
a distance 1/4

th
 of the length of

this line.

10. Triangular plane
lamina

Point of intersection of medians
of triangle.

Generally, the centre of mass coincides with the centre of
gravity of regularly shaped bodies. In case of rigid body, the
internal forces are taken as zero and only the external forces
acting on the body are considered.

Note

Difference between centre of gravity and centre of mass

 The centre of gravity of a body is a point, where the
whole weight of the body supposed to be concentrated.

 The centre of mass of a body is that point, where the
whole mass of the body is supposed to be concentrated.

For uniform geometrically shaped, bodies the centre of
gravity coincides with centre of mass. However, they do not
coincide in bodies whose density is not uniform throughout.
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1.5 KINETIC ENERGY OF THE SYSTEM OF PARTICLES

Let there are n number of particles in a system of particles
and these particles possess some motion. The motion of the i

th

particle of this system depends on the external force F


i acting

on it.

Let at any time if the velocity of i
th

 particle be v


i then

its kinetic energy would be 

EKi    
1
2

 mvi
2

EKi    
1
2

 m vi  vi
... (1)

Let r


i be the position vector of the i
th

 particle w.r.t. O and

r

i be the position vector of the centre of mass w.r.t. r


i, as shown

in the figure 1.16, then

r


i    r

i    R


CM

... (2)

where R


CM
 is the position vector of centre of mass of the system

w.r.t. O.

Fig. 1.16
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Differentiating the equation 2 we get

dr


i

dt
    

dr

i

dt
    

dR


CM

dt

or,

vi    vi    v
CM ... (3)

where vi is the velocity of i
th

 particle and v
CM

 is the velocity of

centre of mass of system of particle.

Putting equation 3 in 1 we get,

EKi    
1
2

 mi [vi    v
CM
  vi    v

CM
]    

1
2

 mi [vi

2
    2vi  vCM

    v
CM

2
]

EKi    
1
2

 mi vi
2
    mi vi  vCM

    
1
2

 mi vCM

2 ... (4)

The sum of kinetic energy of all the particles can be
obtained from equation 4

EK          
i    1

n

   EKi          
i    1

n

   

 
1
2

 mi vi
2
    mi vi  vCM

    
1
2

 mi vCM

2
 


EK          
i    1

n

   
1
2

 mi vi
2
          

i    1

n

   mi vi  vCM
          

i    1

n

   
1
2

 mi vCM

2

EK    
1
2

 v
CM

2
      

i    1

n

   mi          
i    1

n

   mi vi
2
    v

CM
      

i    1

n

   mi vi

EK    
1
2

 v
CM

2
 M          

i    1

n

   
1
2

 mi vi
2
    v

CM
 
d
dt

      
i    1

n

   mi r

i

... (5)

                                  



 ...  vi    

dri
dt

 



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Now last term in equation (5) is equal to zero

i.e.,       
i    1

n

   mi r

i    0

...       
i    1

n

   mi r

i          

i    1

n

   mi r


i  R


CM


... ri  ri  RCM

         
i    1

n

   mi r


1        
i    1

n

   mi R


CM

    MR
CM

  MR
CM

    0 ...   mi r

i  M R


CM

Therefore, kinetic energy of the system of particles is,

EK    
1
2

 Mv


CM

 2
    

1
2

      
i    1

n

   mi v


i
2
    EK

CM
    EK

... (6)

where,

EK
CM

    
1
2

 v


CM

2
 M

is the kinetic energy obtained as if all the mass were
concentrated at the centre of mass

Ek          
i    1

n

   
1
2

 mi v
 i

2
... (7)

is the kinetic energy of the system of particle w.r.t. the centre
of mass.

Hence it is clear from equation (6) that kinetic
energy of the system of particles consists of two parts:
the kinetic energy obtained as if all the mass were
concentrated at the centre of mass plus the kinetic
energy of motion of all particles about the centre of mass.

Mechanics 1.25



If there were no external force acting on the particle system
then the velocity of the centre of mass of the system will remain
constant and kinetic energy of the system would also remain
constant.

1.6 ROTATION OF RIGID BODIES

Rigid body

A rigid body is defined as that body which does not
undergo any change in shape or volume when external
forces are applied on it.

 When forces are applied on a rigid body, the distance
between any two particles of the body will remain
unchanged however, large the forces may be.

 Actually, no body is perfectly rigid. Every body can be
deformed more or less by the application of the external force.
The solids, in which the changes produced by external forces
are negligibly small, are usually considered as rigid body.

Rotational motion

When a body rotates about a fixed axis, its motion
is known as rotatory motion.

A rigid body is said to have pure rotational motion,
if every particle of the body moves in a circle, the centre
of which lies on a straight line called the axis of rotation
(Fig 1.17).

Fig. 1.17 Rotational motion

1.26 Engineering Physics



 The axis of rotation may lie inside the body or even
outside the body. The particles lying on the axis of
rotation remains stationary.

The position of particles moving in a circular path is
conveniently described in terms of a radius vector r and its
angular displacement .

Let this consider a rigid body that rotates about a fixed

axis XOX passing through O and perpendicular to the plane of

the paper as shown in fig. 1.18.

Let the body rotate from the position A to the position B. The

different particles at P1, P2, P3,  in the rigid body covers unequal

distances P1 P1, P2 P2, P3 P3  in the same interval of time.

Thus their linear velocities are different. But in the same

time interval, they all rotate through the same angle  and

hence the angular velocity is the same for the all the particles
of the rigid body.

Thus, in the case of rotational motion, different constituent
particles have different linear velocities but all of them have the
same angular velocity.

Fig. 1.18 Rotational motion of a rigid body
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Equation of rotational motion

As in linear motion, for a body having uniform angular
acceleration, we shall derive the equations of motion.

Let us consider a particle start rotating with angular
velocity 0 and angular acceleration . At any instant t, let 

be the angular velocity of the particle and  be the angular
displacement produced by the particle.

Therefore change in angular velocity in time t,        0

But, angular acceleration   
change in angular velocity

time taken

(i.e)        
    0

t
      

... (1)

 t        0

or       0     t ... (2)

Average angular velocity   



 
    0

2
 




Total angular displacement

  average angular velocity    time taken

(i.e)        



 
    0

2
 



 t

... (3)

Substituting  from the equation (2),

    



 
0     t    0

2
 



 t 

  



 
20     t

2
 



 t
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    



 
2o

2
    

 t
2

 



 t

    0 t    
1
2

  t
2 ... (4)

From equation (1), t    



 
    0


 




... (5)

Using equation (5) in (3),

    



 
    0

2
 



 



 
w    0


 



    

2
    0

2
2

2      2
    0

2

2
    0

2
    2  ... (6)

The equations (2), (4) and (6) are the equations of
rotational motion.

1.7 ROTATIONAL KINEMATICS

Rotational Kinetic Energy and Moment of inertia

Consider a rigid body rotating about a fixed axis XOX.
The rigid body consists of a large number of particles. Let
m1, m2, m3,  etc. be the masses of the particles situated at

distances. r1, r2, r3,  etc. from the fixed axis. (Fig. 1.19)

All the particles rotate with the same angular velocity .
But the linear velocities of the particles are different.

Kinetic Energy of first particle  
1
2

 m1v1
2

 
1
2

 m r1 2 { . . . v1    r1  }
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Fig. 1.19

 Kinetic energy of the first particle  
1
2

 m1 r1
2
 2

Similarly

Kinetic energy of the second particle  
1
2

 m2 r2
2
 2

Kinetic energy of the third particle  
1
2

 m3 r3
2
 2

and so on.

Kinetic energy of the whole body is equal to the sum of
the kinetic energy of all particles of the body

 Kinetic energy of the rigid body

EK    
1
2

 m1 r1
2
 2

    
1
2

 m2 r2
2
 2

    
1
2

 m3 r3
2
 2

    

 
1
2

 2
 m1 r1

2
    m2 r2

2
    m3 r3

2
    

EK    
1
2

 2
  mr

2

The term  mr
2
 is called moment of inertia of a body about

the given axis of rotation and denoted by I. 

i.e.,     I     m r
2
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 The kinetic energy of the rigid body Ek    
1
2

 2
 I

        i.e.,   EK    
1
2

 I 2

Moment of Inertia or Rotational inertia

Inertia of a body is its inability to change by itself its state
of rest or of uniform motion in a straight line.

Similarly Moment of inertia of a body is its inability to
change by itself its state of rest or of rotatory motion about
an axis.

An external force is necessary to change its state.

 There is a tendancy to resist changes in uniform
rotational motion. For example if a fan is switched off
it continues to rotate for some more before it comes to
rest.

 The property of a body by which it resists change
uniform rotational motion is called rotational
inertia or moment of inertia. 

The moment of inertia of a body depends on the mass of
the body and also the distribution of the mass with respective
the axis of rotation.

Moment of inertia of a particle

The moment of inertia of a particle about an axis is
defined as the product of the mass of the particle and square
of the distance of the particle from the axis of rotation.

If ‘m’ is the mass of the particle and ‘r’ is the distance of
the particle from the axis of rotation, (Fig 1.20) then 

The moment of inertia of the particle

I    mr
2
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The unit of moment of inertia is kg m
2

Moment of inertia of a rigid body

Consider a rigid body of mass M, rotating about an axis
XX. The body is supposed to be made of a large number of
particles.

If m1, m2 are the masses of the particle and r1, r2, r3 
their respective distances from the axis of rotation, then by
definition, the moments of inertia of the particle about the axis

of rotation are m1 r1
2
, m2 r2

2
, m3 r3

2
  respectively.

Then moment of inertia of the whole body is the sum of
the moment of inertia of all the particles. 

i.e. I    m1 r1
2
    m2 r2

2
    m3 r3

2
    

 I     mr
2

Fig. 1.20

Fig. 1.21
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The moment of inertia of a rigid body about a given
axis is the sum of products of masses of its particles and
the square of their respective distances from the axis of
rotation.

The unit of moment of inertia is kg m
2
.

When angular velocity     1 radian / sec

Rotational kinetic energy   ER    
1
2

  I  2
    

1
2

  I  1
2
    

1
2

 I
... (2)

Therefore,  I    2ER

It shows that moment of inertia of a body is equal to twice
the kinetic energy of a rotating body when angular velocity is
one radian per second.

Note

1. Moment of inertia depends on mass, distribution of
mass and on the position of axis of rotation.

2. Moment of inertia does not depend on angular velocity,
angular acceleration, torque, angular momentum and
rotational kinetic energy.

3. Moment of inertia of a continuous distribution of mass,
treating the element of mass dm at position r as
particle (Fig 1.22)

dI    dmr
2
 i.e., I     r2

 dm

Fig. 1.22
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4. It is not a vector as direction (clockwise or
anti-clockwise) is not to be specified and also not a
scalar as it has different values in different directions.

5. In case of a hollow and solid body of same mass, radius
and shape for a given axis, moment of inertia of hollow
body is greater than that for the solid body because it
depends upon the mass distribution.

Physical significance of Moment of Inertia

The property which opposes the change in rotational motion
of the body is called the moment of inertia. Greater is moment
of inertia of the body about the axis of rotation, greater is the
torque required to rotate the body.

Thus it is clear that the moment of inertia of a body has
the same role in rotational motion as that of mass (or inertia)
is linear motion.

It is clear that the moment of inertia of a body depends
on 

(i) mass of body and

(ii) distribution of mass about the axis of rotation.

The two bodies of same mass may have different moment
of inertia

Practical utility of Moment of Inertia

1. Fly-wheel

 A fly-wheel is such a heavy wheel whose most of the
mass is concentrated at the rim, so that its moment of
inertia is quite large. This wheel is attached to the shaft
of the engine in which the torque rotating the shaft
changes periodically.
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2. Wheels of vehicles

In cycle, riksha, car, motor car, scooter etc. the moment
of inertia of wheels is increased by concentrating most of the
mass at the rim of the wheel and connecting the rim to the
axle of the wheel through the spokes.

Due to large moment of inertia of wheels, they cause
greater opposition to the change in their state of rotational
motion.

Radius of Gyration

If the whole mass of the rigid body ‘M’ is assumed to be
concentrated at a distance of ‘K’ from the axis of rotation then

I    M  K2

Here M     m

K is known as radius of gyration.

Definition

The radius of gyration is defined as the distance
from the axis of rotation to the point where the entire
mass of the body is assumed to be concentrated.

If the body consists of n particles of equal mass m, then
the moment of inertia.

I     mr
2

  mr1
2
    m2

2
    mr3

2
        mr3

2
        mrn

2

put m1    m2    m3        mn    m and multiplying and

dividing by n, we get

  nm 



 
r1

2
    r2

2
    r3

2
        rn

2

n
 



    MK

2
... (4)

where M  nm is the mass of the body and

Mechanics 1.35



K    r1

2
    r2

2
    r3

2
    

n
... (5)

K is called the Radius of Gyration of the body about
the axis of rotation. It is equal to the root mean square
distance of all particles from the axis of rotation of the
body.

Hence the radius of gyration of a body about a given axis
is equal to root mean square distance of the constituent particles
of the body from the given axis.

1. Radius of gyration  K  depends on shape and size of
the body, position and configuration of the axis of
rotation, distribution of mass of the body w.r.t. the axis
of rotation.

2. S.I. unit : Metre.

3. Significance of radius of gyration: Through this
concept a real body (particularly irregular) is replaced
by a point mass for dealing its rotational motion.

Example: In case of disc rotating about an axis through
its centre of mass and perpendicular to its plane

MK
2
    

MR
2

2

  K
2
    

R
2

2

K    
R

2

So instead of disc we can assume a point mass M at a

distance 
R

2
 from the axis of rotation for dealing the rotational

motion of the disc.
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1.8 THEOREMS ON MOMENT OF INERTIA (MI)

There are two important theorems which help to find the
moment of inertia of a body about some other axis if moment
of inertia about any symmetrical axis of the body is given. These
are called theorems of parallel and perpendicular axes.

They are

1. Parallel axes theorem and

2. Perpendicular axes theorem

1. Theorem (Principle) of Parallel axes

Statement

The moment of inertia of a body about any axis is equal
to the sum of its moment of inertia about a parallel axis
passing through its centre of gravity of the body and the
product of its mass of the body with the square of the
distance between the two axes.

Explanation

Let G be the centre of gravity of a rigid body of mass
M. Let AB be an axis parallel to axis CD. (Fig 1.23)

Fig. 1.23
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Let a be the distance between the axes.

If I and IG are the moments of inertia of the body about

the axes AB and CD respectively, then by the theorem of parallel
axes,

I    IG    Ma
2
.

Proof

Consider a particle of mass m at a distance r from CD.

M.I. of this particle about the axis CD    mr
2

 M.I. of the whole body about CD, IG     mr
2

M.I. of the particle about the axis AB    m r    a2

 M.I. of the whole body about AB, I     m r    a2

I     m r2
    a

2
    2ar

   mr
2
    a

2
  m    2a  mr

ie, I    IG    Ma
2
    2a  mr

 mr represents the algebraic sum of the moments of all
the mass particles of the body about an axis through the centre
of gravity of the body. Since the body always balances about
an axis through its centre of gravity.  mr should be zero.

Therefore,  I    IG    Ma
2

2. Theorem (Principle) of Perpendicular axes

Statement
It states that the moment of inertia of a plane lamina

about an axis perpendicular to its plane is equal to the
sum of the moments of inertia of the plane lamina about
any two mutually perpendicular axes in its own plane and
intersecting each other at the point where the
perpendicular axis passes through it.
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Explanation
Let OX and OY be two mutually perpendicular axes in the

plane of the lamina, intersecting each other at the point O.
OZ is the axes perpendicular to both OX and OY. (Fig 1.24)

Let Ix and Iy be the moments of inertia of the lamina about

the axis OX and OY respectively.

If Iz is the moment of inertia about the axis OZ, passing

through O and perpendicular to the plane of the lamina, then
by the theorem of perpendicular axes,

Iz    Ix    Iy

Proof

Consider a particle P of the lamina of mass m at a distance
r from O. Let x and y be the distances of the particle from
OY and OX respectively.

M.I. of this particle about OX    my
2

M.I. of the entire lamina about OX, Ix     my
2

Similarly M.I. of the lamina about OY, Iy     mx
2

M.I. of the lamina about OZ axis through O and

perpendicular to the plane of the lamina, Iz     mr
2
    ... (1)

Fig. 1.24
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But

 r
2
    x

2
    y

2
 ... (2)

Substituting eqn (2) in eqn (1), we have 

        Iz     m x2
    y

2

Iz     mx
2
     my

2

Iz    Iy    Ix

ie,       Iz    Ix    Iy

Calculation of Moment of Inertia of a body

The moment of inertia of a continuous homogeneous body
(Rigid body) with definite geometrical shape can be calculated
as follows.

 Find the moment of inertia of an infinitesimal element
of the body about the given axis.

i.e., Multiply the mass dm of the element by x
2
, the square

of the distance from the given axis.

 Then, integrate the expression between the limits to get
moment of inertia of whole of the body.

I     dm  x2

where the integral is taken over the whole body.

In fact some times the theorems parallel and perpendicular
axes are also used to calculate the moment of inertia.
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1.9 MOMENT OF INERTIA OF CONTINUOUS BODIES
(RIGID BODIES)

1. Moment of inertia of a thin uniform rod

(a) About an axis through its centre and perpendicular
       to its length

Let AB be a thin uniform rod of length l and mass M.
The rod is free to rotate about an axis PQ perpendicular to its
length and passing through its centre O. (Fig. 1.25)

Mass per unit length (linear density) of the rod, 

m    
M
l

... (1)

Consider a small element of length dx of the rod at a
distance x, from O.

Mass of the element   m  dx

M.I. of this element about the axis PQ

  mass    distance2.

  mdx  x2

  mx
2
 dx ... (2)

The rod AB is considered to be made up of a number of
such small elements of length dx.

Fig. 1.25 Moment of Inertia of a thin uniform rod - about
an axis through its centre and perpendicular to its length

Mechanics 1.41



Hence the moment of inertia I of the rod about the axis
PQ is obtained by integrating the moments of inertia of all such
elements lying between the limits

x     
l
2

   and   x    
l
2

ie, I          
 l/2

l/2

  mx
2
 dx ... (3)

  m 



 
x

3

3
 


  l/2

 l/2

m 



 
l/23     l/23

3
 



    m 




 
l
3

8
    

l
3

8
 




3

    
m
3

 



 
2 l

3

8
 



    

ml
3

12

I    ml    
l
  2

12
...  ml    M

I    
M l

  2

12
... (4)

(b) About an axis passing through one end of the rod
  and perpendicular to its length

Let AB be a thin uniform rod of length l and mass M.
O is its centre. As the rod is uniform, its centre and centre of
gravity coincide. PQ is an axis passing through O and
perpendicular to the length of the rod. (Fig. 1.26)

M.I. of the rod about PQ    
M l

2

12

... (1)

Let RS be an axis passing through one end A and
perpendicular to the length of the rod.
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Let I be the moment of inertia of the rod about this axis
RS.

By the theorem of parallel axes,

M.I. of the rod about the axis RS     M.I. of the rod about
the axis PQ passing through the centre of gravity  Mass 
square of the distance of the axis from the C.G.

Therefore,

I    
M l

2

12
    M  


 
l
2

 


2

I    
M l

2

12
    

M l
2

4

I    
M l

2
    3 l

2

12
    

4 M l
2

12

ie,        I    
M l

2

3

2. Moment of inertia of thin ring (or hoop)

(a) About an axis through its centre and perpendicular
       to its plane

Let M be the mass and R, the radius of a thin circular
ring with centre O. Let I be the moment of inertia of the ring

G

Fig. 1.26 Moment of Intertia of a thin uniform rod 
- about an axis passing through one end of the rod and

perpendicular to its length
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about an axis passing through O and perpendicular to the plane
of the ring.

Consider a particle of mass m of the ring. Its moment of
inertia about the axis passing through O and perpendicular to
the plane of the ring is

I    mR
2

... (1)

 M.I. of the ring about the axis, I     mR
 2

.     ... (2)

ie,  I    MR
2

...  m    M

(b) About a diameter
AB and CD represent two mutually perpendicular

diameters of the ring. The moment of inertia of the ring about
any diameter is the same. (Fig, 1.27)

Let I be the moment of inertia about AB. Then about
CD also, the moment of inertia is I.

By the theorem of perpendicular axes, the moment of
inertia of the ring about an axis passing through O and
perpendicular to its plane is equal to the sum of the moments
of inertia about two mutually perpendicular axes in the plane
of the ring.

i.e., Iz    Ix    Iy ... (3)

But, Iz    MR
2
 and Ix    Iy    I

Fig. 1.27 Moment of Inertia of thin ring - about an axis
through its centre and perpendicular to its plane
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 MR
2
    I    I

        or, 2I    MR
2

ie,         I    
MR

2

2
... (4)

(c) About a tangent in the plane of the ring
Let EF be a tangent to the ring at A, in the plane of the

ring and also it is parallel to the diameter CD.

Let I be the moment of inertia of the ring about the
tangent EF.

By parallel axis theorem, M.I. about EF

    M.I. about CD.  Mass  square of the distance OA

ie, I    
MR

2

2
    MR

2

    
MR

2
    2 MR

2

2

I    
3
2

 MR
2

... (5)

R

Fig. 1.28 Moment of Inertia of thin ring - about a tangent
in the plane of the ring
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3. Moment of inertia of a thin circular disc

(a) About an axis through its centre and perpendicular
        to its plane

Let M be the mass and R, the radius of a thin circular
disc. The disc is free to rotate about an axis AB passing through
its centre O, and perpendicular to its plane.

Mass per unit area of the disc     
M

Area of the disc
    

M

 R
2 

... (1)

Consider a narrow circular strip of the disc with centre  O
and radius x. Let dx be its radial width. 

Area of the strip   2 x dx.

Mass of the strip   
M

 R
2  2 x dx

  
2M

R
2  x dx ... (2)

Moment of inertia of this circular strip about the axis
AB

    
2M

R
2  xdx  x

2

  
2M

R
2  x

3
 dx ... (3)

Fig. 1.29 Moment of Inertia of a thin circular disc
  - about an axis through its centre
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The circular disc is considered to be made up of a large
number of such narrow strips, concentric with O and radii
ranging from 0 to R.

Hence, the moment of inertia I of the disc about the axis
AB is obtained by integrating the above expression between
limits x    0 and x    R.

ie. I          
0

R

  
2M

R
2  x

3
 dx ... (4)

  
2M

R
2       

0

R

  x
3
 dx

  
2M

R
2  



 
x

4

4
 


 0

 R

  
2M

R
2  

R
4

4

ie, I    
MR

2

2 ... (5)

(b) About a diameter

Let AB and CD be two perpendicular diameters of the disc.
The moment of inertia of the disc about any diameter is the
same as that about any other diameter. Hence the moments of
inertia about AB and CD are equal.

R

Fig. 1.30 Moment of Inertia of a thin circular disc
- about a diameter
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 Let each of them be I.

The moment of inertia of the disc about an axis, through
the centre and perpendicular to the plane of the disc is 

  
MR

2

2
... (6)

Therefore, by the theorem of perpendicular axes,

Iz    Ix    Iy ... (7)

But, Iz    
MR

2

2
   and

Ix    Iy    I

MR
2

2
    I    I

MR
2

2
    2I

I    
MR

2

2    2

or,                           I    
MR

2

4
... (7)

4. Moment of Inertia of Solid sphere
(a) About a diameter

Let M be the mass of a uniform solid sphere of radius R
and centre O. The sphere is free to rotate about its diameter AB.

Mass per unit volume (density) of the sphere

Mass
Volume

    
M

4
3

  R
3

  
3M

4 R
3

... (1)
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Consider a thin circular slice (elemental volume) of the
sphere at a distance x from O. Let dx be the thickness of the
slice. This slice is a thin uniform disc. The radius of this disc

is given by y
2
    R2

    x
2

Area of this disc    y
2
     R2

    x
2

Volume of the disc   Area  thickness     R2
    x

2 dx      ... (2)

Mass of the elemental disc   
3M

4 R
     R2

    x
2 dx,

  
3M

4R
3 R2

    x
2 dx

M.I. of this disc about the axis AB

  
Mass    Radius2

2
,

  
3M

4R
3 R2

    x
2 dx    

y
2

2

   
3M

4R
3  R2

    x
2 dx    

R
2
    x

2

2

  
3M

8R
3 R2

    x
22 dx ... (4)

The sphere is considered to be made up of large number
of such discs, with x varying from  R to  R.

Hence, the moment of inertia I of the sphere is obtained
by integrating the above expression between limits x     R and
x     R.

. . . R2
    x

2
    y

2

 y
2
    R

2
    x

2

. . . y2
    R

2
    x

2

Fig. 1.31 Moment of Inertia of a solid sphere
- about a diameter        
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ie, Moment of inertia of the solid sphere about a diameter.

I          
 R

 R
3M

8R
3 R2

    x
22 dx

  2      
0

R
3M

8R
3 R2

    x
22 dx

ie         I    
3M

4R
 3      

0

R

R4
    2R

2
 x

2
    x

4 dx ... (5)

  
3M

4R
3 



 R

4
 x    2R

2
 
x

3

3
    

x
5

5
 


 0

 R

  
3M

4R
2 



 R

5
    

2R
5

3
    

R
5

5
 




  
3M

4R
2 



 
15R

5
    10R

5
    3R

5

15
 




  
3M

4R
3    

8R
5

15

ie, I    
2
5

 MR
2

... (6)

(b) About a tangent
A tangent drawn to the sphere at any point is parallel to

one of its diameter. The distance between the tangent and the
diameter is R, the radius of the sphere. (Fig. 1.32)

R

Fig. 1.32 Moment of Inertia of solid sphere about a tangent
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By the theorem of parallel axes, the M.I. of the sphere
about the tangent CD, I  M.I. of the sphere about a parallel
axis AB passing through the centre  Mass of the sphere 
Square of the distance between the axes.

 I    
2
5

 MR
2
    MR

2

    
2 MR

2
    5 MR

2

5

ie, I    
7
5

 MR
2

5. Moment of Inertia of a Solid cylinder

(a) About an axis passing through the centre and
        perpendicular to its length

Let M be the mass of a solid cylinder of length l and radius
R. The cylinder is free to rotate about an axis. AB passing
through the centre and perpendicular to its length.

Mass per unit length (linear density) of the cylinder,

m    
M
l

... (1)

The cylinder is imaged to be divided into a large number
of thin circular discs with their plane at right angles to the
length of the cylinder.

Fig. 1.33 Moment of Inertia of a solid cylinder - about an axis
passing through the centre and perpendicular to its length
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Consider one such circular disc of thickness dx at a
distance x from the axis AB.

Mass of the disc   m dx

Moment of inertia of this disc about its own diameter.

  
Mass    Radius2

4
,

  
m dx R

2

4

  
m R

2
 dx

4
... (2)

 Moment of inertia of this disc about the axis AB, parallel
to the diameter  Moment of inertia about the diameter  Mass
 square of the distance between the axes. (using parallel axes
theorem).

  
m R

2
 dx

4
    m dx x

2 ... (3)

Therefore, the moment of inertia of the solid cylinder about
axis AB, is obtained by integrating the above expression between
limits x     l/2 and x     l/2.

 M.I. of the cylinder about AB, 

     I          
 l/2

l/2

  



 
m R

2
 dx

4
      m x

2
 dx 





... (4)

        
 l/2

l/2

  
m R

2
 dx

4
          

 l/2

l/2

  m x
2
 dx

  2      
0

l/2

  
m R

2
 dx

4
    2      

0

l/2

  m x
2
 dx ... (5)
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    I    
m R

2

2
  x 

0

l/2
    2m 




 
x

2

3
 


 0

 l/2

... (6)

  
m R

2

2
    

l
2

    2m    
l
3

3    8

  
M
l

    
R

2

2
    

l
2

    
2M
l

    
l
3

3    8



 . . . m    

M
l

 


  
MR

2

4
    

M l
2

12

ie, I    M 



 
R

 2

4
    

l 2

12
 




... (7)

(b) About the axis of the cylinder

A solid cylinder is considered to be a thick circular disc.
It is composed of a large number of thin circular discs placed
one above the other.

Let each such elementary disc be of mass m and radius
R, equal to the radius of the cylinder.

The moment of inertia of each such disc about an axis
passing through its centre and perpendicular to its plane

  
mR

2

2
... (8)

 M.I. of the solid cylinder about its axis    
mR

2

2

I    
MR

2

2
... (9)

where M is the mass of the cylinder.
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1.10  MOMENT OF INERTIA OF A DIATOMIC
 MOLECULE

A diatomic molecule, in its stable equilibrium position
consists two atoms that are at a distance ‘R’ apart. The distance
‘R’ is called the bond length between the two atoms.

Presently we can consider that it consists of two tiny
spheres at either end of a thin weightless rigid rod, as shown
in fig.1.35. This kind of arrangement can be called as rigid
rotor.

Let ‘C’ be the center of mass of the molecule and r1 and

r2, the respective distances of the two atoms from it.

Then

r1    r2    R ... (1)

and

m1 r1    m2 r2 ... (2)

where m1 and m2 are the masses of two atoms respectively.

From eqn.(1),

r1    R    r2 ... (3)

and from eqn.(2),

Fig. 1.35 Moment of Inertia of a diatomic molecule
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r2    
m1 r1

m2
      ... (4)

So,

r1    R    
m1 r1

m2

 R    r1    
m1 r1

m2
    r1 




 1    

m1

m2
 




... (5)

(or)

r1    
R




 1    

m1

m2
 




... (6)

Now, the moment of inertia of the molecule (i.e., of the
two atoms) about an axis passing through the center of mass
‘C’ and perpendicular to the bond is given as

I    m1 r1
2
    m2 r2

2
      ... (7)

So,

I    m1 r1  r1    m1 r1  r2, [. . . From eqn.(2)]

I    m1 r1 r1    r2,

(or) by using eqn.(1),

I    m1 r1 R ... (8)

Substituting eqn.(6) in eqn.(8) gives

I    m1 R 









 
R




 1    

m1

m2
 




 









,
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So

I    
m1 R

2




 1    

m1

m2
 




    
m1 R

2

 
m2    m1

m2
 

    
m1 m2 R

2

m2    m1

(or)

I    



 

m1 m2

m1    m2
 



 R

2
,

I     R
2 ...(9)

where     
m1m2

m1    m2
 is called as reduced mass of the

molecule. Thus the figure 1.35 can also be redrawn as

In fig.1.36, K    R, which is called radius of gyration, so
moment of inertia

I     K
2

...(10)

1.11 ROTATIONAL DYNAMICS OF RIGID BODIES

Angular momentum

The moment of linear momentum is known as angular
momentum.

Fig. 1.36
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Consider a particle of mass m is at a distance r from the
axis of rotation. Let v be the linear velocity of the particle
(Fig. 1.37). Then,

Angular momentum

  linear momentum    distance

L

  mv    r

  mr     r { . . . v    r  }

ie.,  Angular momentum    mr
2
 

where  is the angular velocity of the particle.

Also     L


    r

    p



S.I unit for angular momentum is kg m
2
 s
 1

Definition
Angular momentum of a particle is defined as its

moment of linear momentum it is given by the product of
linear momentum and perpendicular distance of its line

of action from the axis of rotation. It is denoted by L


.

It is a vector quantity. The direction of angular momentum
is given by right hand rule. According to this rule, if the fingers
of right hand are curled in the direction of rotation about the
axis, then the thumb points on the direction of angular
momentum.

Fig. 1.37
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In vector notation, angular momentum is given as

the vector product of r

 and P


, the linear momentum i.e.,

L


    r

    p

 ... (1)

r

  position vector

p


  linear momentum

Fig. 1.38

The direction of angular momentum is perpendicular

to plane containing r

 and p


.

Expression for Angular momentum of a rigid body

Consider a rigid body rotating about a fixed axis XOX.
The rigid body consists of a large number of particles.

Let m1, m2, m3,  etc. be the masses of the particles

situated at distances r1, r2, r3,  etc. from the fixed axis.

All the particles rotate with the same angular velocity .
(Fig. 1.39)

Angular momentum

  linear momentum    distance

  mv    r

  mr     r    mr     r

  mr
2
  { . . . v    r  } 

Mechanics 1.59



 Angular momentum of the first particle   m1 r1
2
 

Angular momentum of the second particle   m2 r2
2
 

Angular momentum of the third particle   m3 r3
2
 

and so on.

The angular momentum of the whole body is equal to the
sum of the angular momentum of all the particles of the body.

    The angular momentum
of the rigid body  




    m1 r1

2
     m2 r2

2
     m3 r3

2
 

   m1 r1
2
    m2 r2

2
    m3 r3

2
    

    mr
2

Let I be the moment of inertia of the rigid body about the

fixed axis, I     mr
2

 The angular momentum of the rigid body,    I

ie.,  Angular momentum L    I 

Torque 

Torque is the turning effect of a force on a body,
on which the force acts.

Fig. 1.39
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The turning effect of a force depends on 

(i) the magnitude of the force and

(ii) the perpendicular distance from the axis of rotation to
the line of action of the force

Definition

The moment of the applied force is called torque. It
is represented by the symbol ‘’.

If F is the force acting on a body at a distance r (Fig.
1.40) then,

Torque   Force    distance

i.e.,     F    r

The rotational motion comes into picture only when the
torque acts on the body.

Torque in vector notation

When a force is applied on a rigid body capable of rotation
about some axis, the body rotates about the axis.

The ability of a force to rotate a body about an axis
is measured in terms of a quantity called torque.

Consider a body capable of rotation about an axis passing
through O. Let a force F act at A distant ‘r’ from O such that
the line of action of the force is perpendicular to OA.

The moment of this force F about the axis through O is
a measure of the torque. (Fig 1.40)

Torque     r

  F



Fig. 1.40
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If the direction of the force is inclined at an angle  with
the direction of r, it is measured as the product of the force
F and the perpendicular distance from the axis of rotation to
the line of action of the force.

 Torque  F    ON    F    d    F  r sin 

This can be expressed in vector form as



    r


    F



Thus torque is the cross product of force F


 and the vector

r

 between the axis of rotation and the point of application of

the force.

It is acting in a direction perpendicular to the plane

containing r

 and F


 and its direction is given by right hand screw

rule.

If r

 and F


 perpendicular to each other     rF

                     (...       90 and sin   1)

Unit of Torque

Newton - metre (Nm)

Laws of motion applied to rotatory motion

1. A rotating body tends to rotate continuously and
uniformly about a fixed axis unless it is acted upon
by an external torque.

2. The rate of change of angular momentum is equal to
the external torque applied and acts in the direction
of torque

3. When a body exerts a torque on another body, the
second body exerts an equal and opposite torque on the
first body about the same axis of rotation.
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Relation between torque and angular momentum

Consider a rigid body capable of rotation about the axis.
Let I be the moment of inertia of the body about that axis. Let
a constant torque  acting on it changes its angular velocity
from o to  in time ‘t’.

Torque  rate of change of angular momentum

    
I     I o

t
    I 

    o
t

    I ,

where  is the angular acceleration.

     I 

    I 
d
dt




...      

d
dt





    
d
dt

  I    
dL
dt

    
dL
dt

1.12 CONSERVATION OF ANGULAR MOMENTUM

The law of conservation of angular momentum states
that in the absence of an external torque, the angular
momentum of a body or a system of bodies remains conserved.

The equation of motion of angular momentum of a particle
is given by



    

dL


dt

... (1)

where 

 is the torque acting on the particle and 

dL


dt
 is the rate

of change of angular momentum.

If there is no torque i.e. 

    0

dL


dt
    0
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or L


    constant ... (2)

i.e., angular momentum is conserved.

Thus, when the resultant external torque acting on a
particle is zero, the total vector angular momentum of the
particle remains conserved. This is called law or principle
of conservation of angular momentum.

Hence, in the absence of any external torque, if the moment
of inertia  I  of the system increases, the angular velocity
 decreases. Similarly, if moment of inertia (I) decreases, the
angular velocity increases.

. . . angular momentum, L    I 

Final angular momentum  Initial angular momentum

i.e Angular momentum remains unchanged.

If the moment of inertia I of a body changes due to
redistribution of mass about the axis, angular velocity  changes
in such a manner that the product I  remains a constant.

It is clear that if the M.I. increases, the angular velocity
 decreases and vice versa.

This principle of conservation of angular momentum is
utilised by a diver, a skater, or a circus acrobat, while doing
various acts of spinning.

Illustrations of explain the law of conservation of
angular momentum

(i) Consider a man holding a pair of dumb bells or weights
in his outstretched arms extending and standing on a
turn table capable rotating freely about a vertical axis
passing through its centre. (Fig. 1.41).

The table is set rotating with certain angular velocity.
The dumb bells are brought nearer the axis of rotation.
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As a consequence, the moment of inertia of the system
about the axis of rotation decreases and the angular
velocity of the turn table increases.

As the man extends out his arms the M.I. increases
and the angular velocity of the turn table decreases to
maintain the angular momentum a constant.

(ii) In case of an acrobat in a circus, the acrobat leaves the
swing with his arms and legs stretched. As soon as he
leaves the swing, he possesses some angular momentum.

When the acrobat pulls his hands and legs together
inwards, his M.I decreases. Hence the angular velocity of
the acrobat increases considerably and the acrobat rolls.

Differences Analogy between linear and rotational
motion

The following table summarize the analogy showing the
quantities relating to linear motion and the corresponding
quantities relating to rotational motion.

Fig. 1.41 Conservation of angular momentum
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Table 1.1

Linear motion Rotational motion
Displacement   s (or) x Angular displacement   

Velocity, v

    

d s


dt
    

dx


dt
Angular velocity     

d 
dt

Acceleration, a


    
d v


dt
Angular acceleration     

d 
dt

also,   a


    
d

2
 s


dt
2 also,       

d
2
 

dt
2

Mass   M Moment of Inertia I     mr
2

Force F    ma Torque     I 

Momentum p


    m v


Angular momentum L


    I 

Kinetic Energy   
1
2

 mv
2

Kinetic energy   
1
2

 I 2

Work done   F


  s
 Work done    

1.13  ROTATIONAL ENERGY STATES OF A RIGID
 DIATOMIC MOLECULE

If we consider two atoms of masses m1 and m2 which are

situated at a distance r1 and r2 with respect to the axis of

rotation YY respectively, then this arrangement is called as rigid
rotor. Here ‘R’ is the bond length between the two atoms
R    r1    r2.

Fig. 1.42 Rotational energy states of a rigid
diatomic molecule

1.66 Engineering Physics



If the distance diatomic molecule rotates with respect to
the center of mass ‘C’, then its kinetic energy is given as

E    
1
2

 m1 r1
2
 2

    
1
2

 m2 r2
2
 2

, ... (1)

(or) E    
1
2

 m1 r1
2
    m2 r2

2 2
,

(or) E    
1
2

 I 2

(because, the moment of inertia I    m1 r1
2
    m2 r2

2
)

E    
1
2

 I 2
, ... (2)

The eqn.(2) can be rewritten as,

E    
1

2 I
  I2

 2 ... (3)

As, I     L, (the angular momentum of the rigid rotor),
then Eq.(3) becomes

E    
L

2

2 I
... (4)

At atomic level, the rotation leads to quantization of the
angular momentum with values given by

L
2
    l l    1 h2

,         l    0, 1, 2,  ... (5)

where ‘l’ is the rotational quantum number. As ‘l’ varies
interms of integer values, so corresponding the energy levels of
a rotating molecule are therefore given by

El    
l l    1 h2

2 I ... (6)
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Here h     
h

2 
 and ‘h’ is the planck’s constant.

The ground level and first four excited rotational energy
levels for a diatomic molecule is shown in the fig.1.44.

Note that the levels are not equally spaced.

1.14 GYROSCOPE

Definition

A gyroscope is a device used for measuring or
maintaining orientation and angular velocity. It is a
spinning wheel or disc in which the axis of rotation (spin
axis) is free to assume any orientation by itself.

When rotating, the orientation of this axis is unaffected
by tilting or rotation of the mounting, according to the
conservation of angular momentum

Gyroscopic principle

All spinning objects have gyroscopic properties. The main
properties that an object can experience in any gyroscopic motion
are rigidity in space and precession.

Fig. 1.43
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Description and working

A gyroscope is essentially a heavy wheel rotating at a high
speed about an axle passing through its centre of mass and so
mounted as to be free to turn about any of three mutually
perpendicular axes 1, 2, 3 (Fig.1.44 (a) & (b)).

If the wheel rotates with high angular speed about the
axis 1, the base may be turned in any manner without exerting
any torque on the wheel.

Fig. 1.44 (b)

Fig. 1.44 (a)
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In other words, so long the wheel rotates rapidly, it
maintain its axis of rotation unchanged in space as the support
is tilted in any manner.

If, any torque is applied perpendicular to the axis of
rotation, there will be a precession inversely proportional to the

angular momentum I  of the wheel. However, a heavy wheel

rotating at high speed, having a large moment of inertia, would
suffer very small precession.

Thus gyroscope is a device characterised by the greater
stability of its axis of rotation.

Applications

1. In view of the property of stability, the gyroscope are
used as stabilizers in ships, boats and aeroplanes.

2. Due to the inherent stability of the gyroscope, it used
as a compass, and a gyro-compass is preferable to the
magnetic compass in many respects.

3. Another important application of the directional
stability of a rapidly spinning (rotating) body is the
rifling of the barrels of the rifles.

This spin motion prevents the deflection of the bullet
from its path due to air and gravity effects, and causes
only very little precession. Thus the uniformity of flight
of the bullet is increased.

4. The rolling of hoops and the riding of bicycles (which
are statically unstable since both of them cannot
remain in equilibrium when at rest) are possible
because of the gyroscopic effect. This effect produces a
movement of the plane of rotation, tending to
counterbalance the disturbing action of gravity.
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5. Many modern aircraft instruments such as automatic
pilot, bomb sights, artificial horizon, turn and back
indicators, etc. have been developed on gyroscope-
controlled principles.

1.15 TORSION PENDULUM

A circular metallic disc suspended using a thin wire
that executes torsional oscillation is called torsional
pendulum.

 It executes torsional oscillations, whereas a simple
pendulum executes linear oscillations.

Description

A torsional pendulum consists of a metal wire suspended
vertically with the upper end fixed. The lower end of the wire
is connected to the centre of a heavy circular disc (Fig.1.45).

Fig. 1.45 Torsional Pendulum

Expression for the period of Oscillation of a Torsion
Pendulum

When the disc is rotated by applying a twist, the wire is
twisted through an angle . Then, the restoring couple set up
in the wire
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   C ... (1)

where C  couple per unit twist.

If the disc is released, it oscillates with angular velocity
d
dt

 in the horizontal plane about the axis of the wire. These

oscillations are known as torsional oscillations.

If  
d

2
 

dt
2  is the angular acceleration produced in the disc

and I its moment of inertia of the disc about the axis of the
wire then,

Applied couple   I 
d

2

dt
2

... (2)

At equilibrium, applied couple  restoring couple

I 
d

2

dt
2      C 

Here – ve sign signifies that the restoring couple is opposite
to applied couple (torque)

d
2

dt
2      

C
I

  ... (3)

This equation represents simple harmonic motion which

shows that angular acceleration 



 
d

2

dt
2  



 is proportional to angular

displacement  and is always directed towards the mean position.

Hence, the motion of the disc being simple harmonic
motion, the time period of the oscillation is given by

T    2  Displacement
Acceleration
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    2  C
I

    

 T  2   I
C

... (4)

Uses of Torsional Pendulum

Torsional pendulum is used to determine

1. Rigidity modulus of the wire

2. Moment of inertia of the disc

3. Moment of inertia of an irregular body.

Determination of Rigidity Modulus of the Wire

The rigidity modulus of the wire is determined by the
following equation

T    2  I
C

... (1)

Experiment

A circular disc is suspended by a thin wire, whose rigidity
modulus is to be determined. The top end of the wire is fixed
firmly in a vertical support.

The disc is then rotated about its centre through a small
angle and set free. It executes torsional oscillations.

The time taken for 20 complete oscillations is noted. The
experiment is repeated and the mean time period T of
oscillation is determined.
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The length l of the wire is measured. This length is then
changed by about 10 cm and the experiment is repeated. The
readings for five or six different lengths of wire are measured.

The disc is removed and its mass and diameter are
measured.

The time period of oscillation is

T    2   I
C

... (2)

Squaring on both sides, we have

T
 2

    2
22

 



  I

C
 




2

... (3)

T
 2

    
4 2

 I
C

... (4)

Substituting couple per unit twist C    
 n r

4

2 l
 in eqn (4),

We have T
 2

    
4 2

 I

 n r
4

2 l

    
2 l   4 2

 I

 n r
4  ... (5)

rearranging the equation (5),

The rigidity modulus of the material of the wire

n    
8  I

r
4  


 

l

T
 2 
 ... (6)

I  moment of inertia of circular disc    
MR

2

2

where M  Mass of the circular disc

R  Radius of the disc
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1.16 DOUBLE PENDULUM

A double pendulum is a pendulum with another
pendulum attached to its end.

It is a simple physical system that exhibits rich dynamic
behaviour with strong sensitive by to initial conditions.

The pendulum behaves like a linear system for small
angles. When the angles are small in the double pendulum, the
system behaves like the linear double spring. In this case, the
motion is determined by simple sine and cosine functions.

On the otherhand for large angles, the pendulum is
non-linear and the phase graph becomes much more complex.

The pendulum rods are treated as massless and rigid.

Kinematics of the double pendulum
The derivation of the equations of motion is shown below,

using the direct Newtonian method.

Kinematics deals with the motion of object without regard
to forces. In kinematics expressions for the position, velocity, and
acceleration are given in terms of the variables that specify the
state of the device. (Fig. 1.46)

Fig. 1.46 Double Pendulum

 x     horizontal position of pendulum mass

 y     vertical position of pendulum mass

      angle of pendulum (O     vertical downwards,
counter-clockwise is positive)

 L     length of rod (constant)
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The origin is taken at the pivot point of the upper
pendulum. The positions of pendulum 1 and pendulum 2 are
found by using simple trigonometry relation.

Let position of pendulum 1 be x1, y1 and pendulum 2

x2, y2. x1, y1 and x2, y2 are given interms of 1 and 2

respectively.

x1    L1 sin 1

y1     L1 cos 1

x2    x1    L2 sin 2

y2    y1    L2 cos 2

The velocity is the derivative with respect time of the
position.

dx1

dt
    

d1

dt
  L1  cos 1

x

1    


1 L1 cos 1

y

1    


1 L1 sin 1

x

2    x


1  


2 L2 cos 2

y

2    y


1    


2 L2 sin 2

The acceleration is the second derivative.

x


1     

1
2
 L1 sin 1    


1 L1 cos 1

y


1     

1
2
 L1 cos 1    


1 L1 sin 1

x


2    x


1    

2
2
 L2 sin 2    


2 L2 cos 2

y


2    y


1 

2
2
 L2 cos 2    


2 L2 sin 2
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Forces in double pendulum

The two pendulum masses are treated as point particles.
The free body diagram is drawn for the upper mass and writing
an expression for the net force acting on it (Fig. 1.47). These
variables are defined as follows.

 T     tension in the rod

 m     mass of pendulum

 g     acceleration due to gravity

Fig. 1.47 Double pendulum

The forces on the upper pendulum mass are the tension
in the upper rod T1, the tension in the lower rod T2, and gravity

 m1 g.

We write separate equations for the horizontal and vertical
forces, since they can be treated independently. The net force
on the mass is the sum of these. Here we show the net force
and use Netwon’s law F    ma.

m1 x


1     T1 sin 2    T2 sin 2 ... (5)

m1 y


1    T1 cos 1    T2 cos 2    m1 g
... (6)
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For the lower pendulum, the forces are the tension in the
lower rod T2, and gravity  m2 g.

m2 x


2     T2 sin 2 ... (7)

m2 y


2    T2 cos     m2 g ... (8)

In relating these equations to the diagrams, keep in mind
that in the example diagram 1 is positive and 2 is negative,

because of the convention that a counter-clockwise angle is
positive.

Uses of double pendulum

The double pendulum is widely used in education, research
and applications. For example the double pendulum is  staple
bench top experiment for introducing and studying chaos and
state transitions. It has also been used to study chaos both
experimentally and numerically.

1.17 INTRODUCTION TO NON - LINEAR OSCILLATIONS

Vibration phenomena is well understood by using linear
vibrations theory include small amplitude vibrations. Examples:
Vibration of long, slender objects like long bridges, aeroplane wings
and helicopter blades, small rocking motions of ships in calm waters;
the simplest whirling motions of flexible shafts, and so on.

However, interactions between bridges and foundations,
between wings / blades and air, between ships and waves,
between shafts and bearings, and so on, are all nonlinear.

Non - linear systems can show behaviours that linear
systems cannot. These include:

(a) multiple steady state solutions, some stable and some
unstable, in response to the same inputs.

(b) jump phenomena, involvind discontinuous and
significant changes in the response of the system as
some forcing parameter is slowly varied.
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(c) response at frequencies other than the forcing frequency.

(d) internal resonances, involving the different parts of the
system vibrating at different frequencies, all with
steady amplitudes (the frequencies are usually in
rational ratios, such as 1:2, 1:3, 3:5, etc.),

(e) self sustained oscillations in the absence of explicit
external periodic forcing, and

(f) complex, irregular motions that are extremely sensitive
to initial conditions (chaos).

Non - linear oscillators

A linear oscillator can oscillate with only one frequency,
its motion is sinusoidal and periodic. 

If the return force in the spring is not linear, the motion
will still repeat itself, but it will no longer have only a single
frequency in its motion.

The oscillations will repeat over and over, always with the
same period, but the position as a function of time will not be

given by y    A cos 2 f1 t, where f1    
1
P

. Here P is period.

 In order to describe the motion of the non-linear oscillator,
the sine wave different frequencies to be considered.

 Non - linear oscillators describe motion that exactly
repeats itself cycle after cycle, we need building blocks
that oscillate with exactly the same period P, or at least

integer fractions of the period, namely P, 
P
2

, 
P
3

, etc.,

 We can write symbolically as Pn    
P
n

 where n is an

integer, n    1, 2, 3, . Since the frequency fn is the

inverse of the period.

fn    
n
P

    n 
1
P

    nf1
... (1)
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The first four harmonics. The fourth harmonic is
shown below the others for clarity. The dashed vertical

line shows half the period, so t    
P
2

. 

Note the difference between the behavior of the odd
(1 and 3) harmonics and the even harmonics (2 and 4)

just after t    
P
2

.

Thus, the complex motion is resultant of sine waves of
several frequencies called harmonics. The sine waves with
frequencies that are integer multiples of the lowest frequency

f1    
1
P

. 

They go through exactly 1, 2, etc. complete oscillations in
the period P. The frequency f1 is called the fundamental of

the harmonic series. The first four harmonics are shown in
fig. 1.48, which are given by

yn    A cos { n 2 f1 t } ,   n    1, 2, 3, 4 ... (2)

It is noted that at the midpoint, all of the harmonics are
zero, but the even harmonics have gone through an integer
number of cycles, and they are going positive again while the

odd harmonics have gone through 
1
2

 ,  
3
2

 ,  
5
2

 , etc cycles, and are

going negative.

Fig. 1.48 Non - linear oscillator Frequency
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If the period of the oscillation is P, then the frequencies
present in the motion are

f1    
1
P

,   f2    2f1    
2
P

,   f3    3f1,   f4    4f1 4f, etc.
... (3)

To summarize, the motion contains the frequency f1 which

is the inverse of the period, plus harmonics (integer multiples)
of this frequency. This is very different from the simple
oscillator.

In the simple oscillator we had one frequency which only
depended on the stiffness and inertia of the system.

Now, the motion of the non-linear oscillator consists of a
complex motion made up of harmonics of f1. The participation

of each harmonic in a complex oscillation depends on the details
of the nonlinearity.

There are two important characteristics of the nonlinear
oscillator.

1. The effects of the nonlinearity becomes much more
important as the amplitude is increased.

2. For some types of nonlinearity, the frequency of the
oscillator will change with amplitude.

Thus when we drive a nonlinear system, the larger the
amplitude the more important the higher harmonics are.

Applications & uses

Non - linear system is a system in which the change of the
output is not proportional to change of the input.

Non linear problems are of interact to engineers, biologists,
physicists, mathematicians and many other scientists because
most systems are inherently non - linear in nature.
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SOLVED PROBLEMS

Problem 1.1

Give the location of centre of mass of a (i) hollow sphere
(ii) hollow cylinder (iii) hollow cube (iv) ring (v) solid
cylinder (vi) solid cube. Does the centre of mass of a
body necessarily lie inside the body.

Solution:

(i) CM of hollow sphere is located at its centre.

(ii) CM of hollow cylinder is located at the mid point of
its axis of symmetry.

(iii) CM of hollow cube lies at its geometric centre.

(iv) CM of ring is at the centre of ring.

(v) CM of solid cylinder at the mind point of its axis of
symmetry.

(vi) CM of solid cylinder at its geometric centre.

It is not necessary that the CM of a body lie inside the body.

Problem 1.2

In an HCl molecule, the separation between the nuclei
of two atoms is 1.27 Å. Find the position of CM of the
molecule. Given that chlorine atom is 35.5 times heavier
than hydrogen atom and that nearly entire mass of the
atom is concentrated in it, nucleus.

Solution:

Let the mass of hydrogen atom m1    m and it is located

at x1    0

The mass of chlorine atom m2    35.5 m and it is located at

x2    1.27 Å

  1.27    10
 10

 m
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If X is the distance of the CM of HCl molecule, then

X    
m1 x1    m2 x2

m1    m2

  
m    0    35.5 m    1.27    10

 10

m    35.5 m

  
35.5 m    1.27    10

 10

36.5 m

  
45.08    10

 10

36.5
 m

  1.235    10
 10

 m

Hence, CM of HCL molecule is situated on the line joining

the two nuclei and at a distance of 1.235    10
 10

 m  1.235 Å
from hydrogen nucleus.

Problem 1.3

A machine part is shown in the fig. It consists of a 10
cm long and 10 cm diameter solid cylinder attached at
one end of a 8 cm long, 2 cm diameter cylindrical rod.
At other end of the rod, a 10 cm diameter and 2 cm
wide disc is attached. Find the centre of mass of the
machine part assuming it to be made of the
homogeneous material.

Solution:

We measure the distance from free end of the cylinder.
Let  be the density (homogeneous) of the system, then the
masses of three components are given by

m1     r
2
 l          25    10    250 

m2     r
2
 l          1    8    8 

m3     r
2
 t           25    2    50 
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The distances from O at which the masses are concentrated
are x1    5 cm.

x2    14 cm, x3    19 cm. So distance of centre of mass from

O is given by

x

    

m1 x1    m2 x2    m3 x3

m1    m2    m3

  
250     5    8     14    50     19

250     8     50 

x

    7.5 cm

Problem 1.4

Locate the centre of mass of a system of particles of
masses m1    1 kg, m2    2 kg and m3    3 kg, situated at

the corners of an equilateral triangle of side 1.0 m.

Solution:

We have from fig.

Fig.

Fig.

1.84 Engineering Physics



The centre of mass is given by

xcm    
m1 x1    m2 x2    m3 x3

m1    m2    m3

ycm    
m1 y1    m2 y2    m3 y3

m1    m2    m3

In this case m1    1 kg, m2    2 kg, m3    3 kg

x1    0 ,   y1    0 ,   x2    1 ,   y2    0 ;

So, we have xcm    
1    0    2    1    3    0.5

1    2    3
    

3.5
6

 m

ycm    
1    0    2    0    3 3/2

1    2    3
    

3
4

 m

which gives the coordinates of centre of mass as (3.5/6, 3/4)

Problem 1.5

The radius of gyration of a disc about its centre of mass
is 1.41 m. If the mass of the disc 1 kg, what is its moment
of inertia?

Fig.
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Solution:

I    M K
2

Here       M    1 kg ,  K    1.41 m

therefore, I    1 1.412    2 kg  m
2

Problem 1.6

A body of mass 50 g is revolving about an axis in a
circular path. The distance of the centre of mass of the
body from the axis of rotation is 50 cm. Find the moment
of inertia of the body.

Solution:

Assuming the body as a particle, we have,

I    MR
2
    50    10

 3 50    10
 22    1.25    10

 2
 kg  m2

Note. If the body has a finite size, then one has to use
the theorem of parallel axis.

Problem 1.7

Two masses each of 1 kg mass are attached at the ends
of a light rod of length 2 m. Assuming the masses as
point masses find moment of inertia of the system about
an axis passing through the middle point of the
connecting rod and perpendicular to the rod. The mass
of the connecting rod is negligible.

Solution:

I     r
2

  m1 r1
2
    m2 r2

2

m1   m2    1  kg

Here r1    r2    1 m
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Therefore, I    1    1
2
    1    1

2

  2 kgm
2

Problem 1.8

Find the moment of inertia about the geometric centre
of the given structure made up of one thin rod
connecting two similar solid spheres as shown in figure.

Solution:

The structure is made up of three objects; one thin rod
and two solid spheres.

Mass of the rod, M    3 kg and

Total length of the rod, l    80 cm  0.8 m

Moment of inertia of the rod about its centre of mass

Irod    
Ml
12

Irod    
1

12
    3    0.82    

1
4

    0.64

Irod    0.16 kg m
2

Mass of the sphere, M    5 kg

Radius of the sphere, R    10 cm  0.1 m

Moment of inertia of the sphere about its centre of mass

                    Ic    
2
5

 MR
2

Mechanics 1.87



Moment of inertia of the sphere about geometric centre of

the structure is, Isph    Ic    Ma
2

where, a    40 cm    10 cm    50 cm    0.5 m

Isph    
2
5

 MR
2
    Ma

2

Isph    
2
5

    5    0.12    5    0.52

Isph    2    0.01    5    0.25    0.02    1.25

Isph    1.27 kg m
2

As there are one rod and two similar solid spheres we can
write the total moment of inertia (I) of the given geometric
structure as, 

I    Irod    2    Isph

I    0.16    2    1.27    0.16    2.54

I    2.7 kg m
2

Problem 1.9

A flywheel is a uniform disc of mass 72 kg and radius
50 cm. Calculate (a) moment of inertia (b) its kinetic
energy when it is rotating at 70 r.p.m.

Solution:

(a) M.I. of the flywheel  
MR

2

2

  
72    0.52

2
    

72    0.5    0.5
2

    9 kgm
2

(b) K.E. of rotation

 
1
2

 I 2
    

1
2

    9    

 2    

70
60

 


2

    241.8 J
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Problem 1.10

A hollow sphere of radius r1 and a solid sphere of radius

r2 have some masses and moments of inertia. Find the

ratio of their radii.

Solution:

Assuming hollow sphere to be of negligibly thin wall, it is
equivalent to a spherical shell.

Moment of inertia of spherical shell I1    
2
3

 M1 r1
2

Moment of inertia of solid sphere I2    
2
5

 M2 r2
2

Given M1    M2    M (say) I1    I2

                   
2
3

 Mr1
2
    

2
5

 Mr2
2

r1
2

r2
2    

3
5

  
r1

r2
     3

5

Problem 1.11

A wheel in the form of uniform disc of diameter one
metre and mass 100 kg is rolling on a horizontal plane
with a speed of 5 metre per second. Find the kinetic
energy of the wheel.

Solution:

The kinetic energy of the wheel is partly due to translatory
motion and partly due to rotary motion

Kinetic energy of translation  
1
2

 mv
2
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 
1
2

    100    5
2
    

1
2

    100    5    5    1,250 joule

Kinetic energy of rotation  
1
2

 I 2

I    
MR

2

2
    

100    0.5
2

2
    

100    0.5    0.5
2

    12.5 kg  m2

2
    

v
2

r
2    

25

0.5
2    

25
0.5    0.5

    100

K.E. of rotation 
1
2

 I2
    

1
2

    12.5    100    625 joule

Total K.E.   1250    625    1175 joule

Problem 1.12

Find the rotational kinetic energy of a ring of mass 9
kg and radius 3 m rotating with 240 rpm about an axis
passing through its centre and perpendicular to its
plane. (rpm is a unit of speed of rotation which means
revolutions per minute).

Solution:

The rotational kinetic energy is, KE  
1
2

 I 2

The moment of inertia of the ring is, I    MR
2

I    9    3
2
    9    9    81 kg m

2

The angular speed of the ring is,

    240 rpm    
240    2

60
 rads

 1

KE    
1
2

    81    



 
240    2

60
 




2

    
1
2

    81    82
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KE    
1
2

    81    64    2    2592    2

KE    25920 J   . . . 2  10

KE    25.920 kJ

Problem 1.13

A constant torque of 400 N-m turns a wheel about its
centre. The moment of inertia of wheel about this axis

is 20 kgm
2
. Calculate (i) angular acceleration

(ii) angular velocity and the KE gained in 2s starting
from rest.

Solution:

(i) Since     I 

    

l
    

400
20

m    20 rad s
 2

(ii) Using     0     t

Assuming 0    0,      t    20    2    40 rad s
 1

(iii) Gain in KE  
1
2

 I 2
    

1
2

 0
2

Assuming 0    0

Gain in KE   
1
2

 I 2
    

1
2

 20 402    1.6    10
4
 J
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Problem 1.14

Calculate the angular momentum of a disc whose
rotational kinetic energy is 10 kJ and moment of inertia

about its axis of rotation is 4.5    10
 4

 kgm
2
.

Solution:

E    
1
2

 I 2
,     L    I 

2E  I 2

Multiply both sides by I

2IE    I
2
 2

I   2IE

therefore, L    2IE

  2 4.5    10
 4
 10    10

3


L    3.0 kg m
2
 s
 1

Problem 1.15

A small object of mass 20 kg is rotating in a circle of
diameter 0.20 m at the rate of 2000 revmin. Find the
rotational kinetic energy of the object.

Solution:

Here M    20 kg, radius r    
0.02

2
     0.10 km

 Moment of inertia, I    MR
2

  20    0.102

  0.20  kg  m
2
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Angular velocity     2 n    2    

 
2000
600

 

 rad/s

 Rotational kinetic energy Krot    
1
2

 I 2

Krot    
1
2

    0.20    



 
2    2000

60
 




2

  0.10    
16
36

 2
    10

4
 Joule

  444 2
 Joule    444    9.8    4382 Joule

Problem 1.16

A body of mass 20 kg is rotating in a circular path of
diameter 0.20 m at the rate of 100 revolutions in 3
second. Find 
(i) Rotational kinetic energy of the body 

(ii) Angular momentum of the body 2
    9.86

Solution:

Mass of body M    20 kg

radius of circular path, r    
0.20

2
    0.10 m

No. of revolutions per second n    
100

3
 rev/sec.

 Angular velocity     2 n    2    
100

3
    

200
3

  rad / s

Moment of inertia of body,

I    MR
2
    20    0.102    0.20 kgm

2
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(i) Rotational kinetic energy, K    
1
2

 I 2

    
1
2

    0.20    

 
200

3
  



2

  0.10    

 
200

3
 


2

 2
    

0.10    200    200
9

    9.86

  4.382    10
3
 Joule

(ii) Angular momentum of body, J    I 

  0.20    
200

3
     

0.20    200    3.14
3

  41.87 kg  m
2
/s

Problem 1.17

A mass of 2 kg is rotating in a circular path of radius
0.8 m with an angular velocity of 44 rad/s. If the radius
of path becomes 1.0 m find the new angular velocity.

Solution:

The angular momentum J of mass is conserved

i.e. J    I     constant

i.e. I1 1    I2 2

or 2    
I1 1

I2

Here I1    mr1
2
    2    0.82    1.28 kgm

2
, 1    44 rad/s

I2    mr2
2
    2    1.02    2 kgm

2

 New angular velocity, 2    
1.28    44

2
    28.16 rad / s
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Problem 1.18

A solid cylinder of mass 25 kg rotates about its axis with

angular speed 125 s
 1

. The radius of the cylinder is 0.5
m. What is the kinetic energy associated with the
rotation of the cylinder? What is the magnitude of
angular momentum of the cylinder about its axis?

Solution:

Mass of cylinder M    25 kg

angular speed     125 s
 1

radius of cylinder R    0.5 m

 Moment of inertia of the cylinder about its axis

I    
1
2

 MR
2
    

1
2

    25    0.52

  3.125 kg m
2

 K.E. of rotation,   
1
2

 I 2

  
1
2

    3.125    1252

  2.44    10
4
 J

Angular momentum, L      I 

  3.125    125

  390.6 Js
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Problem 1.19

A circular metal hoop of mass 100 g and radius 10 cm
rotates about its centre at the rate of 10 rotations per
second. The axis of rotation is normal to the plane of
the hoop. Find 
(a) Moment of inertia about the axis of rotation. 
(b) Torque required to increase in 10 s the rate of
rotation from 10 to 20 per second.

Solution:

(a) I    MR
2

 0.1    0.1
2

  1    10
 3

 kgm
3

(b) Initial angular momentum

L1    I 1

 1    10
 3  2    10

  2  10
 2

 Js

Final angular momentum

L2    I 2

  1  10
 3    2  20

Change in angular momentum

  L2    L1

  4  10
 2

    2  10
 2

  2  10
 2

 Js
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 Torque   
L2    L1

t
    

2    10
 2

10

  2  10
 3

 Nm

Problem 1.20

A sphere of mass 50 g and radius 8 cm is revolving about
an axis in a circular path. The distance of the centre of
mass of the body from the axis of rotation is 50 cm. Find
the moment of inertia of the body.

Solution:

Moment of inertia of the spherical body about in axis
passing through its centre of mass, is given by

Ic    
2
5

 MR
2
    

2
5

 50  10
 3 8    10

 22

  1.28    10
 4

 kgm
2

I   Ic    Ma
2

  1.28    10
 4

    50    10
 3 50    10

 22

  1.28    10
 4

    125    10
 4

  1.26    10
 2

 kgm
2

Note: If the size of the body is very small then only
the body can be treated as a point mass.
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Problem 1.21

The angular velocity of a flywheel decreases uniformly
from 600 rpm to 300 rpm in 5 s. Find (a) angular
acceleration, (b) the number of revolutions made by the
wheel in the 5s interval, (c) How many more seconds
are required for the wheel to come to rest, (d) if the

moment of inertia of the flywheel is 0.5 kg m
2
, what

torque was acting?

Solution:

(a) Using a    
2    1

t
 with 1    

2    600
60

    20 rad s
 1

and 2    
2    300

60
    10 rad s

 1
 we have

  
10    20

5
     2

     6.28  rad s
 2

(b) Let the number of revolutions done be n. Since the angle
turned in 5s is 2n rad on using the relation

0    1 t    
1
2

  t
2
, we have

2 n    20    5    
1
2

    2    5
2

n  37.5 rev

(c) Suppose the wheel takes another t seconds to come to rest

from the angular speed of 10  rad s
 1

, then on using
2    1     t, we have

0    10    2 t

t    5s
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(d) Using     I  with I    0.5 kg m
2
 and      6.28 rad s

 2
, we

have find that the retarding torque is

    2    0.5    6.28

  6.28 Nm

Problem 1.22

The angular momentum of rotation of a body 1s 75.36
Js and its rate of rotation is 24 rev per s. Calculate its
moment of inertia.

Solution:

L    I 

Here L    75.36 Js

    2 n    2 24 rad s
 1

therefore, I    
L


    
75.36

12    3.14    24

  0.5 kg m
2

Problem 1.23

A torque of 75 N-m applied to the rotor of a generator

imparts an angular acceleration of 10 rad s
 2

. What is the
moment of inertia of the wheel?

Solution:

    I 

Here     75 N.m,     10 rad s
 2

therefore I    



    
75
10

I    7.5 kgm
2
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Problem 1.24

A fly wheel of moment of inertia 0.3 kgm
3
 is rotating

at the rate of 200 rpm. What torque is needed to bring
it at rest in 10 s?

Solution:

Here o    
2 n

t

  
2    3.14    200

60

  20.93 rad/s

    0 ,  t    10 s

    
    p

t

  
0  20.93

10

   2.093 rad s
 2

The torque  required to produce a retardation of

2.093 rad s
 2

 is given by

    I     0.3 2.093

  0.63 Nm

Problem 1.25

Consider the earth as a uniform sphere of mass

5.98    10
24

 kg and radius 6.37    10
6
 m spinning on its

axis at the rate of per day. Find the angular momentum
associated with this spinning
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Solution:

M.I. of the earth about diameter   
2
5

 MR
2

  
2
5

    5.98  10
24

    6.37    10
62 kgm

2

Angular velocity     
2

24    60    60
 rad s

 1

Angular momentum   I 

  
2
5

    5.98    10
24

    10
62    

2
24    60    60

  7.055    10
33

 Nms
 1

  Js
 1

Problem 1.26

A grindstone is in the force form of a circular disc of
diameter 0.5 m and of mass 10 Kg. What constant torque
should be applied so that if attains an angular velocity
of 120 rpm in 4 seconds. At what rate is work done by
torque at the end of 4 seconds?

Solution:

Angular velocity after 4 secs     4 radians / sec.

We have,     0     t

     radian / sec
2

    I  

  
MR

2

2
        

10
2

    
52

4
    

  
5    .25    

4
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  
1.25
4

    0.3125  Nm

The rate at which the work is done

      
1.25

4
     4

  1.252
 watts

Problem 1.27

A constant torque of 200 Nm acting on a wheel at rest
rotates in through an angle of 400 radians in 10 s.
Calculate (a) the angular acceleration (b) moment of
inertia of the wheel. If the same torque continues to act,
what would be angular velocity after 20 seconds?

Solution:

Let  be the angular acceleration

    o t    
1
2

  t
2

    400 radians, t    10 sec,  o  0

400    
1
2

     10
2

    
400  2

100

    8 radian / sec
2

    I 

I    
T


    
200

8
    25 kg m

2
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Angular velocity after 20 sec. is

    0     t

  0    8  20

  160 radian / sec

Part - ‘A’ 
‘2’ Marks Questions with Answers

 1. Define multiparticle dynamics.

The study of dynamics of a system which consists of two
or more particle is known multiparticle dynamics.

 2. Define centre of mass of the system.

Consider the motion of a system consisting of a large
number of particles. There is one point in it which behaves as
though the entire mass of the system were concentrated there
and all the external forces were acting at this point. This point
is called the centre of mass of the system.

 3. What is centre of mass (CM)?

A point in the system at which whole mass of the body is
supposed to be concentrated is called centre of mass of the body.

 4. Give the example for motion of centre of mass.

Examples for motion of centre of mass

(i) Motion of planets and its satellite

(ii) Projectile Trajectory

(iii) Decay of a Nucleus

 5. How centre of mass is determined for rigid body and
regular shape?

Centre of mass of some regular objects.

 For a rigid body, the centre of mass is a point at a fixed
position with respect to the body as a whole. Depending
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on the shape of the body and the way the mass is
distributed in it, the centre of mass is a point may or
may not be within the body.

 If the shape is symmetrical and the mass distribution
is uniform, we can usually find the location of the centre
of mass quite easily.

 For a long thin rod of uniform cross section and density,
the centre of mass is at the geometrical centre.

 For a thin circular plane ring, It is again at the
geometrical centre of the circle.

 For a rectangle, again the centre of mass is at the
geometrical centre.

 6. What is difference between centre of gravity and
centre of mass?

 The centre of gravity of a body is a point, where the
whole weight of the body supposed to be concentrated.

 The centre of mass of a body is that point, where the
whole mass of the body is supposed to be concentrated.

For uniform geometrically shaped, bodies the centre of
gravity coincides with centre of mass. However, they do not
coincide in bodies whose density is not uniform throughout.

 7. Define rigid body.

A rigid body is defined as that body which does not undergo
any change in shape or volume when external forces are applied
on it.

 8. Define rigid body rotation.

When a body rotates about a fixed axis, its motion is known
as rotatory motion.

A rigid body is said to have pure rotational motion, if every
particle of the body moves in a circle, the centre of which lies
on a straight line called the axis of rotation (Fig).
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 9. Write down the equation of motion for rotational
motion.

    0     t ... (1)

    0 t    
1
2

  t
2 ... (2)

2
    0

2
    2  ... (3)

10. Define moment of inertia of a body.
The property of a body by which it resists change uniform

rotational motion is called rotational inertia or moment of inertia.

11. Define moment of inertia of a particle
The moment of inertia of a particle about an axis is defined

as the product of the mass of the particle and square of the
distance of the particle from the axis of rotation.

If ‘m’ is the mass of the particle and ‘r’ is the distance of
the particle from the axis of rotation, then 

The moment of inertia of the particle

I    mr
2

12. Define moment of inertia of a rigid body.
The moment of inertia of a rigid body about a given axis

is the sum of products of masses of its particles and the square
of their respective distances from the axis of rotation.

Fig. Rotational motion
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13. What factors the moment of inertia depends?

Moment of inertia depends on mass, distribution of mass
and on the position of axis of rotation.

14. What are the physical significance of moment of inertia?

The property which opposes the change in rotational motion
of the body is called the moment of inertia. Greater is moment
of inertia of the body about the axis of rotation, greater is the
torque required to rotate the body.

Thus it is clear that the moment of inertia of a body has
the same role in rotational motion as that of mass (or inertia)
is linear motion.

15. What is radius of gyration?

The radius of gyration is defined as the distance from the
axis of rotation to the point where the entire mass of the body
is assumed to be concentrated.

K is called the Radius of Gyration of the body about the
axis of rotation. It is equal to the root mean square distance
of all particles from the axis of rotation of the body.

16. What are the theorems on moment of inertia?

There are two important theorems which help to find the
moment of inertia of a body about some other axis if moment
of inertia about any symmetrical axis of the body is given. These
are called theorem of parallel and perpendicular axes.

They are

1. Parallel axes theorem and

2. Perpendicular axes theorem

17. State parallel axis theorem.

The moment of inertia of a body about any axis is equal
to the sum of its moment of inertia about a parallel axis passing
through its centre of gravity of the body and the product of its
mass of the body with the square of the distance between the
two axes.
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18. State perpendicular axis theorem.

It states that the moment of inertia of a plane lamina
about an axis perpendicular to its plane is equal to the sum of
the moments of inertia of the plane lamina about any two
mutually perpendicular axes in its own plane and intersecting
each other at the point where the perpendicular axis passes
through it.

19. Define angular momentum.

Angular momentum of a particle is defined as its moment
of linear momentum it is given by the product of linear
momentum and perpendicular distance of its line of action from

the axis of rotation. It is denoted by L


.

20. Define torque.

The moment of the applied force is called torque. It is
represented by the symbol ‘’.

If F is the force acting on a body at a distance r then,

Torque   Force    distance

i.e., 

    F


    r



The rotational motion is due to only when the torque acts
on the body.

21. State conversation of angular momentum.

The law of conservation of angular momentum states that
in the absence of an external torque, the angular momentum
of a body or a system of bodies remains conserved.

22. What is gyroscope?

A gyroscope is a device used for measuring or maintaining
orientation and angular velocity. It is a spinning wheel or disc
in which the axis of rotation (spin axis) is free to assume any
orientation by itself.
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23. What are the uses of gyroscope?

1. In view of the property of stability, the gyroscope are
used as stabilizers in ships, boats and aeroplanes.

2. Due to the inherent stability of the gyroscope, it used
as a compass, and a gyro-compass is preferable to the
magnetic compass in many respects.

3. Another important application of the directional
stability of a rapidly spinning (rotating) body is the
rifling of the barrels of the rifles.

24. What is torsional pendulum?

A circular metallic disc suspended using a thin wire that
executes torsional oscillation is called torsional pendulum.

25. What are the uses of torsional pendulum?

Torsional pendulum is used to determine

1. Rigidity modulus of the wire

2. Moment of inertia of the disc

3. Moment of inertia of an irregular body.

26. What is double pendulum?

A double pendulum is a pendulum with another pendulum
attached to its end.

The pendulum behaves like a linear system for small
angles. When the angles are small in the double pendulum, the
system behaves like the linear double spring. In this case, the
motion is determined by simple sine and cosine functions.

On the otherhand for large angles, the pendulum is
non-linear and the phase graph becomes much more complex.
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Part - B ‘16’ Marks Questions

 1. Define the centre mass of a system of particles. Derive the
expression for it.

 2. Discuss of centre of mass of continuous bodies.

 3. Explain the motion of the centre of mass.

 4. Derive an expression for kinetic energy of system of
particles.

 5. Derive the equation of rotational motion about fixed axis.

 6. Derive the relation between rotational kinetic energy and
moment of inertia.

 7. Derive an expression for the rotational kinetic energy of a
rigid body rotating about a fixed axis with an angular
velocity .

 8. State and prove the theorem of parallel axes for the moment
of inertia of a rigid body.

 9. State and prove the theorem of perpendicular axis for the
moment of inertia of a plane lamina.

10. Derive an expression for the moment of inertia of a uniform
rod.

(i) About an axis through its centre and perpendicular to
its length.

(ii) About an axis passing through on end of the rod and
perpendicular to its length.

11. Derive an expression for the moment of inertia of thin ring.

(a) About an axis through its centre and perpendicular to
its plane.

(b) about a diameter.

(c) about a tangent in the plane of the ring.
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12. Derive an expression for the moment of inertia of a thin
circular disc

(a) about an axis through its centre and perpendicular to
its plane.

(b) about a diameter.

13. Derive an expression for the moment of inertia of a solid
sphere.

(a) about diameter

(b) about a tangent

14. Derive an expression for the moment of inertia of a solid
cylinder.

(a) about an axis passing through the centre and
perpendicular to its length

(b) about the axis of cylinder.

15. Discuss the moment of inertia of a diatomic molecule.

16. Derive an expression for angular momentum of a rigid body.

17. Explain conservation of angular momentum with examples.

18. Discuss the rotational energy states of a rigid diatomic
molecule.

19. Describe principle, construction and working of gyroscope.
Mention its application in various fields.

20. Derive an expression for time period of torsion pendulum.
Explain how it is used to find rigidity modulas of a wire.

21. Write notes on

(i) double pendulum

(ii) non-linear oscillations
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Problem for Practice

 1. A fly wheel of mass 500 kg. and diameter 2 metre makes
500 revolutions per minute. Assuming that whole of the
mass is concentrated at the rim, find its angular velocity
and moment of inertia. 

[Ans. 52.4 rad / sec, 500 kg   m2]

 2. Five masses each of 0.2 kg are placed on horizontal circular
disc of negligible mass which can rotate about a vertical
axis passing through its centre. If all the masses be
equidistant from the axis and at a distance 5 cms from it;
find the moment of inertia of the system.

[Ans. 25  10 4 kg   m2]

 3. A ring of mass 5 kg, and radius 20 cms. rolls along the
ground at the rate of 10 metres per second. Calculate it
kinetic energy. [Ans. 500 joule]

 4. Calculate the kinetic energy of uniform circular disc of mass
1 kg and diameter 0.1 m, making 100 revolution per minute
about its axis.

[Ans. 6.7875  10 2 joules]

 5. A solid spherical ball rolls on a table. Determine the faction
of its total kinetic energy that is rotational. [Ans. 2/7]

 6. A solid sphere of mass 0.1 kg and diameter 0.025 m rolls
without slipping with a velocity 0.1 m/sec. Calculate its total
kinetic energy in joules.

[Ans. 7  10 4 joules]

 7. Deduce the moment of inertia of HCl molecule about an
axis passing through its centre of mass and perpendicular
to the bond length. Given internuclear distance  1.3 Å.

[Ans. 2.79  10 47 kgm 2]

 8. Calculate the moment of inertia of a uniform disc of mass
0.2 kg and radius 5 cm about an axis passing through its
edge and perpendicular to the plane of the disc.

[Hint. I  
1
2

 MR2    MR2  
3
2

 MR2 

[Ans. 7.5  10 4 kg   m2]
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Unit II

Electromagnetic Waves

 - 



2. Electromagnetic Waves

The Maxwell’s equations – wave equation; Plane
electromagnetic waves in vacuum, Conditions on the wave
field – properties of electromagnetic waves; speed,
amplitude, phase, orientation and waves in matter –
polarization – Producing electromagnetic waves – Energy
and momentum in EM waves. Intensity, waves from
localized sources, momentum and radiation pressure –
Cell-phone reception. Reflection and transmission of
electromagnetic waves from a non-conducting
medium-vacuum interface for normal incidence.

Introduction

 The phenomenon of Faraday’s electromagnetic induction
concludes that a changing magnetic field at a point with
time produces an electric field at that point.

 Maxwell in 1865, pointed out that there is a symmetry in
nature (i.e) changing electric field with time at a point
produces a magnetic field at that point. It means that a
change in one field with time (either electric or magnetic)
produces another field.

 This idea led Maxwell to conclude that the variation in
electric and magnetic fields perpendicular to each other,
produces electromagnetic disturbances in space. These
disturbances have the properties of a wave and propagate
through space without any material medium. These
waves are called electromagnetic waves.

 Maxwell unified the theories of electricity and magnetism
by way of deducing four very important equations which
combine the experimental observations reported by
Gauss, Ampere, and Faraday with his concept of
displacement current.



2.1 MAXWELL’S EQUATIONS

Faraday laid the foundation of electromagnetism. He
suggested the possibility of the propagation of electromagnetic
waves through space. The idea was later confirmed and fully
developed by Maxwell who expressed the laws of
electromagnetism in terms of fundamental equations. 

He showed that electromagnetic waves can be produced by
changing electric and magnetic fields. Maxwell’s equations form
the foundation of electromagnetic theory.

Maxwell’s Equations (Derivation)

There are four Maxwell’s equations in electromagnetic
theory. The first two equations are known as steady state
equations and the last two equations are known as time
varying equations

Maxwell’s Equation - I
(From Gauss’s law in electrostatics)

Integral form
Gauss’s law in electrostatics states that the total

electric flux through any closed surface is equal to the
charge enclosed by it (Fig. 2.1).

��

�

Fig. 2.1
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According to Gauss law,

O
S

E


  ds


    
q


... (1)

 O
S

 E  ds


    q . . . D


     E



 O
S

D


  ds


  q ... (2)

Now, if  be the charge density, (charge per unit volume)
then total charge inside the closed surface is given by

q        
V

  dV ... (3)

Substituting eqn (3) in eqn (2), we have

 O
S

D


  ds


        
V

  dV ... (4)

This is Maxwell’s equation in integral form from
Gauss law in electrostatics.

Applying Gauss’s divergence theorem to LHS of eqn (4), we get

ie.,  O
s

D


  ds


        
V

 


  D


 dV ... (5)

on substituting eqn (5) in eqn (4), we get

    
V

 


  D


 dV      
V

   dV ... (6)

or 


  D


    
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


  o E


     ...  D    o E



o 


  E


    




  E


    

o

... (7)

This is Maxwell’s equation from Gauss’s law in
electrostatics in differential form

Statement

The total electric displacement through the surface
enclosing a volume is equal to the total charge within
the volume

Maxwell’s Equation - II
(From Gauss’s law in magnetostatics)

Integral form
It is a well known fact in magnetism that the magnetic

lines of force are continuous and do not appear to have the origin
or the end. Thus the total magnetic flux through any closed
surface in a magnetic field is zero ie.,

 O
S

B


  ds


    0 ... (1)

This is Maxwell’s equation in integral form from
Gauss’s law in magnetostatics.

Applying Gauss divergence theorem to the L.H.S. of
equation (1), We get

 O
S

B


  ds


        
V

 


  B


 dV           ... (2)
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on substituting eqn (2) in eqn (1), we have

    
V

 


  B


 dV    0 ... (3)

    or 


  B


    0 ... (4)

This is Maxwell’s equation in differential form from
Gauss’s law in magnetostatics.

Statement
The net magnetic flux emerging through any closed

surface is zero.

Maxwell’s Equation - III
(From Faraday’s law)

Let us consider C be a closed circuit and S be the surface
with C as its boundary (Fig. 2.2). Let B be the magnetic flux
density inside the closed circuit.

Magnetic flux through a small area ds    B


  ds


... (1)
 
    Total magnetic flux
linked with the circuit

 



    B     O

S
B


  ds


... (2)

Faraday’s law states that the induced emf e is the rate of
change of magnetic flux B

Fig. 2.2
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  e     
dB

dt
     

d
dt

 

 O

S

  B


  ds


 


... (3)

   O B


t
  ds


If E


 be the electric field strength, then 

We know that   E


  
dV
dl

dV    E


  dl


  V     dV   E  dl


V  e   E  dl


e    O E


  dl
 ... (4)

Here, the integral is taken over a closed curve C.

Equating eqn (3) and eqn (4), we have

O
C

 E


  dl


       
S

 
B


t
  ds


... (5)

This is Maxwell’s equation in integral form from
Faraday’s law of electromagnetic induction.

Now, applying Stoke’s theorem to L.H.S. of eqn (5), we have

O 
C 
 E


  dl


      
S

 


    E

  ds


... (6)

On substituting the eqn (6) in eqn (5), we get


S

  


    E

  ds


       
S

 
B


t
  ds


... (7)
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Since this must be true for all surfaces S, it follows that




    E


     
B


t
... (8)

Eqn. (8) represents Maxwell’s equation from
Faraday’s law of electromagnetic induction in differential
form.

Statement:

The electromotive force around a closed path is
equal to the rate of magnetic displacement (flux density)
through that closed path.

Conduction current density

This is the current due to flow of electrons through the
resistance in the circuit obeying ohm’s law

We know that 

V    IC R   or   IC  
V
R

... (1)

        But R    
 l
A

R    
l

 A
... (2)

where    resistivity of the conductor

   l  length of the conductor

   A  area of cross-section of conductor 

     Conductivity of conductor 

     

1


 

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Substituting for R from eqn (2) in eqn (1), we have

IC    
V
l

 A

IC    
V  A

l
... (3)

IC

A
    

V 
l

J


C     E


 ... (4)




 . . . JC  

IC

A
   and   E    

V
l

 




Here, JC represents the conduction current density

Displacement current density

It is the current that exists across the capacitor in the
circuit. When alternating field is applied to the parallel plate
capacitor, no charge motion takes place (Fig 2.3).

It is due to vacuum or dielectric medium in capacitor but
exchange (displacement) of charge takes place inside the capacitor.

It results in the existence of current on the surface of
capacitor. This current is called displacement current in the
capacitor.

Fig. 2.3
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ID    
dq
dt

       But q    CV

       C  Capacitance of capacitor

       V  Potential difference

         ID  
d
dt

 CV    C 
dV
dt

... (1)

The capacitance of parallel plate capacitor is given by

C    
 A
d

... (2)

where    Permittivity of the medium      

      A   Area of the parallel plate capacitor 

      d   Distance between two plates

Substituting for C from eqn (2) in eqn (1), we get

ID    
 A
d

 
dV
dt

... (3)

      But V    Ed 


 ...  E    

V
d

 

   ... (4)

substituting eqn (4) in eqn (3), we have

          ID    
 A
d

 
d
dt

 Ed

ID    
 A
d

 d 
d E


dt

ID     A 
d E


dt ... (5)
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ID

A
     d E



t

J


D     d E


t



 . . . 

ID

A
    JD 





where JD displacement current density

     or J


D     
d  E



t
... (6)

JD  
D


t
 [. . . D     E] ... (7)

Maxwell’s Equation - IV

From Ampere’s Circuital law

Ampere’s law states that the line integral of magnetic
field intensity H on any closed path is equal to the
current  I  enclosed by that path

O H


  dl


  I ... (1)

But, current density J    
I
A

where A is cross sectional area

or I  JA




 ... A      
s

 ds 



I  J   
S

 ds
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or I     
S

  J


    ds
 ... (2)

substituting eqn (2) in eqn (1), we have

O H


  dl


  
S

 J


  ds
 ... (3)

Ampere’s law is modified by introducing displacement
current density

O H


  dl


      
S

 JC    J


D ds
 ... (4)

substituting for J


C     E


  and  J


D    
D


t
, we have

O H


  dl


    
S

 



  E


    

D


t
 



 ds

O H


  dl


      
S

 



  E


     

E

t
 



 ds

... (5)

Unless or otherwise it is not specified, J stands for
conduction current density alone. (ie., J    JC

then,     O H


  dl


     
S

 



 J


    
D


t
 



 ds

... (6)

...  J   E


       D   E


 

This is Maxwell’s equation in integral form from
Ampere’s circuital law.

Applying Stoke’s Theorem to LHS of equation (6), we have
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O H


  dl


      
S

 


    H
 ds ... (7)

On substituting eqn (7) in eqn (6) we get

  
S

 


    H


  ds      
S

 



 J


    
D


t
 



 ds ... (8)

or 


    H


    J


    
D


t
... (9)




    H


     E


     
E


t
... (10)

Equations (9) and (10) are Maxwell equations in
differential form from Ampere’s circuital law

Statement

The magnetomotive force around a closed path is
equal to the sum of the conduction current and
displacement current enclosed by the path.

Maxwell’s equations are summarised as follows

Differential form Integral form

I. 


  D


      O
S

  D


  ds


        
V

  dV

II. 


  B


    0  O
S

  B


  ds


    0

III. 


    E


     
B


t
O E


  dl


       
S

 
B


t
  ds


IV. 


    H


    J


    
D


t
O H


  dl


      
S

 



 J


    
D

t
 



 ds

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Maxwell’s Equations in Free Space

Four Maxwell’s equations in differential form are




  D


     ... (1)     




  B


    0 ... (2)     




    E


     
B


t
... (3)     




    H


    J


    
D


t
... (4)     

In a free space, there is no charges enclosed. There is no
conductivity in the medium and conduction current is zero. Thus

current density J


 and charge density  are zero. (ie.,     0 and
J    0

Therefore,

Maxwell’s equations reduce to




  D


    0 ... (5)     

. . .     0     




  B


    0 ... (6)     




    E


     
B


t
... (7)     




    H


      
D


t
... (8)     

. . . J    0     

Maxwell’s Equations in Conducting Media

In conducting media,

J


     E


 where  is electrical conductivity of the
 conducting medium               
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B


   H


 where  is permeability of the medium

D


   E


 where  is the permittivity of the conducting medium

By applying above conditions, general Maxwell’s equations
reduce to




  D


     ... (1)     




  B


    0 ... (2)     




    E


     
B


t

... (3)     




    H


    J


    
D


t

... (4)     

Characteristics of Maxwell’s Equation

1. Maxwell’s First Equation; 


  E


    

o

 It explains Gauss’s law in electrostatics.

 It is time independent or steady state equation.

 The flux of the lines of electric force depends upon charge
density.

 Charge acts as a source or sink for the lines of electric force.

2. Maxwell’s Second Equation 


  B


    0

 It expresses a well known observation that isolated
magnetic poles do not exist.

 It states that total magnetic flux entering and leaving
a given volume is equal.

 There is no source or sink for lines of magnetic force.

 It is a time independent equation.

 It explains Gauss’s law in Magnetostatics.
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3. Maxwell’s Third Equation 


    E


     
B

t

 It relates the electric field vector E


 and magnetic

induction vector B


.

 It is a time dependent or time varying equation.

 It explains the well known Faraday’s laws and Lenz’s
law of electromagnetic induction.

 E


 is generated by the time variation of B


.

4. Maxwell’s Fourth Equation 


    B


    o 



 J


    
D


t
 




 It gives relation with the magnetic field vector B


 with

displacement vector D


 and the current density J


.

 It is also a time dependent equation.

 It explains Ampere’s circuital law.

 B


 can be produced by J


 and the time variation of D


Note: B


     H


           H


    
B



   where   permeability of medium.

Plane Wave
If a wave is confined to a particular plane (instead

of in 3-dimensions) and propagating along particular axis
with equal magnitudes of electric and magnetic field
vectors, then that wave is called plane wave.

2.2 WAVE EQUATION 

Plane Electromagnetic Wave Equation in Vacuum

Maxwell’s equations in general form are




  D


     ... (1)




  B


  0 ... (2)
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


    E


     
B


t
... (3)




    H


  J


    
D


t
... (4)

Now, for the free space (vacuum) the permittivity and
permeability are denoted by o and o respectively. Therefore,

D


    o E


 and B


    o H


.

Also, the conductivity     0, that is the medium is a
perfect insulator. Therefore there is no conduction current in the
medium which implies

J


    0     ... J


     E


 ,  and     0

Also there is no charge present in the vacuum therefore
    0 and as a result eqn.(1) reduces to




  D


      0   or   


  o E


    0 (...  D


    o E


)

o 


  E


    0




  E


    0 ... (5)

Wave equation for electric field vector  E


 
Taking the curl on both sides of equation (3), we get




    


    E
    


    




  

B


t
 




   

t

 


    B



  

t

 


    o H

 ...  B


  o H



or 


    


    E

     o 


t

 


    H



... (6)
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Now from vector calculus identity, we have 




      


    E

    


 


  E

    2

 E
 ... (7)

But from eqn. (5), 


  E


    0 and substituting this in
equation (7) we get




    


    E

     2

 E
 ... (8)

substituting eqn (8) in eqn (6)

 2
 E


     o 

t

 


    H


)

Now, substituting for 


    H


 from eqn. (4), we get

 2
E


     o 

t

 



 J


  
D


t
 




... (9)

or  2
 E


     o 

t

 



 o 

E


t
 




...  J


  0 and D


    o E



2
E


  o o 
2

E


t
2

... (10)

This is general electromagnetic wave equation in

terms of electric field vector E


 for free space.

Wave equation for magnetic field vector  B


 

Taking curl on both sides of the equation (4), we have




    


    H

    


    




 J


    
D


t
 




or
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


    


    H

    o 


t

 


    E
 ... (11)

[...  J


  0 and D


    o E


 ]

Now from vector calculus identity, we have 




    


    H

    


 


  H

    2

 H
 ... (12)

But from eqn (2), we have




  B


  0

   i.e., o 


  H

  0   or   


  H

    0 ... (13)

 B


  o H


 
Substituting eqn (13) in eqn (12), we get




    


    H
     2

 H
 ... (14)

on substituting eqn (14) in eqn (11), we have

Using eqn (14) and eqn (11)

 2
H


    o 

t

 


    E



... (15)

Substituting the eqn (3) in eqn (15)

 2
 H


    o 

t

 



  

B


t
 




...  B


  o H


 

 2
 H


     o 
2

t
2 o H


 )

    or 2
H


  o o 
2

H


t
2 ... (16)

This general electromagnetic wave equation in terms

of H


 for free space.
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Discussion

1. The electromagnetic wave equation for E


 and H


 is
written as

2
E


    o o 
2

E


t2     0 ... (17)

        and 2
H


    o o 
2

H


t2   0 ... (18)

In one dimension say along x-axis, the wave equations are
given by the x-components of the above expression. That is

2
Ex

x
2     o o 

2
Ex

t
2   0

... (19)

and        
2

Hx

x
2     o o 

2
Hx

t
2   0

... (20)

2.3 SPEED ( VELOCITY ) OF EM WAVE IN VACUUM

Comparing above equations (19) and (20) with the following
general wave equation propagating in x-axis

2
y

x
2    

1

c
2 
2

y
t

  0
... (21)

where y - instantaneous displacement

c - velocity of wave        

We find that the velocity (speed) of the electromagnetic
wave is given by

1

c
2    o o

c
2
    

1
o o 

Note: Magnitude of velocity is called speed.
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c    
1

o o

... (22)

For vacuum or free space we have

o    4    10
 7

 H m
 1

 (henry per metre) and

o    8.842    10
 12

 Fm
 1

 (farad per metre).

substituting these values in eqn (22), we get

c  
1

4    10
 7

    8.842    10
12

c    2.998    10
8
 m s

 1

Thus, the speed of the waves in free space is a

constant and equal to 3    10
8
 m/s which is identical with

the velocity (speed) of light. This reveals that the light
is also the electromagnetic waves.

Wave Equations for plane polarized EM wave in free space
and their solution

The electromagnetic wave equations for E


 and H


 in free
space are  given by

2
E


    o o 
2

E


t
2     0 ... (1)

and 2
H


    o o 
2

H


t
2   0 ... (2)

2.4 CONDITIONS ON THE WAVE FIELD

If the plane polarized waves is propagating along x-axis
having electric vector along the y-axis, we have

Ey  0,    Ez    Ex    0    and 

Similarly for magnetic field vector

Hz  0,    Hy    Hx    0
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Therefore, the wave equations for plane electromagnetic
wave reduce to

2
Ey    o o 

2
Ey

t
2     0 ... (3)

   and 2
Hz    o o 

2
Hz

t
2   0

... (4)

Now 2
Ey    

2
Ey

x
2     

2
Ey

y
2     

2
Ey

z
2

... (5)

2
Hz    

2
Hz

x
2     

2
Hz

y
2     

2
Hz

z
2

... (6)

But, 
2

Ey

y
2     0  and  

2
Ey

z
2     0 

Similarly

2
Hz

y
2     0  and  

2
Hz

z
2     0, 
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        2
Ey    

2
Ey

x
2 ... (7)

Similarly 2
Hz    

2
Hz

x
2

... (8)

Substituting eqn (7) in eqn (3) and eqn (8) in eqn (4) we have

2
Ey

x
2     o o 

2
Ey

t
2     0

... (9)

2
Hz

x
2     o o 

2
Hz

t
2     0 ... (10)

Solutions of the plane Wave Equations

The plane wave equations for electric field and magnetic field
are given by

2
 Ey

 x
2     

1

c
2 
2

 Ey

 t2     0

2
 Hz

 x
2     

1

c
2 
2

 Hz

 t2     0



 . . . o o    

1
c2 



                                  c   speed of EM wave

The solutions of the above wave equations of progressive
wave are given by

Ey    Eo cos   t  kx  ... (11)

and Hz  Ho cos   t  kx  ... (12)

where,  - angular frequency

  k - wave vector
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Here Eo and Ho are the maximum values (amplitudes) of

the electric and magnetic vectors respectively. 

The general solution of the wave equation is written as

E


y    Eo e
i  t  kx

    Eo e
ik ct  x ... (13)

and H


z    Ho e
i  t  kx

  Ho e
ik ct  x ... (14)

where k    
2 


  and    2    
2  c


    k c

...  c    

where c is the wave velocity.

    Note: Equation of wave is given by

2
 y

 x2    
1

v
2  
2

 y

 t
2     0

v   velocity

The general solution of above equation is

y    f x, t

y    yo cos 2  

 
t
T

    
x


 


T   period,    wavelength

      y    yo cos 



 
2  t

T
    

2  x


 




    yo cos 



 2   t    

2  x


 




y    yo cos  t    k x

    2   angular frequency and k    
2 


, known as 

  wave vector
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2.5 PHASE AND ORIENTATION OF EM WAVE IN MATTER

From the equations (13) and (14), it is clear that the phases
of electric and magnetic fields are same (ie.,  t    kx. Thus,
both fields are in phase with each other.

Relation between electric and magnetic field vectors

We know for electromagnetic waves in free space

E


y  Eo e
ik ct  x

... (1)

     and H


z  Ho e
ik ct    x ... (2)

The relation between their time and space variations is
given from Maxwell’s equation

We know that




  E


     
 B


 t




  E


     o 
 H


 t
 ...  B


  o H


 















 

î


 x

0

    

ĵ


 y

Ey

    

k̂


z

0

 















     o 
 H


 t

. . . Ex    Ez    0

     or
 E


y

x
     o 

 H


z

 t
... (3)

Substituting Ey and Hz from the equations (1) & (2) in

eqn. (3), we get
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
 x

  Eo e
i k ct    x

      o 

 t

  Ho e
ik ct    x

 
... (4)

 i k Eo e
i k ct    x

     o i k c Ho e
i k ct    x

Eo  o c Ho ... (5)

But c  
1

o o

... (6)

Substituting the eqn. (6) in eqn. (5), we have

Eo    o    
1

o o

    Ho    o

o
   Ho 

or o

o

    
Eo

Ho
    

Eo e
i t    kx

Ho e
i  t  kx

       
E


H
    o

o

... (7)

This is the relation between the electric field vector
and magnetic field vector. It is determined by the o and

o.

This ratio of the electric and magnetic vectors is directly
proportional to the square root of the ratio of o and o.

E


H
    

Eo

Ho
    o

o

Substituting

 o    4  10
 7

  Hm
 1

,   o    8.85  10
 12

  Fm
 1
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E
H

     
Eo

Ho
    o

o
    4  10

 7

8.85  10
 12

    376.73  377

   i.e.,  Eo  377 Ho   also   E  377 H

It shows that the value of electric field at any instant is
about 377 times the value of magnetic vector in electromagnetic
wave. 

The ratio 
E
H

 is having the unit of impedance (Resistance)

ie., ohm, Therefore, the quantity o

o

 has the dimensions of

impedance.

o

o

    H/m
F/m

    herry / m
farad / m

herry
farad

    ohm  sec
Coul / volt

    ohm    volt
Coul / sec

    amp    
volt
ohm

 

                ohm  ohm    ohm

It is known as intrinsic or characteristic impedance
of free space, denoted by Zo. It is a constant quantity for

free space and having value  377.

The above discussion shows that the vector E


 and the

vector H


 are at right angle to each other and the wave

propagates in the direction of E


    H


. (Fig. 2.5)
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Thus if E


 is parallel to Y - axis. The vector E


    H
 is

known as Poynting vector after J.S. Poynting who first
investigated its properties.

Fig. 2.5

Further, E


 and H


 are always in the same phase, i.e., their
relative magnitudes are the same at all points and at all times.

Poynting Vector

The cross product of electric field vector E


 and the

magnetic field vector H


 is called poynting vector. It is

denoted by S


    E


    H


. 

An electro-magnetic wave has electric and magnetic field
vectors oscillating perpendicular to each other. The electric and
magnetic disturbance travels in a same direction perpendicular
to both the electric and magnetic vectors.

Let a plane polarized electromagnetic wave is propagating
along the x-axis. The electric vector is directed along the y-axis,
then the magnetic vector is directed along the z-axis. Hence,

S


    E


    H


    ĵ  Ey    k̂  Hz










 

î
0
0

    

ĵ
Ey

0
    

k̂
0

Hz

 










     î Ey Hz

But Ey Hz measures the energy per second (ie power) per

unit area. Hence S


 represents the energy propagating along the

x-axis in Js
 1

 m
 2

  or  Wm
 2

. 
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In the other words, Poynting vector gives the time rate
of flow of electromagnetic wave energy per unit area of
the medium.

Further the average Poynting vector for one complete cycle
of electromagnetic wave is given by

Savg    
1
2

 E


    H

    

1
2

 Eo    Ho    
Eo

2
    

Ho

2
    Erms . Hrms




 ...  Erms    

Eo

2
    and    Hrms    

Ho

2
 




Maxwell’s findings is summarised as below.

 1. If there is a varying electric field in vacuum, there is also
a varying magnetic field and vice versa. The electric and
magnetic fields are perpendicular to each other and also
perpendicular to the direction of propagation of the wave.

 2. The electric and magnetic fields obey wave equation with
identical propagation speeds.

 3. The speed of propagation given by c    
1

o o

 is the same

as the measured speed of light.

 4. The light waves can, therefore, be identified as
electromagnetic waves.

 5. The electric and magnetic fields in electromagnetic waves
oscillate in phase with each other.

2.6 PROPAGATION OF ELECTROMAGNETIC WAVE
THROUGH A DIELECTRIC MEDIUM
(Non - Conducting Isotropic Medium)

Maxwell’s equations are




    D


    




    B


    0
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


    E


      
 B


dt

and 


    H


    J


    
 D


dt

In an isotropic dielectric (or non-conducting isotropic
medium)

D


     E


, B


     H


, J


     E


    0 and     0.

Therefore, Maxwell’s equations in this case take the form




  E


    0 ... (1)




    H    0 ... (2)




    E


       
 B


 t ... (3)

        and 


    H


    
 E


 t ... (4)

Equation of propagation of magnetic vector, H

Taking curl of eqn. (4), we get




     


    H


      


    



 
 E


 t
 




or 


 


    H


    2
 H


     

 t

 


    E
 ... (5)

Putting values from the eqns.(2) and (3), we get

2
 H


      
2

 H


 t
2 ... (6)
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Equation of propagation of electric vector, E

Taking of eqn. (3), we get




    


    E

    


    




    

 H


 t
 







 


  E

    2

 E


       

 t

 


    H


Putting values from eqns (1) and (4), we get

2
 E


      
2

 E


 t
2

... (7)

The eqns (6) and (7) is compared with the general wave
equation,

 2
 u    

1

v
2 
2

 u

 t
2

 v    
1

 
where v is the speed of wave.

This means that the field vectors E


 and H


 are propagated
isotropic dielectric as waves with speed v given by

v    
1

 
... (8)

Now, 
1

o o

    c, speed of electromagnetic waves in free

space.
Refractive index is

n    
c
v
     

o o

    r r

In a non-magnetic medium r    1

     n    r
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2.7 EM WAVES IN CONDUCTING MEDIUM
(Medium with Finite ,  and )

General Maxwell’s equations are




  D


     ... (1)




  B


  0 ... (2)




    E


     
 B


 t
... (3)




    H


  J


    
 D


 t
... (4)

In conducting medium   0 i.e., there is a conduction

current in the medium therefore J


  0 but the charge density
is zero everywhere (inside the conductor the charge density is
always zero). That is     0.

Therefore the eqn. (1) reduces to 


  D


    0

or 


   E

    0  


  E


    0 ... (5)

Here D


     E


 and  is permittivity of the medium.

Taking the curl on both sides of eqn. (3), we get




    


    E

    


    




  

 B


 t
 




... (6)

From vector calculus identity, we have




    


    E

    


 


  E
    2

E
 ... (7)

But from eqn. (5) 


  E


    0
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Therefore, equation (7) becomes




    


    E

     2

E


 ... (8)

Also 


    



  

 B


 t
 



    


 t

 


    H

 ... (9)

...  B


    H

Substituting the eqn. (8) and (9) in (6), we get

 2
E


      

 t

 


    H



or  2
E


     

 t

 


  H

 ... (10)

On substituting the value of 


    H


 from eqn. (4) in eqn.
(10), we have

2
E


   

 t

 



 J


    
 D


 t
 




... (11)

Since J


     E


 and D


     E


 equation (11) becomes

2
E


   

 t

 



  E


    


 t

  E

 




or 2
E


    
 E


 t
      

2
 E


 t
2

Thus,   2
E


      
2

 E


 t
2       

 E


 t
    0

... (12)

This is the general wave equation for the electric
vector in an electromagnetic wave propagating in
conducting medium.
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In a similar way, by taking the curl of the eqn. (4) we
obtain the general wave equation for the magnetic vector in a
conducting medium as

2
 H


      
2

 H


 t
2       

 H


 t
    0

... (13)

Wave Equation for Plane Polarized EM Waves

Let us consider that the electromagnetic wave is travelling
in the x-direction and the electric vector is directed along the
y-axis and the magnetic vector is directed along the z-axis. For
such a wave we have

Ey  0, Ez    Ex    0  and  Hz  0, Hy    Hx    0

Therefore, the wave equations from (12) and (13), reduce to

2
Ey

 x
2       

2
Ey

 t
2       

 Ey

 t
2     0 ... (14)

and
2

Hz

 x
2       

2
Hz

 t
2       

Hz

 t
    0 ... (15)

In the above wave equations      
1

v
2 ; where v is the

velocity of electromagnetic wave in conducting medium. The
product   is called magnetic diffusivity.

Thus, the finite conductivity adds the diffusion term

   



 
Ey

 t
 



 to the wave equation. This is due to the presence

of conduction current J


  0.

For vacuum or perfect insulators     0 and so these
equations reduce to the expressions corresponding to the free
space or dielectric medium.

Electromagnetic Waves 2.33



Solution of the plane Em Wave Equation in conducting
medium   0

The solution of the equation (14) should be a function of
t and x and is of the form

E


y    E0 e
i  t   x

... (16)

Similarly, the solution of the equation (15) is of the form

H


z  H0 e
i  t   x

... (17)

Substituting eqn. (16) in eqn. (14)


�

�
�
�

��

�
��
���	����

�

������


�

�	
�
�

��

�
��
���	����

�
������


�	

�

��

�
��
���	����

�

�����

2
 E0 e

i  t   x
      i2 E0 e

i  t   x
      i  E0 e

i  t   x
    0

2
      i22

      i     0

2
      2

    i       0 [i
2
     1]

    or 2
    i        2

... (18)

For good conductors, we have     . Therefore,   2

can be neglected as compared to   . Hence, from equation
(18), we have

2
    i 

2
    

2i 
2
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or 2
   1    1    2i 

  
2

    1    i2 
  

2

Taking square root on both sides

   1    i   
2

     1    i k

ie.,     1    i k   or        1  i k

where k      
2

 is a constant.

Taking the –ve value of  which gives the wave propagation
in the +ve x-direction and substituting in the eqn. (16) we get

E


y    E0 e
[i  t    1  i kx]

E


y    E0 e
i  t    kx    ikx

 

E


y  E0 e
 kx

  e
i t    kx ... (16)

This is a progressive wave having amplitude equal

to E0 e
 kx

. The amplitude of the wave goes on decreasing

as the wave propagates deeper into the medium. Also the
propagation constant k which is a constant depending upon the
value of  and . 

Skin Depth (or) Penetration Depth

In conducting medium the amplitude of the electromagnetic
wave decreases exponentially with distance of penetration of the
wave. Suppose, the amplitude at a depth x is denoted by E0x,

then
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Eox    Eo e
 kx

... (1)

where k      
2

The decrease in the amplitude or the attenuation of the
field vector is quantitatively expressed in terms of a quantity
called skin depth.

It is defined as the distance inside the conductor from
the surface of the conductor at which the amplitude of the
field vector is reduced to 1/e times its value at the surface.

Electromagnetic waves

According to Maxwell, an accelerated charge is a source of
electromagnetic radiation.

 In an electromagnetic wave, electric and magnetic field
vectors are at right angles to each other and both are
at right angles to the direction of propagation.

They possess the wave character and propagate through
free space without any material medium. These waves
are transverse in nature.

 Fig. 2.6 shows the variation of electric field E


 along Y

direction and magnetic field B


 along Z direction and
wave propagation in  X direction.

Fig. 2.6 Electromagnetic waves
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2.8 PROPERTIES OF ELECTROMAGNETIC WAVES

(i) Electromagnetic waves are produced by accelerated
charges.

(ii) They do not require any material medium for propagation.

(iii) In an electromagnetic wave, the electric  E


  and

magnetic  B


  field vectors are at right angles to each
other and to the direction of propagation. Hence,
electromagnetic waves are transverse in nature.

(iv) Variation of maxima and minima in both E


 and B


 occur
simultaneously (in phase). 

(v) They travel in vacuum or free space with a speed

3    10
8
 ms

 1
 given by the relation c    

1
o o

.

( o  permeability of free space and

  o – permittivity of free space)

(vi) The energy in an electromagnetic wave is equally
divided between electric and magnetic field vectors.

(vii) The electromagnetic waves being chargeless, they are
not deflected by electric and magnetic fields.

2.9  LOCALIZED SOURCES FOR ELECTROMAGNETIC
WAVES

Any stationary charge produces only electric field. When the
charge moves with uniform velocity, it produces steady current
which gives rise to magnetic field (not time dependent, only space
dependent) around the conductor in which charge flows.

If the charged particle accelerates, it produces magnetic
field in addition to electric field.

Both electric and magnetic fields are time varying fields.
Since the electromagnetic waves are transverse waves, the
direction of propagation of electromagnetic waves is perpendicular
to the planes containing electric and magnetic field vectors.
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Any oscillatory motion is also an accelerated motion. So, when
the charge oscillates (oscillating molecular dipole) about their mean
position (Fig. 2.7), it produces electromagnetic waves.

It the electromagnetic field in free space propagates along
x-direction and if the electric field vector points along y-axis,
then the magnetic field vector is mutually perpendicular to both
electric field and the direction of wave propagation. Thus

Ey    Eo cos  t    kx

Bz    Bo cos  t    kx

where Eo and Bo are amplitudes of oscillating electric and

magnetic field, k is a wave number denotes the direction of
propagation of electromagnetic wave.  is the angular frequency
of the wave. 

Note both electric field and magnetic field oscillate with a
frequency (frequency of electromagnetic wave) which is equal to
the frequency of the source (here, oscillating charge is the source
for the production of electromagnetic waves).

In free space or in vacuum, the ratio between Eo and Bo

is equal to the speed of electromagnetic wave and is equal to
speed of light c.

Fig. 2.7 Oscillating charges - Sources of Electromagnetic Waves
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c    
Eo

Bo

In any medium, the ratio of Eo and Bo is equal to the

speed of electromagnetic wave in that medium. Thus

v    
Eo

Bo
    c

Further, the energy of electromagnetic waves comes from
the energy of the oscillating charge.

 Note:

Eo

Ho
    o

o

Eo

Bo

o

    o

o

. . . Bo    o Ho  

o Eo

Bo
    o

o

Eo

Bo
    o

o

    
1
o

Eo

Bo
    1

o o

Eo

Bo
    c

Eo    c Bo
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2.10  POLARIZATION

In an electromagnetic wave, the direction in which the

electric field’s amplitude vector E


o points, specifies the

geometrical orientation of the oscillation. The direction of E


o is

now called the polarization of the wave.

Fig. 2.8 shows an electromagnetic wave with its electric
field oscillating parallel to the vertical ‘y’ axis. The plane

containing the E


 vectors is called the plane of oscillation of
the wave.

Hence the EM wave is called as plane-polarized parallel
to the y axis. The wave’s polarization can be represented by
two arrows, indicating that its electric field oscillates vertically.
It is continuously changing between directed up and down along
the y-axis.

Thus the amplitude vector E


o cannot point in arbitrary

direction for EM waves. This is because as Gauss law for electric
field for a system with a varnishing charge density




  E


    0 ... (1)

implies that

Ex

x
    0,      

Ey

y
    0,      

Ez

z
    0 ... (2)

Fig. 2.8 (a) Plane of oscillations of a polarized EM wave          
     (b) Polarization representation of the electric field along ‘y’ axis
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So, if we consider a wave solution for the electric field,

E


 x, t    E


o cos  t    kx cannot have an oscillating

amplitude in the x-direction since 
Ex

x
    0. Due to this fact,

EM waves cannot be polarized in the direction they are
travelling. So EM waves are never longitudinally polarized.

2.11 PRODUCING ELECTROMAGNETIC WAVES

It follows from Maxwell’s equations that electromagnetic
radiation occurs whenever electric charge accelerates.

Let us consider a capacitor like arrangement as shown in
fig. 2.9. Here, A  and  B are two conducting rods. They are
separated by a distance ‘d’.

If a voltage source is connected across these rods or wires,
a corresponding electric field occurs between the rods.

If the two rods are get tilted in the following manner,
correspondingly the electric field pattern also changes (Fig. 2.10).

Fig. 2.9

Fig. 2.10
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Further if the two rods (or) wires are tilted in the following
manner then, the electric field lines are also changed (Fig. 2.11).

Now by replacing the voltage source as a AC voltage
source as shown in fig. 2.12, then this arrangement is called
as dipole - antenna.

A basic design of a electromagnetic wave generator involves
this dipole - antenna arrangement. A diagram of one such
arrangement is shown in fig. 2.13.

In the figure 2.13, the AC voltage source with a particular
frequency ‘f’ is fed to a LCR circuit. The inductor ‘L’ is a
transformer. The secondary of the transformer is attached to the
two conducting rods A and B as shown in the fig. 2.13.

Fig. 2.11

Fig. 2.12 Dipole-Antenna
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As the voltage of the AC source oscillates the electric
potentials of the two wires A and B also oscillate.

Due to acceleration of charges, the current flowing through
the rod is alternating or it periodically changes its direction.

So the electrons in the rods are constantly accelerated and
deaccelerated when the direction of the current changes. As the
current oscillates, the electric field at the antenna oscillates. So
an electromagnetic wave propagates as shown in fig. 2.14.

As the charges undergo harmonic motion in the rods or
dipole wires at a frequency to the frequency of the AC voltage

source 

 f    

1
T

 

, the frequency of the generated electromagnetic

wave is same.

Fig. 2.14

Fig. 2.13 Electro magnetic wave generator
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Thus, whenever an electromagnetic wave will frequency
‘f’ is observed, then it must be generated by an electromagnetic
oscillator that oscillates at the source frequency ‘f’. Most of the
dipole antennas have a total length of /2. Here  is the
wavelength of EM.
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Fig. 2.15

Fig. 2.16

Fig. 2.17
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Production of electromagnetic waves - Hertz
experiment

Maxwell’s prediction was experimentally confirmed by
Heinrich Rudolf Hertz in 1888. The experimental set up used
is shown in fig. 2.18.

It consists of two metal electrodes which are made of small
spherical metals. These are connected to larger spheres and the ends
of them are connected to induction coil with very large number of
turns. This is to produce very high electromotive force (emf).

Since the coil is maintained at very high potential, and
air between the electrodes gets ionized and spark (spark means
discharge of electricity) is produced.

This discharge of electricity affects another electrode (ring
type – not completely closed) which is kept at far distance.

This implies that the energy is transmitted from electrode
to the receiver (ring electrode) in the form of waves, known as
electromagnetic waves.

If the receiver is rotated by 90, then no spark is observed
by the receiver. This confirms that electromagnetic waves are
transverse waves as predicted by Maxwell.

Fig. 2.18 Schematic diagram of Hertz apparatus
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Hertz detected radio waves and also computed the speed
of radio waves which is equal to the speed of light

3    10
8
 ms

 1.

2.12  ELECTROMAGNETIC ENERGY FLOW AND
 POYNTING VECTOR

Electromagnetic waves transports energy from one region
to another. This energy transferred is described by power /
unit area for an area perpendicular to the direction of an EM
wave travel.

Let us consider a stationary plane perpendicular to the
x-axis which coincides with the wave front at a certain time t.
(Fig 2.19)

At a time t after this, the wavefront moves a distance to
the right side of the plane.

 x    c  t 



 . . .  c    

 x
 t

 




Area of cross section of the stationary plane is A and its
volume  V    A   x    A  c   t.

Fig. 2.19 A plane wave front at a time  t after it passes
through the stationary plane with area A and volume V.
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If  U is the available energy in this volume, then then

 U    u  V    o E
2 A c  t ... (1)

Here ‘u’ is the energy density which is equal to o E
2
.

This energy  U passes through the area ‘A’ in time  t.
Therefore, the energy flow / unit time / unit area is

S    
 U

A     t
    o E

2
 c ... (2)

Since E    c B  and  c    
1

o o

Eqn. (2) becomes

S    o c
2
 B

2
 c

... (3)

S    
o cB

2

o o

... (4)




 . . . c

2
    

1
o o

 


. . . cB


    E



            or S    
cB  B
o

    
EB
o

     in vacuum ... (5)

The unit of ‘S’ is energy per unit area per unit time or

power per unit area. The SI unit of ‘S’ is W/m
2
.
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In vector quantity, it is represented as

S


    
1
o

  E


    B
 ... (6)

or S


    E


    
B


o
. . . B    o H




or S


    E


    H
 ...(7)

Eqn. (6) is the Poynting vector in vacuum. Its
direction is in the direction of the propagation of the
EM wave.

2.13  INTENSITY OF AN EM WAVE IN VACUUM

The magnitude of the average value of S


 at a point
is called the intensity of radiation at that point. The S.I

unit of intensity is W/m
2
. 

Let us consider the electric and magnetic field solutions

E


 x, t    Ey cos  t    kx ... (8)

and

B


 x, t    Bz cos  t    kz

From eqn. (6)

S


    
1
o

  E


    B


  becomes

S


 x, t    
1
o

 Ey cos  t    kx    Bz cos  t    kz ... (9)

The x-component (Direction of propagation) of the poynting
vector is given as
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Sx x, t    
Ey Bz

o
 cos

2
  t    kx

... (10)

 
Ey Bz

o
 



 
1    cos 2  t    kx

2
 




... (11)

The time average value of cos 2  t    kx is zero. So the
average value of the poynting vector is

Saverage    Sx


 x, t    

Ex By

2 o

... (12)

or simply

Sav    
Ey Bz

2 o
    

Ey  Ey

2 o c

... (13)

    
Ey Ey

2 o    
1

o o

Sav    
1
2

 o

o

 Ey
2

Sav      
1
2

  o o

o o

  Ey
2

(or) Sav    
o

o o

 Ey
2

Intensity, I    Sav    
1
2

 o c Ey
2 ... (14)

This is the intensity of an EM wave in vacuum.

Also intensity is represented as for localised sources as

I    
Power
Area

    
P

4 r
2
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2.14 MOMENTUM AND RADIATION PRESSURE

It is important to note that as EM waves carry energy,
they also carry momentum. Maxwell proved that wave energy
U and momentum are related by

P    
v
c

... (1)

where v is energy density and c is the velocity by of light.

As the electromagnetic waves carry momentum, they
exert pressure when they are reflected or absorbed at the
surface of a body. This is known as radiation pressure.

From Newton’s second law, the change in momentum is
related to a force by

F    
 P
 t

... (2)

As intensity I    
Power
Area

    
energy / time

Area

then for a flat surface of area A, which is perpendicular to the
path of an EM wave radiation, the energy intercepted in a given
time  t is

 U    I  A   t ... (3)

So, from eqn. (1), the momentum is

 P    
 u
c

    
I  A   t

c
... (4)

and as F    
 P
 t

    
I  A

c
... (5)

This is the relation for the total absorption of EM radiation.

This is due to ‘ P’ is the momentum change and the
direction of momentum change of the object is the direction of
the incident EM radiation that the object absorbs.

If the radiation is completely reflected back by the object
along the original path then
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F    
2 I A

c
... (6)

Thus if the radiation is partly absorbed or completely
reflected by the object, the magnitude of the force on area A

varies between the values 
IA
c

  and  
2 I A

c

Radiation pressure

The force per unit area on an object due to EM radiation
is the radiation pressure Pr. Thus from eqns. (5) and (6) we

obtain

Radiation pressure Pr    
F
A

Pr    
I
c

for total absorption of radiation

and

Pr    
2I
c

,

for total reflection back along the path

2.15 CELL PHONE RECEPTION

A typical cell phone contains a tiny low-power radio
transmitter or antenna. EM signal intensity decreases as the
inverse square of the distance from the phone.

The antenna’s length is comparable to /2, where ‘’ is
the wavelength of the EM signal being emitted by the cell phone.

As  is short, so the cell phone antenna is also very short.
Typically a simple dipole antenna as shown in the fig. 2.20 is
used to detect the incoming EM signal in the cell phone.
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In this antenna, the incident electric field of the EM signal
induces a voltage across the wires of the antenna. This induced
voltage is then amplified and processed by the circuitary in the
cell phone.

The low power signals emitted by the cell phone will be
received and transmitted by the cell phone towers. The towers
are also another type of antenna. The cell phone transmits on
one frequency and receive with other frequency.

2.16  REFLECTION AND TRANSMISSION OF EM
 WAVES VACUUM - NON - CONDUCTING MEDIUM
 INTERFACE FOR NORMAL INCIDENCE

Let us consider a monochromatic (single frequency) uniform
plane wave that travels through one medium (vacuum) and
enters another medium (non-conducting) of infinite extent.

The uniform plane EM wave propagating along x-direction
in a vacuum medium o, o incident normally on the surface

of a flat non-conducting medium permittivity,   o and

permittivity,   o.

Here the incoming EM wave is called the incident wave,
the interface is an infinite plane at x    0, the region to the
left of the interface is medium 1 x    0 and the region to the
right of the interface is medium 2 x    0.

Fig. 2.20 Cell Phone Reception
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At the interface, a part of the incident EM wave will
penetrate the boundary (interface) and continue its propagation
in medium 2. Now this wave is called the transmitted wave.

Another remainder of the wave is reflected at the interface
and then propagates in the negative x direction. This wave is
called the reflected wave as shown in fig. 2.21.

Thus both the incident and transmitted waves propagate
in  x direction. The reflected wave will propagate in  x
direction. So the incident and reflected waves are in medium 1
and the transmitted wave is in medium 2.

Now by considering the electric field E


 of the incident wave
which is polarized in y-direction (plane polarized) and has an
amplitude Eo at the interface as shown in fig. 2.21.

If k1    /v1 is the propagation constant of this wave

(with angular frequency  and velocity equal to v1) in medium-1,

then the electric and magnetic field waves are represented as

E


i x, t    Eo cos  t    k1 x, ... (1)

Fig. 2.21 Here  s

  is the propagation vector (or)

poynting vector                              
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and

B


i x, t    
Eo

v1
 cos  t    k1x, ... (2)

                          



 . . . Bo    

Eo

v1
 




Then, the reflected waves are represented as,

E


R x, t    E1 cos  t    k1 x, ... (3)

and B


R x, t    
E1

v1
 cos  t    k1 x, ... (4)

E


T x, t    E2 cos  t    k2 x ... (5)

We know that Eo    cBo

B


T x, t    
E2

v2
 cos  t    k2 x

... (6)

Here in eqns (3) and (4), the sign is reversed used in the
wave number k to denote that this wave is propagating from the
interface (boundary) along negative x direction (backward travelling
wave). Also the wave numbers k1 and k2 are related to

k1    

v1 ... (7)

and

k2    

v2 ... (8)
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The total instantaneous electric field E


y for any value of

x with medium 1 is equal to the sum of the incident and
reflected waves, so

E


y x, t    Eo cos  t    k1 x    E1 cos  t    k1 x ... (9)

(or)

E


y x, t    E


i x, t    E


R x, t ... (10)

The total instantaneous electric field E


y for any value of

x in the medium-2 is

E


y x, t    E2 cos  t    k2 x ... (11)

At the interface x    0, the boundary conditions require

that the tangential components of E


 and B


 fields must be
continuous.

Fig. 2.22 (a) Electric field wave patterns
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Since the waves are transverse, E


 and B


 fields are entirely
tangential to the interface. Hence at x    0, eqn. (9) and (10)
are equal, so

Eo cos  t    k1 x    E1 cos  t    k1 x    E2 cos  t    k2 x... (12)

as x    0, then

Eo cos  t    E1 cos  t   E2 cos  t

(or)

Eo    E1    E2 ... (13)

Also at boundary x    0, as tangential components are
continuous therefore

dEi

dx
    

dER

dx
    

dET

dx
... (14)

�
��
� ���
��
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�
�


�
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�
�


�
������	�����

�
�


�
������	 ... (15)

(or)

Eo k1    E1 k1    E2 k2,

Fig. 2.22 (b) Magnetic field wave patterns
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(or)

k1 Eo    E1    E2 k2,

(or)

Eo    E1    E2  



 
k2

k1
 




... (16)

As k1    

v1

 and k2    

v2

, then eqn. (16) becomes

Eo    E1    E2  



 
v1

v2
 




... (17)

Adding eqns (13) and (17) gives

2 Eo    E2    E2  



 
v1

v2
 




    E2 



 1    

v1

v2
 




Eo    



 
E2

2
 



 



 1    

v1

v2
 




... (18)

When medium-1 is vacuum v1    c, and v2    v

   Eo    



 
E2

2
 



  

 1    

c
v

 


Subtracting eqn. (17) from eqn. (13) gives

E1    



 
E2

2
 



 



 1    

v1

v2
 




... (19)

E1    



 
E2

2
 



  

 1    

c
v

 


Electromagnetic Waves 2.57



ANNA UNIVERSITY SOLVED PROBLEMS

Problem 2.1: 
A circular cross section conductor of radius 2 mm carries

a current IC    2.5 sin 5    10
8
t  A what is the amplitude

of the displacement current density if     35 M  1
 m

 1

and r    1. (A.U. May 2017)

Given data

Ic    2.5 sin 5    10
8
t  A

  2.5 sin 5    10
8
t    10

 6
 A

    35 MS m
 1

    3.5    10
6
 S m

 1

r    1

o    8.85    10
 12

 F m
 1

    5  10
8
 rad s

 1

radius a    2 mm    2    10
 3

 m

Solution

We know that

JC    E

JD     
ES

t

if ES    E sin  t

Es

t
    E cos  t
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   J


D     E cost  t

Taking only the amplitude

 
Es

t
      E

 
JC

JD
    

E
  E

    

 

    


 o r
[. . . r  1]

 
35    10

6

5    10
8    1     8.85    10

 12

JC

JD
    79.09    10

8

Further, JC    
IC

Area

Area  a
2
        2    10

 32

taking only amplitude of IC

JC    
2.5    10

 6

    2    10
 32

    0.198

JC

JD
    79.09    10

8

JD    
JC

79.09    10
8

JD    
0.198

79.09    10
8

JD   2.515    10
 11

 A / m
2
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Problem 2.2: 
The conduction current flowing through a wire with

conductivity     3    10
7
 S/m and relative permittivity

r    1 is given by IC    3 sin  t (mA). If     10
8
 rad/sec.

Find the displacement current.
(A.U. EE May 2014)

Given data

Conductivity     3    10
7
 Sm

 1

Conducting current IC    3 sin  t   mA

  3    10
 3

 sin  t  A

Angular frequency     10
8
 rad s

 1

Solution:

Displacement current density JD     
E
t

Since IC is given, E is found from conduction current

density as

JC    E

IC

A
    E




 . . . JC    

IC

A
 




   E    
IC

A
    

3    10
 3

 sin  t

3    10
7
    A

     Vm
 1

  
1    10

 10

A
 sin  t

 
E
t

    



 
1    10

 10

A
 



  cos  t

������ ��������� �� 	

����� ��
� ������

����� �������

�
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Multiplying both sides by 

 
 E
 t

     



 
1  10

 10

A
 



  cos  t       




 . . . JD     

E
t

 




JD     



 
1    10

 10

A
 



 cos  t

JD    o r 



 
1    10

 10

A
 



 cos  t . . .     o r

JD    8.84    10
 12

    10
8
    




 
1    10

 10

A
 



 cos  t

JD    
8.85    10

 14

A
 cos  t

ID    JD  A

substituting for JD

ID    



 
8.85  10

 14

A
 cos  t 




 A

ID  8.85    10
 14

 cos  t    ampere

Problem 2.3: 
A poor conductor is characterised by a conductivity
    100 (S/m) and permittivity     4 o. At what angular

frequency  is the amplitude of the conduction current
density JC equal to the amplitude of the displacement

current density JD? (A.U. EC June 2014)

Given data

Conductivity of the conductor     100 Sm
 1

Permittivity of the conductor     4 o
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Solution:

JC    E

JD    
 D


t

    
 Eo

t
 cos  t

    E

JD    E only amplitude

Equating conduction current density and displacement
current density, we have

E     e

     

100        4 o

    
100

4    8.85    10
 12

  2.82    10
12

 rad s
 1

Problem 2.4: 
In a material for which     5 S/m and r    1 the electric

field intensity is E    250 sin  10
10

t V/m. Find the conduction
and displacement current densities and the frequency at
which they have equal magnitudes. (A.U. Dec 2015)

Given data

Conductivity of medium   5 Sm
 1

Relative permittivity of medium r    1
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Solution
Conduction current density

JC    E

JC    5    250 sin 10
10

t

   1250 sin 10
10

t   Am
 2

Displacement current density

JD   
E
t

      

t

 250 sin 10
10

t . . .     o r and

  o r 

t

 250 cos 10
10

 t  10
10 r  1

  8.85    10
 12

 [250    10
10

 cos 10
10

t]

  22.13 cos 10
10

t  Am
 2

For JC    JD

E      E [Take the 
amplitude only]

    



    


o r
  

5

8.85    10
 12

    1

  5.65    10
11

 rad s
 1

    2  f

 f    


2 
    

5.65    10
11

2    
    

5.65    10
11

2    3.14

f  8.997    10
10

 Hz
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Problem 2.5 
Find the conduction and displacement current densities in

a material having conductivity of 10
 3

 S/m and r    2.5 if

the electric field in the material is E    5.0    10
 6

sin 9.0    10
9 t  V/m. (A.U. Dec 2017)

Given data

Conductivity of the medium     10
 3

  Sm
 1

Relative permittivity r    2.5

Solution
Conduction current density

Jc   E    10
 3

    5    10
 6

 sin 9    10
9
 t    Am

 2

    5  10
 9

 sin 9.0  10
9
 t

Displacement current density 

JD    
D
t

  
 o rE

t

  o r 
E


t

  8.85    10
 12

    2.5  

t

 5    10
 6

 sin 9    10
9
 t

  8.85    10
 12

    2.5    5    10
 6

 cos 9    10
9
 t    9    10

9

����������������������������������������
�

Problem 2.6 
A light bulb of 20 W radiates energy isotropically, mostly
in infrared region. Assuming it to be a point source find
the irradiance (average energy per unit area per unit
time or intensity) at a distance 1 m away. Calculate the

strength of E


-field associated with the radiation at this
distance. (A.U. EC Dec 2013)
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Given data:

Power radiated by bulb P    20  W

Distance r    1  m

Solution:

Irradiance is average energy per unit area per unit time
at a distance ‘r’

I    
Power
Area

    
P
A

   
P

4r
2

I    
20

4  1
2  1.59  Wm

 2
 .

Intensity at a point is nothing but poynting vector at that
point.

ie., I    Savg

Now, average poynting vector Savg    
Erms

2

c o
 .

I    
Erms

2

o c

Erms
2

    I o c

Erms    o c I

substituting the given values, we have

    4   10
 7

  3  10
8
  1.59

    24.5 Vm
 1
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Problem 2.7 
The intensity of sunlight reaching the earth’s surface is

about 1300 W m
 2

. Calculate the strength of electric and
magnetic fields of the incoming sunlight.

(A.U. EC Dec 2017)

Solution:

The time average Poynting’s vector is

Savg    
1
2

 Eo  Ho    
Eo

2
  

Ho

2
    Erms  Hrms .

(...  
Eo

2
    Erms,       

Ho

2
    Hrms

But in electromagnetic wave

Hrms    
Erms

c o

 Savg    
Erms

2

c o

Erms
2

    c o Savg

or Erms   c o  Savg

      3  10
8
  4  10

 7
  1300 

  700 Vm
 1

 .

from above relation

Hrms    
Erms

o c
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o Hrms    
Erms

c

 Brms    
Erms

c
 (...  Brms    o Hrms)

   
700

3  10
8

  2.33  10
 6

 T .

Problem 2.8 
(i) Show that for a good conductor skin depth
    c/2 , where c is the wavelength of electromagnetic

waves in the conductor.
(ii) Show that for an electromagnetic wave incident on
a good conductor the electric vector reduces to about 1%
at a depth of 0.73 c.

(iii) Find the wavelength and the propagation speed in
copper for radio waves at 1 MHz. For copper assume

    o,     o and conductivity     5.8  10
7     m

 1

[A.U. EE Dec 2013]

Solution:

���� ������
� � 
� !�	
� ��� ����

��� ��������� ��� � 
� ���"��
� �"� � 


���
�������������#�$��%�� 
��� 
�
�
������"�
�
�����

�� 
����
�����

��� ��	
�� &��

E


 x, t    Eo e
 kx

  ei  t    kx

k - wave vector

For a good conductor

k      
2
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and skin depth

    
1
k

    2  

The wavelength of the wave in the conductor is

c    
2 
k

     2  . 


 ...      

1


 


 Skin depth     
c

2 
.

����� '
�� ��� !���


E x    Eo e
 kx

    Eo e
 k/

    Eo x  e
 2  x/

c

Now put 


 ...  k  

2 
c

 




E x
Eo x

    e
 2  x  c    

1
100

e
 2  x  c    

1
100

e
2  x  c    100

taking ln on both sides

2  x
c

    ln 100

x    
c

2 
 ln 100    0.73 c

������ ( 
� �
)���

� !�	
�
��� � ��� �� *+,� ��������+,

c    
2 
k

    2  2  
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       2  22   

   2  2

2   10
6
  4  10

 7
  5.8  10

7    

    4.15  10
 4

 m

and the propagation speed

v    

kc

      
c

2 
    

2   10
6

2 
  4.15  10

 4
 

 v   415 ms
 1

Problem 2.9: 
Find the depth of penetration of a plane wave in copper
at a power frequency of 60 Hz and at microwave frequency

10
10

 Hz. Given     5.8    107
 mho  m

 1
(A.U. June 2017)

Given data

    5.8    10
7
  mho m

 1
 . 

Depth of penetration     
1

k
    2

  

(i) f    60 Hz,       5.8    10
7
 mho m

 1
,  r    1, 

o    4    10
 7

 Hm
 1

    2  f
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    2

2     60    4    10
 7

    5.8    10
7

  8.53    10
 3

 m

(ii) f    10
10

 Hz

    2

2   10
10

  4  10
 7

  5.8  10
7

    6.6    10
 7

  m

Problem 2.10: 
A sinusoidal plane wave is transmitted through a medium
whose electric field is 10 kV/m and relative permittivity
of the medium is 4. Determine the mean rms power
flow/unit area. (A.U. ECE June 2015)

Solution:

E    10 KVm
 1

    10    10
3
 V m

 1

r    4,   r    1

E


H
    



    o r

0 r

  o

o

 r

r



 

. . . o

o
    120 




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  
120

2
    60   ohm

ie., 
E
H

    188.5 ohm

  H


    
E


188.5

Power flow/unit area is poynting vector

S    E


    H


   E


    
E


188.5

   
E
  2

188.5

  
10    10

32

188.5

S    5.305      10
5
  W m

 2

Problem 2.11: 
Find the conducting behaviour of ground at 1 KHz, 10

MHz and 10 GHz. Given r    10 and      5    10
 3

 mho / m.

(A.U. EE May 2016)

Solution:

The ratio of conduction current to displacement current is

 

 which determines conducting behaviour

For f    1 kHz  1  103 Hz

    2  f

    5    10
 3

   mho m
 1
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r    10

o    8.85    10
 12

 Fm
 1


 

    


2  f o r

  
5    10

 3

2     1    10
3
    8.85    10

 12
    10

  9    10
3


 

      1

For f    1 MHz  1  106 Hz

 

 

 


2  f o r

    
5    10

 3

2     1    10
6
    8.85  10

 12
    10


 

  1

For f    10 GHz  10  109 Hz 


2  f o r

    
5    10

 3

2     1    10
9
    8.85    10

 12
    10
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  9    10
 4


 

     1

At 1 KHz the ground acts like a good conductor and at
10 GHz it acts like an insulator. For 10 MHz ground acts like
a quasi-conductor.

Problem 2.12 
Find the skin depth  at a frequency of 1 MHz for copper

where     5.8    10
7
 S / m and     o. Also find the value

of skin depth at 50 Hz.
(A.U. ECE Dec 2004)

Given data

Conductivity of the medium   5.8    10
7
  Sm

 1

Frequency f  1 MHz  1    10
6
  Hz

Solution:

    o r and f    1 MHz

    2
  

      22  f  
                [ . . .     2  f ]

    
1

 f  

Substituting the given values, we have

  
1

3.14    10
6
    4    10

 7
    5.8    10

7
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   0.0661      10
 3

m

    6.61    10
 5

 m

Also at f    50 Hz,

    
1

    50    4    10
 7

    5.8    10
 7

  9.348    10
 3

 m

Problem 2.13: 
Find the velocity of a plane wave in a lossless medium
having a relative permittivity of 4 and a relative
permeability of 1.2. (A.U. EE Dec 2016)

Given data

r    4;           r  1.2

Solution:

Velocity of EM wave in a medium is,

v    
1


    
1

o r o r

    
1

o o   r r

       . . . 
1

o o
    c    3    10

8
 m s

 1

v    
c

rr
    

3    10
8

rr

v    
3    10

8

1.2    4

v    1.37    10
8 ms

 1
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Problem 2.14: 
Find the characteristic impedance of the medium whose
relative permittivity is 3 and relative permeability is 1.

(A.U. ECE April 2014)

Given data

r    3; r    1

Solution:

Characteristic impedance,     


    o r

o r

    o r

r

where o    o

o

    120

      120 1
3

    217.66 ohm

Problem 2.15: 
Find the velocity of a plane wave in a lossless medium
having a relative permittivity of 5 and relative
permeability of unity.

(A.U. ECE May 2015)

Given data

r    5,    r    1
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Solution:

Velocity of propagation in the medium

v    
1

o r o r

v    
1

o o  r r
 

We know that 
1

o o

    c    3    10
8
 m s

 1

v    
1

o o

  
1

1    5
    

3    10
8

5

v    1.34    10
8
 ms

 1
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Part - ‘A’ 
‘2’ Marks Questions with answers

 1. Write Maxwell’s equation - I from Gauss’s law in
electrostatics. (A.U. Nov 2013)

 O
S

D


  ds


        
V

  dV

Integral form
Gauss’s law in electrostatics states that the total electric flux

through any closed surface is equal to the charge enclosed by it.

Differential form




  E


    

o

This is Maxwell’s equation from Gauss’s law in
electrostatics in differential form

Statement
The total electric displacement through the surface enclosing

a volume is equal to the total charge within the volume.

 2. Write Maxwell’s equation - II from Gauss’s law in
magnetostatics. (A.U. June 2015)

Statement
The total magnetic flux through any closed surface in a

magnetic field is zero ie.,

 O
S

B


  ds


    0

This is Maxwell’s equation in integral form from Gauss’s
law in magnetostatics.




  B


    0

This is Maxwell’s equation in differential form from Gauss’s
law in magnetostatics.
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Statement
The net magnetic flux emerging through any closed surface

is zero.

 3. Write Maxwell’s equation - III from Faraday laws of
electromagnetic induction.

O
C

 E


  dl


       
S

 
B


t
  ds


)

This is Maxwell’s equation in integral form from Faraday’s
law of electromagnetic induction.




    E


     
B


t

This eqn represents Maxwell’s equation from Faraday’s law
of electromagnetic induction in differential form.

Statement:
The electromotive force around a closed path is equal to

the rate of magnetic displacement (flux density) through that
closed path.

 4. Write Maxwell’s equation - IV from Ampere’s circuital
law. (A.U. Dec 2013)

Ampere’s law states that the line integral of magnetic field
intensity H on any closed path is equal to the current  I 
enclosed by that path

O H


  dl


  I

then,     O H


  dl


     
S

 



 J


    
D


t
 



 ds

This is Maxwell’s equation in integral form from Ampere’s
circuital law.

2.78 Engineering Physics



or 


    H


    J


    
D


t




    H


     E


     
E

t

The above equations are Maxwell equations in differential
form from Ampere’s circuital law

Statement

The magnetomotive force around a closed path is equal to
the sum of the conduction current and displacement current
enclosed by the path.

 5. Give the Maxwell’s equations in differential form.
(A.U. May 2015)




  D


    




  B


    0




    E


     
B


t




    H


    J


    
D

t

 6. Give the Maxwell’s equations in integral form.
(A.U. Dec 2015)

 O
S

  D


  ds


        
V

  dV

 O
S

  B


  ds


    0

O E


  dl


       
S

 
B


t
  ds


O H


  dl


      
S

 



 J


    
D

t
 



 ds

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 7. Write the Maxwell’s equations for free space.
(A.U. April 2014)




  D


    0




  B


    0




    E


     
B


t




    H


      
D


t

 8. Write the Maxwell’s equations for conducting medium.




  D


    




  B


    0




    E


     
B


t




    H


    J


    
D


t

 9. What are the characteristics of Maxwell’s First

equation 


    E


    

o

 It explains Gauss’s law in electrostatics.

 It is time independent or steady state equation.

 The flux of the lines of electric force depends upon charge
density.

 Charge acts as a source or sink for the lines of electric
force.

10. What are characteristics of Maxwell’s second equation




  B


    0

 It expresses a well known observation that isolated
magnetic poles do not exist.
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 It states that total magnetic flux entering and leaving
a given volume is equal.

 There is no source or sink for lines of magnetic force.

 It is a time independent equation.

 It explains Gauss’s law in Magnetostatics.

11. What are characteristics of Maxwell’s Third equation




    E


    
B


t

 It relates the electric field vector E


 and magnetic

induction vector B


.

 It is a time dependent or time varying equation.

 It explains the well known Faraday’s laws and Lenz’s
law of electromagnetic induction.

 E


 is generated by the time variation of B


.

12. What are the characteristics of Maxwell’s Fourth

equation 


    B


    o 



 J


  
B


t
 




 It gives relation with the magnetic field vector B


 with

displacement vector D


 and the current density J


.

 It is also a time dependent equation.

 It explains Ampere’s circuital law.

 B


 can be produced by J


 and the time variation of D


13. Write down general electromagnetic wave equation in

terms of electric field vector E


 for free space.

2
E


  o o 
2

E


t
2

o – permeability in free space, o – permittivity in free space.
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This is general electromagnetic wave equation in terms of

electric field vector E


 for free space.

14. Write down general electromagnetic wave equation in

terms of magnetic field vector H


 for free space.

2
H


  o o 
2

H


t
2

o – permeability is free space, o – permittivity is free space.

This general electromagnetic wave equation in terms of

H


 for free space.

15. Write down the expression for velocity of em wave
in free space. (A.U. May 2013)

c    
1

o o

For vacuum or free space we have o    4    10
 7

 H m
 1

 (henry

per metre) and o    8.842    10
 12

 Fm
 1

 (farad per metre).

16. Write down the general solution of wave equation for
plane polarised em wave.

Ey    Eo cos   t  kx 

and Hz  Ho cos   t  kx 

where,  - angular frequency

  k - wave vector

17. Write down a relation between the electric field

vector E


and magnetic field vector H


. (A.U. Dec 2013)

       
E


H
    o

o
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This is the relation between the electric field vector and
magnetic field vector. It is determined by the o and o.

18. What is intrinsic or characteristic impedance of free
space? (A.U. Dec 2020)

The ratio 
E


H
 is having the unit of impedance (Resistance)

ie., ohm, Therefore, the quantity o

o
 has the dimensions of

impedance.

It is known as intrinsic or characteristic impedance
of free space, denoted by Zo. It is a constant quantity for

free space and having value  377.

19. What is poynting vector? (A.U. Dec 2013)

The cross product of electric field vector E


 and the magnetic

field vector H


 is called poynting vector. It is denoted by

S


    E


    H


. 

20. Write the general wave equation for the electric
vector in an em wave in conducting medium.

2
E


      
2

 E


 t2       
 E


 t
    0

E


 – electric field vector.

 – permeability of medium.

 – permittivity of medium.

This is the general wave equation for the electric vector
in an electromagnetic wave propagating in conducting medium.
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21. Write the general wave equation for the magnetic
vector in an em wave in conducting medium.

In a similar way, by taking the curl of the eqn. (4) we
obtain the general wave equation for the magnetic vector in a
conducting medium as

2
 H


      
2

 H


 t
2       

 H


 t
    0

H


 – Magnetic field vector.

 – permeabity of medium.

 – permittivity of medium.

22. What is skin depth?

It is defined as the distance inside the conductor from the
surface of the conductor at which the amplitude of the field
vector is reduced to 1/e times its value at the surface.

23. Define intensity of EM wave.

The magnitude of the average value of S


 at a point is
called the intensity of radiation at that point. The S.I unit of

intensity is W/m
2
. It is given by

Sav    
1
2

 o c Ey
2

o – permittivity of the medium.

c – velocity of light.

24. Define radiation pressure.

The force per unit area on an object due to EM radiation
is the radiation pressure Pr.

     Pr    
I
c
, for totals absorption of radiation     

Pr    
2I
c

,
for total reflection back along the path
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25. Give the Properties of Electromagnetic Waves.

(i) Electromagnetic waves are produced by accelerated charges.

(ii) They do not require any material medium for propagation.

(iii) In an electromagnetic wave, the electric  E


  and

magnetic  B


  field vectors are at right angles to each
other and to the direction of propagation. Hence,
electromagnetic waves are transverse in nature.

(iv) Variation of maxima and minima in both E


 and B


 occur
simultaneously (in phase). 

(v) They travel in vacuum or free space with a speed

3    10
8
 ms

 1
 given by the relation c    

1
o o

.

( o  permeability of free space and

  o – permittivity of free space)

(vi) The energy in an electromagnetic wave is equally
divided between electric and magnetic field vectors.

(vii) The electromagnetic waves being chargeless, they are
not deflected by electric and magnetic fields.

Part - B ‘16’ Marks Questions

 1. Derive Maxwell’s equations in differential and integral form.
(A.U. Dec 2013)

 2. Deduce Maxwell’s equations for free space.
(A.U. May 2015)

 3. Write Maxwell’s equations and explain the characteristics
of each equation.

 4. Give an account of Maxwell’s equation in free space. Apply
the equations to deduce the e.m. wave equation and
determine the velocity light in vacuum. (A.U. Dec 2016)

 5. Deduce Maxwell’s equation free space and prove that
electromagnetic waves are transverse. (A.U. Dec 2014)

 6. Discuss propagation of EM wave in a conducting medium.
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 7. Derive wave equation for conducting medium using Maxwell’s
equation and determine skin depth in a conducting medium.

 8. What is meant by poynting vector? What is its significance.
(A.U. Dec 2013)

 9. Derive general field relations for time-varying electric and
magnetic fields using Maxwell’s equations. (A.U. Dec 2017)

10. Derive Maxwell’s equations derived from Faraday’s law in
integral and point forms. (A.U. Dec 2016)

11. Write note on (i) Amplitude (ii) Phase (iii) Energy
(iv) Intensity (v) Radiation pressure EM wave.

12. Explain reception and transmission of cell phone.

13. Describe production of EM waves.

14. Discuss propagation EM wave from vacuum to a non
conducting medium.

PROBLEMS FOR PRACTICE

 1. Find the velocity of a plane in a loss-less medium having
a relative permittivity of 8 and relative permeability of
unity. [Ans: 1.06    108 ms 1]

 2. Determine the propagation constant for a material having
r    1 r    8 and     0.3 n s / m if the wave frequency is

1.5 MHz. [Ans: 3.76    10 2 m 1]
 3. Find the amplitude of the displacement current density

inside a capacitor where r    600 and

D    3    10
 6

 sin  6    10
6
 t    0.3464 x  ux c / m

2
.

 4. Earth is a good conductor when 


w
  1. Determine the

highest frequency for which earth has 

 

 greater than 10.

Assume the following constant.

[Ans:     5    10 3 S / m        10 o]

 5. If the magnitude of H


 in a plane wave of 1 amp / metre.

Find magnitude of E


 for a plane wave in free space.
[Ans: E = 376 volts / metre]

2.86 Engineering Physics



Unit III

Oscillations, Optics and Lasers

 - 

Semiconductor Laser



3. Oscillations

Simple harmonic motion – resonance – analogy between
electrical and mechanical oscillating systems – waves on
a string – standing waves – traveling waves – Energy
transfer of a wave – sound waves – Doppler effect.

Introduction

The vibrations or oscillations of any system constitutes one
of the most important fields of study in engineering physics.
Examples of such oscillations are pendulum of a clock, loaded
spring and LC circuit. The knowledge about the resonant
behaviour of mechanical and electrical systems is very much
essential for all engineers.

Oscillatory Motion

Basic concepts

Motion
When the position of a body (object) in the space changes

with time, the body is said to be in motion.

This motion is classified into four types. They are.

(i) Translational motion

(ii) Rotational motion

(iii) Periodic motion

(iv) Vibrational or Oscillatory motion

(i) Translational motion
If the position of a body varies linearly with time, then

the motion is said to be translational motion. A car / train
moving on a straight road, a ball moving on the ground are
examples of translational motion.



(ii) Rotational motion
If the position of a body as a whole does not change linearly

with time but it rotates at the same position about an axis,
then the motion is said to be rotational motion.

The examples for rotational motion are the motion of earth
about its axis, the rotation of a flywheel on its ball bearings.

(iii) Periodic motion
If a body repeats its movement at regular intervals of time,

its motion is said to be periodic. 

Motion of planets round the sun, rotational motion of the
earth about its own axis, motion of a pendulum, oscillations of
a loaded spring etc are examples for periodic motion.

(iv) Oscillatory motion
An oscillatory motion is one in which a body moves to and

fro repeatedly about a mean position.

Motion of a pendulum, oscillations of a loaded spring, to
and fro motion of the prongs of tuning fork are examples for
oscillatory motion.

Oscillatory motion is a special case of periodic motion in
which a body vibrates to and fro about its mean position. Though
all oscillatory motions are periodic, all periodic motions are not
oscillatory.

Periodic Motion
A motion in which the body describes the same path

in same way continuously after equal interval of time is
known as the periodic motion. Simple Harmonic Motion (SHM)
is a special case of periodic motion with the following characteristics.

 This is a type of periodic motion.

 The acceleration of the body is directly proportional to
its displacement from a fixed point and always directed
towards the fixed point.

 The restoring force developed in the body tries to bring
the particle to its equilibrium position.
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3.1 SIMPLE HARMONIC MOTION

An oscillatory motion is harmonic if the displacement can
be expressed in terms of sine or cosine function. An oscillator
executing harmonic motion is called a harmonic oscillator.

Definition

When the acceleration of particle is directly
proportional to its displacement from its equilibrium
position and it is always directed towards equilibrium
position, then the motion of the particle is said to be
simple harmonic motion.

Characteristics of simple harmonic motion

A particle executing simple harmonic motion must satisfy
the following conditions:

 The motion must be periodic.

 The motion is oscillatory ie., to and fro along a straight
line or along a curved path about a mean position.

 The body executing simple harmonic motion is acted
upon by a restoring force whose magnitude is
proportional to the displacement and its direction is
always towards the mean position.

 If there is no air resistance or friction, the motion once
started will continue indefinitely.

Example for simple harmonic motion

 Simple Pendulum

It consists of an ideally massless inextensible string
hanging from a rigid support A with a point mass (i.e., the bob
of the pendulum) connected to its other end B.

This is shown in fig. 3.1. When the bob is displaced to a
new position P and released, oscillations start and it is in simple
harmonic motion.
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If  is the angle made by the string at P with the equilibrium
condition of the string AB, m and g are the mass of the bob
and the acceleration due to gravity, then the radial component
of mg (i.e., mg cos ) balances the tension T across the string.

The tangential component ‘mg sin ’ tries to bring the bob
at B. These way oscillations continue till it stops due to air friction.

 Spring – Mass system

Here a mass block is connected to a spring either vertically
or horizontally from rigid supports as shown in fig.3.2 (a) and
(b). On displacing the mass from its equilibrium position and
then releasing it, again simple harmonic oscillations set in.

Fig. 3.1 Simple pendulum

Fig. 3.2 SHM by mass block connected with spring
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 Vibrations of a tuning fork.

 Vibrations of a sonometer wire.

 Vertical oscillations of the liquid column in a U-tube.

 Angular oscillations of a torsion pendulum.

Types of Simple Harmonic Motion (S.H.M)
The simple harmonic motions are of two types:

(i) Linear Simple Harmonic Motion
If the displacement of a particle executing S.H.M. is linear, the

motion is said to be linear S.H.M. The examples of linear S.H.M.
are motion of simple pendulum, the motion of prongs of vibrating
tuning fork, the motion of a point mass attached to a spring.

(ii) Angular Simple Harmonic Motion
If the displacement of a particle executing S.H.M. is

angular, the motion is said to be angular S.H.M. The example
of angular S.H.M. is torsional oscillations of a solid.

Essential conditions for S.H.M
If a is linear acceleration and y is displacement from

equilibrium position, then essential condition for linear S.H.M. is

a     y

If  is angular acceleration and  angular displacement
from equilibrium position, then essential condition for angular
S.H.M. is

     

Definitions concerning S.H.M
Let a particle execute S.H.M along 

straight line QOP, about O. (Fig. 3.3)

1. Amplitude
The maximum displacement of a particle from mean

position is called the amplitude. It is denoted by A. Then,

OP  OQ  A.

Fig. 3.3
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2. Oscillation

When particle moves from mean position O to P, returns
from P to Q via O and then comes back from Q to O; then
particle is said to complete one-oscillation i.e.,

1 oscillation = motion from O to P     from P to Q    
from Q to O or motion (from P to Q     from Q to P)

3. Period

The time taken by the particle executing S.H.M to complete
one oscillation is called the period or periodic time. It is
denoted by T.

4. Frequency

The number of oscillations completed by particle in one
second is called its frequency. It is denoted by n

Frequency n  
1

period T

5. Phase

The position and direction of motion of a vibrating particle
is different at different instants. The instantaneous position and
direction of motion of a vibrating particle is expressed by a
physical quantity called the phase.

If S.H.M is expressed as y    A sin  t    ; then the
quantity  t     is the phase of vibrating particle.

Differential Equation of S.H.M

A particle executing S.H.M is called a harmonic
oscillator. Consider a particle of mass m executes S.H.M. along
a straight line (Fig. 3.4). Let y be the displacement of particle
from mean position at any time t.

Fig. 3.4
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On basic condition of S.H.M. the restoring force F is
proportional to displacement y and oppositely directed i.e.,

F      y

               or F     k y ... (1)

where k is a constant of proportionality and it is called spring
factor or force constant. Its unit is newton / metre (N / m).

If a    
d

2
 y

dt
2  is acceleration at any instant t, then by

Newton’s second law of motion F   mass    acceleration  ma

              F  m 
d

2
y

dt
2

... (2)

From the eqns. (1) and (2), we have

              m 
d

2
y

dt
2    ky, 

 m 
d

2
y

dt
2     ky    0  

d
2
y

dt
2     

k
m

  y    0

i.e.,      
d

2
y

dt
2    2

 y    0 ... (3)

where 2
  

k
m

 is a constant and  is known as angular

frequency.

The eqn. (3) represents the differential equation of SHM.

A general solution of the differential equation for SHM is
given by
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y    A sin  t     ... (4)

where A is the amplitude of the SHM. 

    is the initial phase.

Angular harmonic motion
Now consider a particle executing angular harmonic

motion. At any instant t, let  be the angular displacement
measured from the equilibrium position of the particle. Then,
similar to equation (3) for the linear case, we have

d
2
 

dt
2     2

     0 ... (5)

2
 is a constant,

Torsional oscillations of a stretched wire, oscillations of a
freely suspended bar magnet in a magnetic field etc. are
examples of angular harmonic motion.

Velocity and Acceleration

We have displacement y  A sin  t    

Differentiating with respect to time t, we get

  
dy
dt

    v    A  cos  t     ... (6)

or cos
2
  t        1    sin

2
  t    

v    A  1    sin
2
  t    

v     A
2
    A

2
 sin

2
  t    

 or   v     A
2
    y

2 ... (7)


.
 . 

.
 sin

2
 t      cos

2 t     1

     (or) cos
2
 t    1    sin

2
 t   
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This equation (7) gives velocity of particle at any
displacement y. Maximum velocity is obtained by putting y  0.

   vmax   A (at mean position)

Thus, velocity is maximum and equal to A  at mean
position and velocity is zero at y   A (extreme positions).

Acceleration

Differentiating the eqn (6) with respect to time t,

acceleration a    
dv
dt

     A 2
 sin  t    

or a     2
 y ... (8)

This equation gives acceleration of oscillating particle at
any displacement y from the mean position. This equation is
the standard equation of S.H.M.

For maximum acceleration at y    A (extreme position)

 Maximum acceleration, amax  2
 A (at extreme position)

Minimum acceleration is obtained by putting y    0

     amin    0 (at mean or equilibrium position).

Period of S.H.M
The time taken by the particle to make one complete to and

fro motion is called the time period of the S.H.M. It is also equal
to the time required by the particle to trace an angle 2.

Since  is the uniform angular velocity.

    
2
T

or, Period, T    
2


... (9)
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From eqn (8), we have

2
    

a
y

 

     a
y

or 
1


     y
a

Substituting this in eqn. (9), we have

Time period, T    
2


    2  y
a

... (10)

T    2 Displacement
Acceleration

 

Let n be the frequency of the S.H.M, i.e., number of
oscillation made by the particle in one second. But, period =
Time taken for one oscillation.

ie., T    
1
n

... (11)

From eqns. (10) and (11), we have

2


    
1
n

               or,      2  n ... (12)

Types of oscillations 
There are three types of oscillations. They are

1.  Free oscillations

2.  Damped oscillations

3.  Forced oscillations
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(a) Free oscillation
When a body is displaced from its equilibrium position and

then released, it oscillates under the influence of restoring force
with a definite frequency i.e., natural frequency. (Fig. 3.5)

Such vibrations are called free vibrations. The
frequency of such vibration is known as natural frequency.

The frequency of vibration depends only on geometric

dimensions of the body and its elastic property 0  
1
2

 k
m

Examples
1. Vibrations in a stretched string

2. A tuning fork struck against a rubber pad

3. Oscillation of a simple pendulum.

Characteristics of free vibration
(i) Amplitude of oscillation is a constant (Fig. 3.5)

(ii) Frequency depends on geometric dimensions and elastic
property.

(iii) No dissipation of energy

(b) Damped oscillation

Most of the oscillations occur in air or in a medium. Hence,
the medium offers some resistive force on the oscillating body. So,
a part of the energy is dissipated in overcoming the resistive forces.

Consequently the amplitude of oscillation goes on
decreasing exponentially with time and finally becomes zero.
Such oscillations are called damped oscillations
(Fig.3.6(a)). As a result the energy of oscillations decreases with
time (Fig.3.6(b)).

Fig. 3.5 Free vibration
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Characteristic of a damped oscillation

(i) Amplitude of oscillation is not a constant

(ii) There is dissipation of energy

(iii) Small changes are produced in the frequency of oscillation

Example

The oscillations of a pendulum in air.

(c) Forced vibration
If some external periodic force is constantly applied on a

system of damped oscillations, it is possible to compensate the
energy it has lost. Therefore, the system continues to oscillate
or vibrate with a constant amplitude.

When a body A is maintained in the state of vibration
by a periodic force of frequency  other than its natural
frequency 0 of the body, the vibrations are called forced

vibrations.

Then the body A will vibrate with  and not with 0, such

vibrations are called forced vibrations.

External force is the driver and the body A is driven.

Fig. 3.6
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Characteristics of forced oscillations are

(i) Amplitude will be a constant

(ii) The frequency of forced vibration is equal to that of
the external periodic force.

(ii) The amplitude of the forced vibration is determined by
the frequency of the applied force and the natural
frequency.

Examples
1. Press the stem of a vibrating tuning fork, against tabla.

The tabla suffer forced vibrations

2. Sound boards of stringed instruments suffer forced
vibrations.

3. Swing can be kept in motion by giving constant periodic
forces. Hence the swing maintains its amplitude while
oscillating.

Differential Equation for Forced Oscillations

Consider a particle of mass m connected to a spring
(Fig. 3.7). This particle is driven by a periodic force.

The oscillations are started and the forces acting on the
particles are

(i) a restoring force. It is proportional to the displacement
acting in the opposite direction. It is given by   ky
where k is known as the restoring force constant.

Fig. 3.7 Mechanical forced oscillator with force F sin pt
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(ii) a frictional force. It is proportional to velocity but

acting on the opposite direction. It is given by   r 
dy
dt

where r is the frictional force constant.

(iii) the external periodic force, F sin pt where F is the
maximum value of the force and p is its angular
frequency. This force opposes the restoring force as well
as the frictional force and helps in motion.

Therefore, net force F  acting on the particle

F     ky    r 
dy
dt

    F sin pt ...(1)

By Newton’s second law of motion, the resultant force
acting on the particle

F    mass    acceleration   ma

F      m 
d

2
 y

dt
2                    




 . . . a    

d
2
 y

dt
2  




...(2)

 From the eqns (1) & (2), we have

m 
d

2
 y

dt
2       ky    r 

dy
dt

    F sin pt

     or  m 
d

2
 y

dt
2     r 

dy
dt

    ky    F sin pt ...(3)

     
d

2
 y

dt
2     

r
m

 
dy
dt

    
k
m

 y  
F
m

 sin pt

      
d

2
 y

dt
2     2b 

dy
dt

    2
 y    f sin pt ... (4)

      where 
r
m

    2b,    
k
m

    2
    and    

F
m

    f

The eqn. (4) is the differential equation of the motion
of the forced oscillation of the particle.
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The solution of differential eq. (4)

y  A sin pt   ... (5)

where A is the steady amplitude of vibrations

We have

A  
f

[
2
  p

2

2
  4 b

2
 p

2
] ... (6)

tan     
2bp

2
  p

2

or     tan 1
 

 

2bp

2
  p

2 
 ... (7)

The equation (6) gives the amplitude of forced vibration
while eqn (7) its phase. 

It is clear that the amplitude and phase of the forced

oscillations depend upon 2
  p

2, ie., they depend upon the driving
frequency p and the natural frequency of the oscillator .

3.2 RESONANCE

It is a special case of forced vibration

The phenomenon of making a body vibrate with its
natural frequency under the influence of another vibrating
body with the same frequency is called resonance.

If the frequency of the external periodic force is equal to
the natural frequency of oscillation of the system, we get
oscillations of larger amplitude. This is known as resonance.
Amplitude becomes larger if the two frequencies are exactly
equal to each other.      (Fig 3.8)
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Theory of resonant vibrations

(a) Condition of amplitude resonance: In case of forced
vibrations, we have

A    
f

  p
2

2
    4b

2
 p

2

... (1)

The expression (1) shows that the amplitude varies with
the frequency of the force p. For a particular value of p, the
amplitude becomes maximum. This phenomenon is known as
amplitude resonance.

The amplitude is maximum when

  p
2

2
    4b

2
 p

2
 minimum

d
dp

 [  p
22    4b

2
 p

2
]    0

or 2   p
22  2p2    4b

2
 2p    0

2
  p

2
    2b

2
,     p    

2
  2b

2

Thus the amplitude is maximum when the frequency 
p
2

of the impressed force becomes 


2
  2b

2


2
. This is known as

the resonant frequency.

Fig. 3.8 Amplitude of resonance
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This frequency of the system both in presence of damping,

i.e. 


2
  b

2


2
 and in the absence of damping i.e. 


2

.

    

Condition for Amplitude Resonance

Using equation (1), A is maximum only when,

For negligible damping, b    0 and

Amax    
f

2bpr

As b  0, Amax  .

Sharpness of Resonance

The rate of change (fall) of amplitude with the
change of forcing frequency on each side of resonant
frequency is known as sharpness of resonance.

Figure 3.9 shows the variation of A with forcing frequency
at different conditions of damping.

Fig. 3.9 Sharpness of resonance curve
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The curve (1) shows the amplitude when there is no
damping, i.e., b = 0. In this case the amplitude becomes infinite
at p    . This case is never attained in practice due to frictional
resistance, as slight damping is always present.

The curve (2) and (3) shows the effect of damping on the
amplitude. It is observed that the peak of the curve moves
towards the left.

Examples
(i) Two tuning forks of same frequency are mounted on a

suitable sound boards and arranged as shown in fig.3.10.

If one is made to vibrate by striking it with rubber
hammer, it is found that the second fork is also set
in vibrations.

If the vibrations of the fire fork is stopped by touching
with hand. The second fork continue to vibrate and the
sound will be heard.

(ii) A column of army marching over a bridge can set forced
vibrations of the bridge. If the frequency of foot steps
matches the with natural frequency of the bridge, due
to resonance, the bridge may vibrate with a larger
amplitude.

This may cause damage to the bridge. Hence soldiers
are asked to break steps while crossing a bridge.

Fig. 3.10 Vibrations in Tuning forks
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(iii) Radio receivers

Each radio stations have their own broadcasting (carrier)
frequencies. When we tune our radio set, the moment the radio
tuner attains exactly the frequency of any broadcasting station,
we start hearing the loud and clear sound of that particular
radio station due to the resonance.

(iv) Others

There are other examples also. The loud speaker diaphragm
vibrates according to the amlifier circuit. Air column in
resonance tube vibrates as per the vibrations of the tuning fork.

Simple experiment on Resonance

From an elastic chord a number of pendulums are
suspended (Fig. 3.11). If the pendulum P is set into vibrations,
other pendulums also vibrate because they are attached to the
same chord. But their motions are not regular.

After sometime we will notice that Q which is the same
length as P, vibrate with maximum amplitude and of same time
period. They are said to be in resonance. Other pedulums of
different lengths are not in resonance.

Fig. 3.11 Resonance in pendulum motion
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3.3 MECHANICAL AND ELECTRICAL ANALOGUES

In a mechanical vibration, the particles have both kinetic
energy and potential energy. The total energy is sum of these
two energies. The energy of mechanical oscillator is damped by
an oppositing force (for example air friction).

The equation of motion is given by 
d

2
 y

dt
2     2

 y    0. When

oscillator is free from damping. The mechanical oscillator
(pendulum etc) is described by its position, velocity and
acceleration.

In the case of spring

f    
1
2

  k
m

    2 f    
2
T

     k
m

In an electrical oscillating system has potential energy
which is stored as electrostatic energy in a capacitor. Further
during electrical oscillation, there is a transfer of energy between
electrical and magnetic energy in the case of LC oscillators.

The electrical oscillator system is described by charge q,

current I    
dq
dt

 and frequency of oscillator is given by

f    
1
2

 1
L C

L     
1

C 

2
    

1
LC
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    
1

LC

f    
1

2 LC

Now we shall discuss similarity between mechanical system
and electrical system. One of the most popular and very
important resonant system is an electrical system. It consists of
a capacitance  C , an inductance  L  and a resistance  R . It
is shown in figure 3.12.

Here V    V0 sin  t is applied voltage. It is distributed

among the three components as,

VC    
q
C

,  VR    IR   and   VL    L 
dI
dt

Here,          VL    VR    VC    V

i.e.,  L 
dI
dt

    IR    
q
C

    V0 sin  t

Since,  I    
dq
dt

i.e., L 
d

2
 q

dt
2     R 

dq
dt

    
q
C

    V0 sin  t

or, 
d

2
 q

dt
2     

R
L

 
dq
dt

    
q

CL
    

V0

L
 sin  t ... (1)

Fig. 3.12 Electrical System
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The equation (1) is similar to equation of motion for a
forced vibration.

d
2
 x

dt
2     2k 

dx
dt

    0
2
 x    f sin t ...(2)

where 2k    
r
m

,   0
2
    

S
m

 and   f    
F
m

It is noted that the mass m is analogous to self inductance

L, r to the electrical resistance R, compliance 
1
S

 to the electrical

capacitance C, the force F to the voltage V0, the displacement

x to the charge q, and the velocity 
dx
dt

 to the electrical current

 

I  

dq
dt

 

.

Here the mechanical quantities and electrical analogues are
given below:

Mechanical Quantities Electrical Analogues

Displacement x Charge q

Velocity 

 
dx
dt

 


Current 

 I    

dq
dt

 


mass m Inductance L
Force F Voltage V0

Damping constant r Resistance R

Stiffness constant S Reciprocal of capacitance 

 
1
C

 


Quality factor, Q    
  m

r
Quality factor Q    

  L
R

For mechanical oscillator For electrical oscillator

Damping co-efficient k    
r

2m
Damping co-efficient, k    

R
2L

Mechanical Impedance Electrical Impedance
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Mechanical Quantities Electrical Analogues

Z    


 
S


    m 




2

    r
2  Z     



 

1
 C

     L 




2

    R
2

Relaxation time 

 
1
k

 

    

2m
r

Relaxation time 

 
1
k

 

    

2L
R

Potential energy   
1
2

 Sx
2

Electrostatic energy   
q

2

2C

Kinetic energy of moving mass

           
1
2

 m x
2

Electromagnetic energy of

moving charge   
1
2

 L q
2

3.4 WAVES ON STRING

A string is a cord whose length is very long compared to
its diameter and which is uniform and flexible. The transverse
vibration of strings, is the principle to the working of many
stringed instruments like sitar, guitar and violin etc.

When strings are plucked they are set into transverse
vibration and under suitable conditions they produce musical
note.

Vibrations of Stretched String

“If the string vibrates with nodes at the fixed ends
and an antinode at the centre, then it is said to vibrate
in fundamental mode.

The frequency corresponding to this mode of
vibration is known as frequency of fundamental mode”.

Consider a string stretched between two supports. When
the string is plucked in the middle, transverse progressive waves
are produced. These waves travel towards each end of the wire.
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The speed of the waves is given by,

     T
m

... (1)

where T is tension in the string and 

            m is mass per unit length (linear density) of string.

These waves are reflected at both ends of the string. Then,
the incident waves and reflected waves transverse stationary
waves. (Fig 3.13)

In the stationary pattern, nodes are formed at fixed ends
and an antinode in the middle.

The distance between two consecutive nodes is equal to

2

, where  is wavelength.

If l be the length between fixed ends of string, then

l    

2

   or       2l ... (2)

Fig. 3.13
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If n be the frequency of vibration of string, then

n    
v


    
v
2l

... (3)

Substituting for v from equation (1)

n    
1
2l

  T
m

where, T – tension in the string

m – mass perunit length of string

l – length of string

In general,

fundament frequency,  n    
p
2l

 T
m

where p is number of loops and it takes values as
p  1, 2, 3, 

For p    1, n1    
1
2l

  T
m

, called fundamental frequency

p    2, n2    
2
2l

  T
m

  2n called 1
st

 over tone

Laws of Transverse vibrations of stretched strings

The frequency of vibration of the fundamental note of a
stretched string is given by,

n    
l

2l
 T

m

where T is the tension and m is mass per unit length of string.
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(i) Law of length

The fundamental frequency of vibration of a stretched
string is inversely proportional to the length, when the tension
and the mass per unit length of the string remain constant.

i.e., n  
1
l
 when T and m are constant

     or nl     constant

(ii) Law of tension
The frequency of vibration of a stretched string is directly

proportional to the square root of tension when the length and
the mass per unit length of the string remain constant.

i.e., n  T  when l and m are constant

     or 
n
T

     constant

(iii) Law of mass
The fundamental frequency of vibration of a stretched

string is inversely proportional to the square root of the mass
per unit length when the tension and the length of the string
remain constant.

i.e., n  
1
m

 when T and l are constant

      or n m     constant

Wave Motion

 An important type of motion that occurs in nature is
wave motion.

 A wave motion is a disturbance of some kind which
moves from one place to another by means of a medium,
such that the medium itself is not transported.

The disturbance transmits both energy and momentum to
distant regions with a velocity that depends upon characteristics
of the medium.
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Types of Wave Motion

There are two types of wave motion

They are

1. Longitudinal wave motion

2. Transverse wave motion

1. Longitudinal Wave Motion

Wave motion in which the particles of the medium vibrate
about their mean position along the same line as propagation
of wave is called longitudinal wave motion.

Example: sound waves.

In longitudinal wave motion region of more particles
(compression) and region of less number of particle (rarefaction)
are produced.

2. Transverse Wave Motion

Wave motion in which particles of the medium vibrate about
their mean position at right angle to the direction of propagation
is called transverse wave motion.

Example: waves on the surface of water.

Fig. 3.14 Longitudinal Wave Motion

Fig. 3.15 Transverse Wave Motion
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Progressive wave

A progressive wave is defined as the vibratory
motion of a body which is transmitted continuously in
the same direction from one particle to successive
particle of the medium and travel forward through the
medium due to its elastic property.

3.5 PLANE PROGRESSIVE WAVES OR TRAVELING
WAVES

Progressive wave originating from a point source
and propagating through an isotropic medium travel with
equal velocity in all directions.

At any instant, the wavefront (locus of all particles
vibrating with the same phase) will be spherical in nature.

If the sphere of very large radius is considered, the
spherical wave will approximate to a plane surface and
the waves are called plane progressive waves.

Relation between Frequency, Wave - Speed and
Wavelength

By definition, the distance travelled by the wave in one
time-period T of vibration of particle     wave length 

ie Distance travelled in T second  

 Distance travelled in one second     

T

But, distance travelled in one second = wave speed v.

      

T

    v  or      vT
... (1)

substituting value of T from the relation between frequency
n and time period T

i.e., T    
1
n

  in  1,  we get     
v
n

v    n 
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ie.,  speed of the wave v   frequency n     wavelength 

This relation holds for all types of waves.

Wave Equation of a Plane - Progressive Wave

On propagation of wave in a medium, the particles of
medium execute simple harmonic motion. 

If a plane progressive wave is propagating in a medium
along positive X     axis. (i.e. from left to right) (Fig. 3.16) then
in fig. 3.12 the positions of particles O, A, B, C, D  are shown.

As the wave propagates, all the particles of the medium
begin to vibrate to and fro about their mean positions.

In fig. 3.16 the instantaneous positions of these particles
are shown. The curve joining these positions represents
the progressive wave.

Fig. 3.16

Let the particle begin to vibrate from origin O at time
t    0. If y is the displacement of the particle at time t, then
equation of particle executing simple harmonic motion about
O is

y    A sin  t
... (1)

where A is amplitude and  is angular velocity.

If n is frequency of wave, then     2  n.
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As the advancing wave reaches the other particles
A, B, C (beyond particle at O), these particles begin to vibrate.

If v is the speed of wave and C is a particle at a distance

x from O, then the time taken by wave to reach point C  is  
x
v

seconds, therefore the particle will start vibrating  
x
v

  seconds

after particle at O.

Therefore, the displacement of particle C at any time t will

be the same which was of particle O at time 

 t    

x
v

 

.

The displacement of particle O at time 

 t    

x
v

 

 can be

obtained by substituting 

 t    

x
v

 

 in place of t in equation (1).

Thus the displacement of particle C at a distance x from
origin O at any time t is given by

y    A sin  

 t    

x
v

 
 ... (2)

If T is time-period and  the wavelength of wave, then

            
2
T

 y    A sin 
2
T

 

 t    

x
v

 


  A sin 2 

 
t
T

    
x

vT
 


But, vT    

  y    A sin 2 

 
t
T

    
x


 


... (3)

This equation is expressed as
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y    A sin 
2


 



 
t 
T

    x 




 y    A sin 
2


  vt    x  ... (4)

                                 



 . . .  


T

    v 




y  sin 



 
2vt


    
2x


 




y  sin 



 
2 nvt

v
    

2nx
v

 



           












 

. . . n   v

n
v

  
1


 












The equation (2) is also expressed as

y    A sin 



  t    


v

 x 




[. . . 2 n  ]

      But 

v

    
2


     k    propagation constant

y    A sin  t    kx ... (5)

Any of the equations (2), (3), (4), (5), represents the equation
of a plane progressive wave propagating along positive direction
of X    axis. Out of these, the equation (5) is often used.

If the wave is propagating along negative X     axis, then
the equation of plane progressive wave may be obtained by
substituting     x for x, so that equation (5) takes the form

y    A sin  t    kx ... (6)

If  is the phase difference between this wave travelling
along positive X     axis and another wave, then the equation
of the wave may be expressed as

y    A sin   t    kx      ... (7)
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This is the most general equation of a plane
progressive wave travelling along positive direction of
X     axis.

Differential equation of wave motion

We have y    A sin 
2


 vt    x

Then, 
dy
dt

    
2vA


 cos 
2


 vt    x ... (8)

Also, 
dy
dx

    
 2 A


 cos 

2


 vt    x ... (9)

 Particle velocity

dy
dt

      v 
dy
dx

... (10)

From the eqn. (9)

d
2
 y

dx
2       A 




 
2


 




2

 sin 
2


 vt    x
... (11)

From the eqn. (8)

d
2
 y

dt
2       A 




 
2


 




2

 v
2
 sin 

2


 vt    x
... (12)

This is particle acceleration.

Comparing (11) and (12)

d
2 y

dt
2     v

2
 
d

2
 y

dx
2

... (13)

or 
d

2y

dx
2    

1

v
2 

d
2
y

dt
2
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This is the differential equation of wave motion. It
can be shown that in case of progressive waves, if, t is increased
by t and x by v  t

then y    a sin 
2


 [v t    t    x    v  t]

y    a sin 
2


 [vt    v  t    x    v  t]

    a sin 
2


 vt    x    y ... (14)

Thus, in a time  t, the wave advances through v t.

Hence, v is the velocity of the wave.

Characteristics of progressive wave

1. Each particle of the medium executes vibration about
its mean position. The disturbance progresses onward
from one particle to another.

2. The particles of the medium vibrate with same
amplitude about their mean positions.

3. Each successive particle of the medium performs a
motion similar to that of its predecessor along the
propagation of the wave, but later in time.

4. The phase of every particle changes from 0 to 2.

5. No particle remains permanently at rest. Twice during
each vibration, the particles are momentarily at rest
at extreme positions, different particles attain the
position at different time.

6. Transverse progressive waves are characterised by
crests and troughs. Longitudinal waves are
characterised by compressions and rarefactions.

7. There is a transfer of energy across the medium in the
direction of propagation of progressive wave.
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8. All the particles have the same maximum velocity when
they pass through the mean position.

9. The displacement, velocity and acceleration of the
particle separated by m  are the same, where m is
an integer.

3.6 STATIONARY WAVES OR STANDING WAVES

When two progressive waves of same amplitude and
wavelength travelling along a straight line in opposite
directions superimpose on each other, stationary waves are
formed.

Analytical method

Let us consider a progressive wave of amplitude a and
wavelength  travelling in the direction of X axis.

y1    a sin 2 

 
t
T

    
x


 


This wave is reflected from a free end and it travels in
the negative direction of X axis, then

y2    a sin 2 

 
t
T

    
x


 


According to principle of superposition, the resultant
displacement is 

y    y1    y2

  a 

 sin 2 


 
t
T

    
x


 

    sin 2 


 
t
T

    
x


 

 


  



 sin 




 
2  t

T
 



    

2  x


    sin 



 
2  t

T
    

2 x


 



 




  a 



 2 sin 

2 t
T

 cos 
2 x


 




3.34 Engineering Physics



Using trignometry identity

sin A    B    sin A    B    2 sin A cos B)

      y    2a cos 
2 x


 sin 
2 t
T

This is the equation of a stationary wave.

(i)  A points where x    0, 

2

, , 
3
2

, the values of

cos 
2 x


     1

 A     2a. At these points of the resultant amplitude is
maximum. They are called antinodes (Fig. 3.16).

(ii) At points where x    

4

,   
3
4

,   
5
4

  the values of

cos 
2 x


    0.

 A    0. The resultant amplitude is zero at these points.
They are called nodes (Fig. 3.17).

The distance between any two successive antinodes or

nodes is equal to 

2

 and the distance between an antinode and

a node is 

4

.

(iii) When t    0, 
T
2

,   T,   
3T
2

,   2T,    then sin 
2 t
T

    0, the

displacement is zero.

(iv) When t    
T
4

,   
3T
4

,   
5T
4

 etc,  sin 
2 t
T

     1, the

displacement is maximum.

Fig. 3.17 Stationary waves
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Characteristics of stationary waves

1. The waveform remains stationary.

2. Nodes and antinodes are formed alternately.

3. The points where displacement is zero are called nodes
and the points where the displacement is maximum are
called antinodes.

4. Pressure changes are maximum at nodes and minimum
at antinodes.

5. All the particles except those at the nodes, execute
simple harmonic motions of same period.

6. Amplitude of each particle is not the same, it is
maximum at antinodes decreases gradually and is zero
at the nodes.

7. The velocity of the particles at the nodes is zero. It
increases gradually and is maximum at the antinodes.

8. Distance between any two consecutive nodes or

antinodes is equal to 

2

, whereas the distance between

a node and its adjacent antinode is equal to 

4

.

9. There is no transfer of energy. All the particles of the
medium pass through their mean position
simultaneously twice during each vibration.

10. Particles in the same segment vibrate in the same
phase and between the neighbouring segments, the
particles vibrate in opposite phase.

Standing waves in strings

In musical instruments like sitar, violin, etc. sound is
produced due to the vibrations of the stretched strings.

When a string under tension is set into vibration, a
transverse progressive wave moves towards the end of the wire
and gets reflected. Thus stationary waves are formed.

3.36 Engineering Physics



Differences between Progressive waves and Stationary
waves

S.
No.

Progressive waves Stationary waves

(i) There is transfer of energy
in the direction of
propagation of wave.

There is no transfer of
energy.

(ii) No particle of the wave is
permanently at rest.

The particles at nodes are
permanently at rest.

(iii) The particles of the medium
vibrate with same amplitude
about their mean

Amplitude of each particle is
not same. It is maximum at
antinodes and decreases
gradually to zero at the nodes.

(iv) The phase of vibration
varies continuously.

Particles in the same
segment vibrate in the same
phase.

3.7 ENERGY TRANSFER OF A WAVE

The mechanical erergy is transferred through the vibration
of the string.

As a wave propagates in a medium (for example along a
string), it transports energy. It means a vibrating string has
more energy than a string that is not vibrating.

Let us consider a string under uniform tension T and m
the mass / unit length.

If a small element of the string of length dx is considered,
then its mass is m dx.

As the string is vibrating, then the kinetic energy of this
small element is (Fig.3.18)
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dk    
1
2

 m velocity2

dk    
1
2

 m  dx 

 
dy
dt

 


2 ... (1)

where dy is the vertical displacement of the portion of a string
                  and 

            x is the direction of propagation of the wave in a string.

Now the string is under tension T.

When the string is displaced from equilibrium, a segment
associated with interval dx has a length dl (Fig. 3.18).

dl    dx
2
    dy

2
    dx 1    


 
dy
dx

 




2

  dx 



 1    

1
2

 

 
dy
dx

 


2

 




... (2)

Thus under tension, a small segment of the string has
expanded by an amount

 l    dl    dx    
1
2

 

 
dy
dx

 


2

 dz
... (3)

Fig. 3.18 An element of a string under the action of a wave.
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So work is done for this expansion and it is stored as
potential energy.

If the string is vibrating with displacement.

y x, t    A cos  t  k x ... (4)

Therefore, the potential energy is

dU    T   l    
1
2

 T 

 
dy
dx

 


2

  dx
... (5)

Substituting (4) in (5) gives

dU    
1
2

 Tk
2
 A

2
 sin

2
  t  kx  d x

dU    
1
2

 m A
2
 w

2
 sin

2
  t    kx  dx

... (6)

Where U    

K

 and for a string v     T
m

, then T    mv
2

Tk
2
    T  

2

v
2     T  

2

T/m
    m 2

If we substitute Eq.(4) in (1), then

dK    
1
2

 m A
2
 2

 sin
2
  t    kx  dx

... (7)

Comparing equ (4) and Eq.(6)

dU    dK ... (8)

 The total energy is

dE    dU    dK    2dK    m A
2
 2

 sin
2
  t    kx ... (9)

(or)

dE    m A2 sin
2
  t    kx dz ... (10)
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The quantity 
dE
dx

 is called the linear energy density.

At any point, for example at x    0, the average value of

sin
2
  t over one period is 1/2, so,




 
dE
dx

 
Average

    dE


    
1
2

 m A2 ... (11)

This relation is called as average energy density dE


As the average power transmitted by the wave is

P


    

 
dE
dt

 
Average

; 

therefore Eq.(11) becomes

dEAverage    
1
2

 m A
2
 2

  dx ... (12)

So,

P


    
1
2

 m A
2
 2

 
dx
dt

P


    
1
2

 m A
2
 2

  v ... (13)

where v    
dx
dt

 is the wave velocity.

Eq.(13) states that wave power is directly proportional to
the speed or velocity v at which energy moves along the wave.

3.8 SOUND WAVES

Sound is always produced by some vibrating body. The
vibrating body excites mechanical waves in the surrounding
medium. The mechanical waves propagate in the form of a series
of compressions and rarefactions in the air and set the ear drum
vibrating. It causes a sensation of hearing.
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The propagation of sound requires the presence of an
elastic medium. Sound cannot travel in a vacuum.

The following points may be noted about sound waves

(i) Sound waves are longitudinal waves.

(ii) Material medium (solid, liquid or gas) is necessary for
the transmission of sound from one place to another.

(iii) The velocity of sound is greater in solids and liquids
than in gases.

Audible and Inaudible Sounds

(i) Those sounds which human ear can hear are called
audible sounds. The range of human hearing is 20 kHz
to 20 kHz. In other words, we cannot hear sounds of
frequency below 20 Hz or above 20 kHz.

(ii) Those sounds which human ear cannot hear are called
inaudible sounds. The sounds of frequency below 20 Hz
are called infrasonics while sounds of frequency above
20 Hz are called ultrasonics. Infrasonics and ultrasonics
find wide applications in science and engineering.

Velocity of sound in a medium

The velocity of sound in a medium depends upon elasticity
and density of the medium. According to Newton’s formula, the
velocity v of sound is given by

Fig. 3.19 Schematic representation of a sound wave
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v    E


where, E     modulus of elasticity of the medium

     density of the medium.

(i) For solids, E    Y (Young’s modulus of elasticity).

       v    Y


(ii) For liquids, E    K (Bulk modulus of elasticity).

       v    K
 ... (2)

(iii) For gases, E    K (Bulk modulus of elasticity),

       v    K
 ... (3)

Newton assumed that when sound waves travel through a
gas (e.g. air), the compressions and rarefactions are formed so
slow that temperature of the medium remains the same.

In other words, the propagation of sound waves in a gas
takes place under isothermal conditions. It can be easily shown
that under isothermal conditions, bulk modulus of a gas is equal
to the pressure of the gas.

       v    P
 ... (4)
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Velocity of sound in air by Newton’s formula

According to Newton’s formula, the velocity v of sound in
air is given by:

v    P


We know that for air at N.T.P:

P    0.76    13,600    9.8 N/m
2
 ;      1.293 kg /m

3

 Velocity of sound in air at N.T.P.

v    0.76    13.600    9.8
1.293

    280 m / s

This value is about 16% less than the experimental value
(332 m/s) for the velocity of sound in air at N.T.P. This large
difference in the two values (experimental and theoretical)
cannot be attributed to say experimental error.

In 1817, Pierre Laplace, a French scientist, explained the
reason for this discrepancy.

The speed of sound in air is commonly take as 344 m / s for
normal conditions. This is very less compared to the velocity of light.

Table 3.1 gives the speed of sound in some media. Sound
travels faster in liquid media than in gaseous media and much
faster in solid media.

Table 3.1 Velocity of sound in various media

Medium Velocity ms 1

Gases Air 0C  331

Air 20C  343

Helium  965

Hydrogen 1284
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Medium Velocity ms 1

Liquids Water 0C 1402

Water at 20C 1482

Sea water 1522

Solids Aluminium 6420

Steel 5921

Granite 6000

3.9 DOPPLER EFFECT

The pitch or frequency of the whistle of a moving train
appears to increase as the sound source approaches a stationary
observer. The pitch or frequency decreases as the source of sound
recedes away from the stationary observer. This apparent
change in frequency was first observed by Doppler in 1845.

Definition

The phenomenon of the apparent change in the
frequency of the sound due to relative motion between the
source of sound and the observer is called Doppler effect.

1. Both source and observer at rest

Suppose S and O are the positions of the source and the
observer respectively. Let n be the frequency of the sound and
v be the velocity of sound.

In one second, n waves produced by the source travel a
distance SO    v as shown in fig. 3.21

Fig. 3.21 Both source and observer at rest
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The original wavelength is     
v
n

... (1)

The original frequency n    
v


... (2)

2. When the source moves towards the stationary
   observer

If the source moves with a velocity vs towards the

stationary observer then after one second the source will reach
S such that SS    vs.

Now n waves emitted by the source will occupy a distance
v  vs only as shown in fig. 3.22

Therefore, the apparent wavelength of the sound,

    
v  vs

n

... (3)

The apparent frequency

n    
v
 

    

 

v
v  vs

 

 n ... (4)

Comparing equations (2) and (4) we can conclude that
n  n, the pitch or frequency of the sound appears to increase.

3. When the sources moves away from the stationary
      observer

If the source moves away from the stationary observer with
velocity vs

Fig. 3.22 Source moves towards observed at rest
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The apparent frequency

n    
v


    

 

v
v   vs

 

 n    


 

v
v  vs

 

 n ... (5)

Comparing equations (2) and (5) we can conclude that
n  n, the pitch or frequency of the sound appears to decrease.

For a moving source, the change in frequency occurs because
although the source emits waves at constant rate, the waves
emitted in a specified time occupy a shorter or longer length than
when the source is stationary. Consequently, there is apparent
change in wavelength and hence the frequency changes.

4. Source is at rest and observer in motion
S and O represent the position of source and observer

respectively. The source S emits n waves per second having a

wavelength     
v
n

.

Consider a point A such that OA contains n waves which
crosses the ear of the observer in one second as shown in figure
3.23 (a).

That is, when the first wave is at the point A, the n
th

wave will be at O where the observer is situated.

Fig. 3.23 (a) and (b) observer is moving towards a source at rest

3.46 Engineering Physics



5. When the observer moves towards the stationary
source

Suppose the observer is moving towards the stationary
source with velocity vo. After one second the observer will reach

the point O such that OO    vo.

The number of waves crossing the observer will be n waves
in the distance OA in addition to the number of waves in the

distance OO which is equal to 
vo


 as shown in figure 3.23(b).

Therefore, the apparent frequency of sound

n    n  
vo


    n  




 
vo

v
 



 n

The apparent frequency of sound

n    



 
v  vo

v
 



 n

... (6)

Comparing equations (2) and (6) we can conclude that
n  n, the pitch of the sound appears to increase.

6. When the observer moves away from the stationary
source

Suppose the observer is moving towards the stationary
source with velocity vo.

Therefore, the apparent frequency of sound

n    



 
v   vo

v
 



 n

The apparent frequency of sound

n    



 
v  vo

v
 



 n

... (7)
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Comparing equations (2) and (7) we can conclude that
n  n, the pitch of the sound appears to decrease.

Similarly for a moving observer the change in frequency
occurs because although the source emits at constant rate, the
waves emitted in a specified time is heard by the observer or
listener receives longer or smaller number of waves than the
observer is stationary relative to the source.

Consequently there is apparent change in wavelength and
hence the frequency changes.

Note
(a) If the source and the observer move along the same

directions, the equation for the apparent frequency
becomes 

n    



 
v  vo

v  vs
 



 n

... (8)

(b) If the source and the observer approaches each other,
the equation for the apparent frequency becomes 

n    



 
v  vo

v  vs
 



 n

... (9)

(c) If the source and the observer are moving away from
each other, the equation for the apparent frequency
becomes 

n    



 
v  vo

v  vs
 



 n

... (10)

Suppose the wind is moving with a velocity  in the
direction of propagation of sound, the equation for the apparent
frequency becomes

n    



 
v    vo

v    vs
 



 n

... (11)
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Applications of Doppler effect

(i) To measure the speed of an automobile

An electromagnetic wave is emitted by a source attached
to a police car. The wave is reflected by a moving vehicle, which
acts as a moving source. There is a shift in the frequency of
the reflected wave. From the frequency shift using beats, the
speeding vehicles are trapped by the police.

(ii) RADAR (Radio detection and ranging)

A RADAR sends high frequency radiowaves towards an
aeroplane. The reflected waves are detected by the receiver of
the radar station. The difference in frequency is used to
determine the speed of an aeroplane.

(iii) SONAR (Sound navigation and ranging)

Sound waves generated from a ship fitted with SONAR
are transmitted in water towards an approaching submarine.
The frequency of the reflected waves is measured and hence the
speed of the submarine is calculated.

(iv) Blood flow meter

Ultrasonic sounds are transmitted towards organs the
frequency change in reflected waves used to measure blood flow
rate.

(v) Tracking a Satellite

The frequency of radio waves emitted by a satellite
decreases as the satellite passes away from the Earth. The
frequency received by the Earth station combined with a
constant frequency generated in the station gives the beat
frequency. Using this, a satellite is tracked.

(vi) Stars moving towards the earth or away from the earth

There is an apparent change in wavelength of spectral lines
emitted by a moving star. If the star is moving away from the
Earth, there is a shift towards the red end and if it is
approaching towards the Earth, a shift towards the violet end
of the spectrum is indicated. This spectral shift enables the
velocity of star to be computed along the line of sight.
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SOLVED PROBLEMS

Problem 3.1

A second source is approaching a stationary observer
with a velocity of 166 m / s. The observer hears a sound
whose apparent frequency is twice the real frequency.
Find the speed of sound in air.

Solution:

If n is real frequency, then due to motion of source, the
apparent frequency n is given by

n    
v

v    vs
 n ...(1)

where v is velocity of sound in air

Given n    2n,      vs    166 m / s

                   2n    
v

v  166
 n

                  or 2    
v

v  166

2v  332    v

v    332 m / s

Problem 3.2

An observer is approaching a stationary sound-source
vibrating with frequency 90 vibrations / second with a
velocity one-tenth the velocity of sound. What is the
apparent frequency heard by observer?

Solution:

If n is real frequency, then apparent frequency due to
approaching observe is
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n    
v  v0

v
 n, where v is velocity of sound.

Here velocity of observer v0    
v

10
 and n    90 vib/s

  n    

v  

 

v
10

 


v
    90    

11
10

    90    99 vibrations / s

Problem 3.3

A railway engine moving with a speed of 60 m/s passes
in front of a stationary listener. The real frequency of
the whistle is 400 Hz. Calculate the apparent frequency
heard by the listener. 
(i) When the engine is approaching the lister 
(ii) When the engine is moving away from the listener.
[velocity of sound  340 m / s]

Solution:

Given n    400 Hz, v    340 m/s, vs    60 m/s

(i) When engine is approaching the listener

      n    
v

v    vs
 n

  
340

340    60
    400    

340
280

    400  486 Hz

(ii) When the engine is moving away from the listener,
then

      n    
v

v    vs
 n

  
340

340    60
    400    

340
400

    340 Hz
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Problem 3.4

A source of sound produces waves of wavelength 60 cm.
This source is moving towards north with a speed
one-fifth the speed of sound. Find the apparent
wavelength of waves in the north and south directions.

Solution:

If sound source  is moving with velocity vs relative to

observer, then apparent frequency n  
v

v  vs
 n

Here  sign is for receding and  sign for approach.

If  and  are real and apparent wavelengths, then

n    
v


  and  n    
v


 
v


    
v

v  vs
  

v


i.e.,   
v  vs

v
 

Given vs  
v
5

 and   60 cm. As source is approaching

towards north, therefore for observer in north-direction.

  
v  vs

v
     

v    

 
v
5

 


v
    60 cm   48 cm

and for observer in south-direction

  
v  vs

v
   

v  

 
v
5

 


v
    60 cm    

6
5

    60 cm    72 cm
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Part - ‘A’ 
‘2’ Marks Questions with answers

 1. Define simple harmonic motion.

When the acceleration of particle is directly proportional
to its displacement from its equilibrium position and it is always
directed towards equilibrium position, then the motion of the
particle is said to be simple harmonic motion.

 2. What are the characteristics of simple harmonic motion?

 The motion must be periodic.

 The motion is oscillatory ie., to and fro along a straight
line or along a curved path about a mean position.

 The body executing simple harmonic motion is acted
upon by a restoring force whose magnitude is
proportional to the displacement and its direction is
always towards the mean position.

 If there is no air resistance or friction, the motion once
started will continue indefinitely.

 3. What are examples of simple harmonic motions?

 Vibrations of a tuning fork.

 Vibrations of a sonometer wire.

 Vertical oscillations of the liquid column in a U-tube.

 Angular oscillations of a torsion pendulum.

 4. What are types of oscillation?

1. Free oscillations

2. Damped oscillations

3. Forced oscillations

 5. What is resonance?

The phenomenon of making a body vibrate with its natural
frequency under the influence of another vibrating body with
the same frequency is called resonance.
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 6. What is sharpness of resonance?
The rate of change (fall) of amplitude with the change of

forcing frequency on each side of resonant frequency is known
as sharpness of resonance.

 7. Define progressive wave.
Progressive wave originating from a point source and

propagating through an isotropic medium travel with equal
velocity in all directions.

At any instant, the wavefront (locus of all particles
vibrating with the same phase) will be spherical in nature.

If the sphere of very large radius is considered, the
spherical wave will approximate to a plane surface and the
waves are called plane progressive waves.

 8. What are the characteristics of progressive wave?
1. Each particle of the medium executes vibration about

its mean position. The disturbance progresses onward
from one particle to another.

2. The particles of the medium vibrate with same
amplitude about their mean positions.

3. Each successive particle of the medium performs a
motion similar to that of its predecessor along the
propagation of the wave, but later in time.

4. The phase of every particle changes from 0 to 2.

 9. Define standing waves.

When two progressive waves of same amplitude and
wavelength travelling along a straight line in opposite directions
superimpose on each other, stationary waves are formed.

10. What are the characteristics of standing waves?

1. The waveform remains stationary.

2. Nodes and antinodes are formed alternately.

3. The points where displacement is zero are called nodes
and the points where the displacement is maximum are
called antinodes.
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4. Pressure changes are maximum at nodes and minimum
at antinodes.

11. What are differences between progressive waves and
stationary waves?

S.
No. Progressive waves Stationary waves

(i) There is transfer of energy in
the direction of propagation
of wave.

There is no transfer of energy.

(ii) No particle of the wave is
permanently at rest.

The particles at nodes are
permanently at rest.

(iii) The particles of the medium
vibrate with same amplitude
about their mean

Amplitude of each particle is
not same. It is maximum at
antinodes and decreases
gradually to zero at the nodes.

(iv) The phase of vibration varies
continuously.

Particles in the same segment
vibrate in the same phase.

12. State Doppler effect.

The phenomenon of the apparent change in the frequency
of the sound due to relative motion between the source of sound
and the observer is called Doppler effect.

Part - B ‘16’ Marks Questions

 1. Explain simple harmonic motion and discuss its characteristics.

 2. Discuss the phenomenon of sharpness of resonance.

 3. Deduce the wave equation for progressive wave.

 4. Derive the wave equation for standing waves.

 5. Discuss analogy between electrical and mechanical oscillating
system.
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 6. Explain Doppler’s principle. Calculate the apparent pitch of
a note due to the motion of source and the listener.

 7. Discuss Doppler’s effect in sound and obtain an expression
for the apparent frequency of the note when the source and
the listener are (i) moving towards each other, and
(ii) moving away from each other.

 8. Explain Doppler’s effect. Explain the apparent frequency of
a note when both the source and the listener are in motion,
the medium being at rest.

 9. Explain Doppler’s effect. Find an expression for the ratio
of the apparent frequency to the real frequency of the notes
emitted when there is relative movement between the source
and the listener.

10. State and explain Doppler’s effect. Derive an expression for
the change in frequency of a note when both the source of
sound and the observer are in motion.

11. Explain Doppler’s effect. Obtain an expression for the
frequency of a note heard by an observer, when both the
source and the observer are in motion towards each other.

ASSIGNMENT PROBLEM

Note: Use following physical constants wherever required: 
     speed of sound in air, v  330 m / s

     speed of light, c  3  10
8
 m / s

 1. With what velocity should a sound-source travel towards a
stationary observer so that the apparent frequency may be
double of this actual frequency?

[Ans. v / 2 where v is velocity of sound]

 2. With what velocity should a sound source move towards an
stationary observer so that the apparent frequency heard
be three-times its real frequency. [Ans. 280 m / s]
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 3. With what velocity should a moving observer go away from
a stationary source so that the apparent frequency heard
be half of its real frequency. If observer is stationary and
source goes away then? [Ans. 165 m/s, 330 m/s]

 4. A motor-car is approaching towards a crossing with a
velocity 75 km / h. The traffic man standing at crossing
hears the frequency of sound of horn to be 260 Hz. What
is the real frequency of sound of horn? [Ans. 244 Hz]

Oscillations 3.57



4. Optics

Reflection and refraction of light waves – total internal
reflection – interference Michelson interferometer –
Theory of air wedge and experiment

Introduction

Light is a form of energy to which our eye is sensitive.
While light itself is ‘invisible’ to our eye, it makes objects
visible, mainly by the process of scattering.

Light energy exhibits dual nature, that of a particle and
a wave. The wave nature of light can be understood on the
basis Young’s double slit experiment. The wave character of light
manifests itself in phenomena such as interference, diffraction,
polarization etc.

On an atomic scale when light energy interacts with matter
it exhibits particle nature. The particle aspect of light can be
understood on the basis of Quantum theory of radiation
proposed in 1900 by the German physicist Max Planck.
According to this theory of light energy is emitted and absorbed
by matter in packets called Quantum of radiation.

“Optics is the branch of physics which deals with
the source of light, nature of light, its properties and
effects”.

Optics is broadly classified into two branches:

(a) Geometrical optics (b) physical optics.

Geometrical optics deals with the ray concept of light. It deals
with the optical phenomena such as reflection, refraction and their
applications to optical instruments.



Physical optics deals with the wave nature of light. It deals
with the phenomena such as interference, diffraction and
polarization etc.

4.1 REFLECTION OF LIGHT WAVES

(i) The phenomenon where the incident light falling
from one medium on a surface of another
medium is sent back to the same medium is
known as reflection.

(ii) The angle between the incident ray and the normal to
the surface is known as angle of incidence.

(iii) The angle between the reflected ray and the normal
of the surface is known as angle of reflection. (Fig 4.1)

Laws of reflection

(i) Incident ray, normal and reflected ray lie in the
same plane.

(ii) The angle of incidence is equal to the angle of
reflection i.e.  i     r

4.2 REFRACTION OF LIGHT WAVES

Refraction is the phenomenon in which light travels
from one medium (say air) to another medium (say glass).
The direction of light changes due to change in medium.

Fig. 4.1 Reflection of Light Waves
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If a ray of light passes from a rarer medium (air) into
denser medium (glass) then the ray of light bends towards the
normal. (Fig 4.2)

If a ray of light passes from denser medium into rarer medium
then the ray of light bends away from the normal. (Fig 4.3)

Note: The speed of light in rarer medium is faster than that
of denser medium

Laws of refraction

(i) The incident ray, the refracted ray and the
normal at a point of separation of two media lie
in the same plane.

Fig. 4.2

Fig. 4.3
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(ii) For any two medium, the ratio of sine of angle of
incidence to sine of angle of refraction is constant. It
is known as Snell’s law.

Therefore, 
sin i
sin r

    constant

where this constant is called as refractive index  of
medium

                 
sin i
sin r

Significance of refractive index

The ratio of velocity of light in vacuum to velocity
of light in medium, is called as refractive index.

ie., Refractive index,     
Velocity of light in vacuum c
Velocity of light in medium v

    
c
v

(i) When light travels from rarer medium (air) to denser
medium (glass), then the i is greater than r.
Therefore, refractive index is always greater than 1.

(ii) When light travels from denser medium (glass) to rarer
medium (air), then the i is less than r. Therefore,
refractive index is always less than 1.

(iii) Refractive index for vacuum is unity (1)

4.3 TOTAL INTERNAL REFLECTION

(i) When light passes from denser medium to rarer medium,
then the refracted ray bends away from the normal.

(ii) Consider a ray AB incident at i1 and refracted at

r1, as angle of incidence increases, angle of refraction

also increases.
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(iii) For a particular value of angle of incidence i2, the

refracted ray travels along the surface of separation
between the two medium i.e. r becomes 90, then the
angle of incidence is called as critical angle c.

(iv) For the angle of incidence greater than critical angle
i3  c, the ray cannot pass into second medium but

completely gets reflected in the same medium. (Fig 4.4)

(v) Thus, a ray travelling from denser medium to a rarer
medium is reflected into denser medium if angle of
incidence is more than the critical angle of medium.

Critical angle

Definition
The angle of incident at which the refracted ray just

graze surface between denser and rarer media is called
critical angle.

When light travels from denser to rarer medium, from
Snells law.

n1 sin i    n2 sin r

n1 – refractive index of denser medium

n2 – refractive index of rarer medium

Fig. 4.4
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i – angle of incident and r-angle refraction

i    c when r    90

        n1 sin c    n2 sin 90 . . . sin 90    1

sin c    
n2

n1

    or c    sin
 1

 



 
n2

n1
 




Definition

When a ray of light within a denser medium (e.g.
water) approaches the surface at an angle of incidence
greater than the critical angle, the ray of light is reflected
back into the same medium (i.e. water). This phenomenon
is known as total internal reflection. (Fig 4.5)

Necessary conditions for total internal reflection

(a) The light should incident from denser medium to rarer
medium.

(b) The angle of incidence i in denser medium should be
greater than critical angle c.

Fig. 4.5
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Applications of total internal reflection

There are a large number of practical applications of the
phenomenon of total internal reflection. However, only two
applications are briefed below by way of illustration.

(i) Mirage. During the day time in the desert, it is seen
that sand at some distance from the observer looks like
a pond of water. This illusion is called mirage and it
is caused due to total internal reflection of light.
(Fig 4.6)

(ii) Optical fibre. An optical fibre is a transparent fibre
used to conduct light through the phenomenon of total
internal reflection. Fig. 4.7 shows a typical optical fibre
cable.

It consists of fibre glass core surrounded by fibre glass
cladding. The cable is so designed such that the
refractive index of core is more than that of the
cladding.

Fig. 4.6

Fig. 4.7
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The core performs the function of transmitting the light
waves by total internal reflection while the purpose of cladding
is to minimise surface losses and to guide the light waves. 

Fig. 4.8 shows how optical fibre cable works. The ray of
light entering one end of the cable undergoes a series of total
internal reflections.

The light emerging from the other end of the optical fibre
cable has no loss of intensity during its journey. Optical fibres
are being used in a variety of medical and engineering
applications.

4.4 INTERFERENCE OF LIGHT WAVES

When two light waves of the same frequency and having
constant phase difference traverse simultaneously in the same
region of a medium and cross each other then there is a
modification in the intensity of light, in the region of superposition.

This modification or change of intensity of light
resulting from the superposition of two or more waves
of light is called interference.

At some points, where the crests of one wave falls on the
crest of the other, resultant amplitude is maximum. Hence, the
intensity of light is maximum. At certain other points, crest of
one wave falls on trough of the other, therefore resultant amplitude
becomes minimum and hence intensity of light is minimum.

At the points, where the resultant intensity of light is
maximum, the interference is said to be constructive. At the
points where the resultant intensity of light is minimum, the
interference is said to be destructive.

Fig. 4.8
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In 1801, Thomas Young demonstrated successfully the
phenomenon of interference of light by the double slit
experiment, called Young’s experiment.

Theory of Interference Fringes

Consider a narrow monochromatic source S and two pin
holes S1 and S2 equidistant from S. The pin holes provide the

two point sources vibrating in the same shades. The two sources
are separated at a distant 2d.

Let a screen XY be placed at a distant D parallel to
S1 S2. The point O on the screen is equidistance from S1 and

S2. Consider a point P at a distance x from O (Fig 4.9).

We shall now consider the conditions for a bright or dark
fringe at this point.

From the right angled triangle S1 QP

S1 P2    S1 Q2  QP2

or         S1 P2    D
2
  x  d2    [. . . QP    x  d]

... (1)
Similarly in right angle triangle S2 RP

S2 P2    S2 R2  RP2

or  S2 P2    D
2
  x  d2  [. . . RP    x  d]

... (2)

Fig. 4.9

Optics 4.9



 S2 P
2
  S1 P

2
  S1 P

2
    D

2
  x

2
  d

2
  2dx  D

2
  x

2
  2dx  d

2

S2 P2  S1 P2    4 x d

(or) S2P  S1 P S2 P  S1 P    4 x d

In Young’s experiment, D is some thousand times greater
than 2d or x so that if S2 P  S1 P is replaced by 2D, the error

is not more than a fraction of one percent.

Hence,

S2P  S1 P 2D    4 x d

or  S2P  S1 P    
4 x d
2D

    
2 x d

D
... (1)

Position and Spacing of fringes

Now, we shall consider the following two cases

1. Bright Fringes: The point P is bright when the path
difference is a whole number multiple of wavelength ,
i.e.

S2P  S1 P    n  where n    0, 1, 2

Substituting the value of S2P  S1 P from equation (1) we

have

2xd
D

    n 

or    x    
n  D

2d
... (2)

Equating (2) gives the distances of the bright fringes from
point O. At O, the path difference is zero hence there is a bright
fringe. The next bright fringes are formed when
n    1, 2, 3  and so on i.e.
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       when n    1 ,  x1    
 D
2d

n    2 ,  x2    
 D
2d

n    3 ,  x3    
3 D
2d

n    n ,  xn    
n  D

2d

The distance between any two consecutive bright fringes
is,

x2  x1    
2 D
2d

  
 D
2d

    
D 
2d

... (7)

2. Dark Fringes: The point P is dark when the path
difference is an odd number multiple of hall wavelength
i.e.

S2P  S1 P    2n  1 

2

where n    0, 1, 2, 3 

2 x d
D

    
2n  1 

2

x    
2n  1  D

4d
... (8)

The equation (8) gives the distances of the dark fringes
from point O. The dark fringes are formed as follows.

when n    0 ,  x0    
 D
4d

n    1 ,  x1    
3 D
4d
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n    2 ,  x2    
5 D
4 d

n    n   xn ,    
2n  1  D

4 d

The distance between any two consecutive dark fringes is,

x2  x1    
5 D
4d

  
3 D
4d

    
2 D
4d

    
 D
2d ... (9)

Hence the spacing between any two consecutive maximum

or minima is the same. This is expressed by  



     

 D
2d

 



 and

it is known as fringe width. 

It is obvious that the spacing is directly proportional to 
and inversely proportional to 2d.

Conditions for Interference of light

(i) Conditions for sustained interference
(a) The sources should be coherent.

(b) The sources should emit continuous waves of the same
wavelength and time period.

(ii) Conditions for observations
(a) The separation between the two sources 2d should be

small.

(b) The distance ‘D’ between two sources and the screen
should be large.

(c) The background should be dark.

(iii) Conditions for good contrast
(a) The amplitudes of the interfering waves should be

equal or nearly equal.

(b) The sources must be narrow, i.e., they must be
extremely small.

(c) The sources should be monochromatic.
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Type of Interference
There are normally two methods for obtaining interference

pattern.

1. Interference by Division of Wavefront

Here the original wave is divided into two parts by using
slits, prism or mirror, and the two wavefronts thus produced
are brought together to produce the interference pattern. It
requires a narrow source of light.

Examples: Fresnel’s Biprism, Lloyd’s Mirror.

2. Interference by Division of Amplitude

In this case the original amplitude of the wave is divided
into two parts by reflection or refraction and the divided parts
are finally brought close together to produce the interference
pattern. It requires a wide source of light.

Examples: Air wedge, Newton’s Rings, Michelson
                               Interferometer.

Thin film interference

Light reflected from soap bubbles, oil films etc., shows the
interference effect. These very thin films have a thickness just
a few times the wavelength of light, and hence it is called thin
film interference.

A plane light wave that falls on the film is reflected from
the upper and lower surfaces, and the reflected beams interfere
with each other. Thus, thin film interference is due to multiple
reflections.

Newton and Hooke observed and developed the interference
phenomenon due to multiple reflections from the surface of thin
transparent materials.

Thin layers of oil spread on water or any surface, heated
metallic surfaces, soap bubbles etc. exhibit brilliant colours when
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light is incident on them. These colours of thin films are due
to the interference of light between the light reflected from the
front and back surfaces of the film.

It is observed that interference in the case of thin film
takes place due to

1. Reflected Light and

2. Transmitted Light

Let ABCD (Fig.4.10) represent a thin transparent film
(thickness t and refractive index ) with the parallel boundary
surfaces AB and CD. Let PQ be a light ray incident AB. The
ray is partly reflected as RS and partly refracted as Q1 Q2 at

Q1.

The ray Q1 Q2 is again split up into a refracted ray

P1 Q1 and a reflected ray Q2 Q3. The ray Q2 Q3 suffers reflection

and refraction at Q3 and so on.

Fig. 4.10
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1. Interference due to Reflected light

If the thickness of the film is small, the directly reflected
ray RS and the refracted ray R1 S1 from Q3 superimpose on

one another. Terefore the waves of RS and R1 S1 are in a fit

condition to interfere producing either brightness or darkness
depending upon the path difference.

The correct path difference between two reflected waves in
this case is given by

x    2 t cos r    /2 ... (1) 

where,  – refractive index of the medium

t – thickness of the thin film

r – angle of refraction

 – wavelength of the light

1. If the path difference x    n  where n    0, 1, 2, 3, 4
 etc., constructive interference takes place and the
film appears bright

2 t cos r    /2    n 

or   2 t cos r    2n  1 /2 ... (2)

2. If the path difference x    2n  1 /2 where
n    0, 1, 2  etc., destructive interference takes place
and the film appears dark

2 t cos r    /2    2n  1 /2

or   2 t cos r    n  1  ... (3)

Here n is an integer only, therefore n  1 can also be
taken as n

2 t cos r    n  ... (4)

where  n    0, 1, 2, 3, 4  etc
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2. Interference due to transmitted light:

When the thickness of the film is small, the transmitted
rays P1 Q1 and P2 Q2 (which are parallel) superimpose and

interference of light occurs. The type of fringes (bright or dark)
depends upon the path difference between these two rays.

1. The film will appear bright or constructive interference
will form if the path difference x    n 

or   2 t cos r    n  ... (1)

where  n    0, 1, 3,  etc.

2. The film will appear dark or destructive interference
will form if the path difference

x    2n    1 /2

2  t cos r    2n  1 /2 ... (2)

where n    0, 1, 2, 3,  etc.

Colours in thin films:

With monochromatic light alternate bright and dark fringes
are obtained. With white light the fringes obtained are coloured
because the path difference 2 t cos r depends upon , t and r.

1. If t and r are constant, the path difference varies with
 or the wavelength of light. Let light is composed of
various colours. Therefore, these colours will appear in
the order of violet, blue etc. as the wavelength 
increases.

2. If the angle of incidence changes, r also changes and
hence the path difference also changes. Therefore, in
various directions different colours will be seen with
white light.

3. When the thickness of the film varies the film passes
through various colours for the same angle of incidence.
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4.5 THEORY OF AIR WEDGE AND EXPERIMENT

Air-wedge arrangement is used to find the thickness of a
thin sheet or a wire. It is also used to test the planeness of
the glass plate.

Definition
A wedge shaped (V-shaped) air film enclosed in

between two glass plates is called air wedge.

Theory of air wedge experiment
When two optically plane glass plates (A & B) are inclined

at a very small angle , a wedge shaped thin air film is
formed between the surfaces as shown in fig. 4.11. The thickness
of the air film increases outwards from the line of contact ‘O’
of the glass plates.

Fig 4.11 Air wedge

The light rays from a monochromatic light source is made
to fall perpendicularly on the film.

The incident rays of light is partially reflected from the
upper surface of the air film and partially reflected from the
lower surface of the air film.
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These two reflected rays will interfere and a large number
of straight alternative bright and dark fringes are formed.

If t is the thickness of the air film corresponding to the

n
th

 dark band with wedge angle  at a distance of x metre from
the edge of contact, then the path difference between the two
reflected rays (Fig 4.12)

Fig 4.12

2 t cos r  n ... (1)

For air film, refractive index of the film   1

cos r  1, since angle of incidence is very small, so angle
of refraction is also very small ie., r  0;  cos 0  1

Now, 2t  n ... (2)

where   wavelength light

Since x is the distance of the n
th

 dark band from the edge
of contact O,

t
x

    tan  from fig. 4.12.

t
x

        . . .  is very small tan     

            t  x  ... (3)

substituting equation (3) in equation (2), for the n
th

 dark
band

2 x    n ... (4)

4.18 Engineering Physics



Similarly, for the next dark band ie., n  1th dark band 

2x    n  1  ... (5)

where  is the fringe width 

subtracting equation (4) from equation (5), we have

2    

or   


2 
... (6)

The same relation is obtained if we consider the bright
fringe.

Thickness of a thin wire and very thin foil

The given wire whose thickness d is to be measured is
placed inbetween the two glass plates to form a wedge shaped
air film.

Now if l is its distance from the edge of contact (length
of the wedge), then from fig 4.13.

Fig. 4.13 Thickness of a thin wire

tan     
d
l
 ,       tan     

 or       
d
l
, ... (7) 

Substituting eqn (7) in (6)

    


2d
l

   
 l
2d
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or d      
 l
2

Thus, thickness of very thin specimen can be determined
by using the interferance technique in wedge shaped film.

Applications of air-wedge

Determination of diameter (thickness) of a wire or
thickness of a thin sheet of paper (Experiment)

An air wedge is formed by keeping two optically plane glass
plates in contact along one of the edges and a thin wire near
the other end, parallel to the contact edges of the glass plates.

Therefore, glass plater are inclined at a very small angle
 (one end of these two glass plates may be tied using a thread
or a rubber band). This is called airwedge arrangement

Description
This arrangement is kept on the bed of the travelling

microscope (Fig 4.14).

Fig. 4.14 Airwedge arrangement

A parallel beam of monochromatic light from a light source
is reflected down on the air wedge by a glass plate kept inclined
at angle 45 to the horizontal.

4.20 Engineering Physics



Interference takes place between the light reflected at the top
and bottom surfaces of the air film between the two glass plates.

Experiment
Interference pattern (Fig 4.15) consisting of a series of

bright and dark bands of equal width is viewed by a travelling
microscope arranged above the air wedge.

Microscope is focussed on these fringes and the vertical

cross wire is made to coincide with n
th

 bright band near the
edge of contact of the glass plates.

Fig. 4.15 Interference pattern

The reading on the horizontal scale of the microscope is
noted. The cross wire is made to coincide with successive 5

th

fringes n  5, n  10  n  40 and the corresponding microscope
readings are noted. The readings are recorded in the table 4.1.

From the table, the average fringe width  is determined.
Using the microscope, the distance l between the edge of the
contact and the wire is also measured.

Knowing the wavelength of the monochromatic light source,
the thickness of the wire is found out using the formula.

d    
l
2

    metre
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Table 4.1

S.
No.

Order of
the fringes

Microscope
reading

x 10 2 m

Width of
10 fringes

m

Band
Width 

m

1 n

2 n  5

3 n  10

4 n  20

. 

n  40

Mean     ..... 
   

ANNA UNIVERSITY SOLVED PROBLEMS

Problem 4.1

Light of wavelength 6000 Å falls normally on a thin
wedge shaped film of refractive index   1.4 forming
fringes that are 2 mm apart. Find the angle of the
wedge?                                (A.U. April 2014)

Given data:
Wavelength of the light 

      6000Å  6000    10
 10

 metre 

Fringe width,   2mm  2    10
 3

 metre 

Refractive index of the film   1.4 
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Solution 

We know the formula for fringe width in wedge shaped film

    


2  
     or         


2  

Substituting the given values, we have

  
6000    10

 10

2    1.4    2    10
 3  radian 

Angle of the wedge   1071.4  10
 7

 radian

Problem 4.2

In an air wedge experiment, the distance between

successive fringes is 1.09    10
 4

 m. Calculate the
thickness of the object kept between the two optically
plane glass plates forming the air wedge, if the length

of the wedge is 3.7    10
 2

 m and the wavelength of the
monochromatic light illuminating the wedge is

5.983    10
 7

 metre.                        (A.U. Jan 2015)

Given data:   1.09    10
 4

 m ;    l  3.7    10
 2

 m

  5.893    10
 7

 m ;             d  ? 

Solution
We know that thickness of the object 

d  
l
2

Substituting the given values, we have

d    
3.7    10

 2
  5.893    10

 7

2  1.09    10
 4

Thickness of the object d    10
 4

 m
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Interferometer

An interferometer is an instrument for measuring small
changes in length. It is based on the principle of interference.

The study of interferometer is called interferometry.

Michelson originally designed an interferometer which is
used to find the wavelength of monochromatic light source and
thickness of thin strips.

4.6 MICHELSON’S INTERFEROMETER

Principle
Two interfering beams are formed by splitting the light

from a source into two parts by partial reflection and refraction.
These beams are sent in two perpendicular directions, and they
are finally brought together after reflection from plane mirrors
to produce interference fringes.

Construction

Michelson interferometer is shown in fig 4.16. The
apparatus consists of two highly polished plane mirrors M1 and

M2. The mirrors are mounted vertically on two arms

perpendicular to each other.

The mirror M1 is mounted on a carriage C so that it can

be moved forward and backward. The distance moved by this
mirror can be accurately measured with the help of a graduated
drum fitted on the micrometer screw M. The mirror M2 is fixed.

There are two plane parallel glass plates, G1 and G2 of

same thickness placed at an angle of 45 to the incident beam.

The plate G1 is semi-silvered on its back side and acts as a

beam splitter, i.e., a beam incident on it is partially reflected
and partially transmitted.
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The plate G2 is a compensating glass plate. S is a

monochromatic light source. A telescope T is positioned perpendicular
to M1 to receive rays reflected from both M1 and M2.

Working
Light from source S is rendered parallel by means of a

collimating lens L. This light is made to fall on a semi-silvered
glass plate G1. The light beam is divided into two parts.

One part of the light is reflected to travel towards mirror
M1 (ray 1) while the other part of the light is transmitted

towards M2 (ray 2).

These light rays fall normally on mirrors M1 and M2 and

are reflected back along its original paths.

The light reflected by mirror M1 passes through G1 to reach

the telescope T. The ray reflected by mirror M2, on reaching

G1, gets reflected at its semi-silvered surface to reach the

telescope.

Fig. 4.16 Michelson interferometer
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A path difference can be introduced between the two
reflected rays by moving mirror M1.

If we look through the telescope in the direction of mirror
M1, we can see mirror M1 directly together with a virtual image

of M2, denoted by M 2, formed close to M1 by reflection in the

glass plate G1. Hence, the rays reaching the telescope appear

to travel from M1 and M2.

Thus, Michelson interferometer system is optically similar
to the interference from an air film enclosed between
M1 and M 2.

The interference fringes may be straight, circular or
parabolic etc., depending upon

 path difference and 

 angle between mirror M1 and virtual mirror M 2.

Function of the compensating plate G2

The ray reflected at M1 passes through glass plate G1

twice and reaches the telescope, while the ray reflected at
M2 does not pass even once.

That is why a second plate G2 made with same

material, thickness and inclination as G1 is introduced along

the path of the ray travelling towards M2. Thus, the function

of plate G2 is just to equalise the optical paths travelled by

both rays.

Formation of fringes

 One of the interfering beams comes from M1 and the

other appears by reflection from the virtual image of
mirror M2, i.e., M2.
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 An air film is enclosed between the two mirrors M1 and M2.

 The two interfering beams appear from two virtual images
S1 and S2 of the light source S as shown in fig. 4.17.

 Let S1 and S2 be two virtual sources. The distance

between the virtual sources is 2d. As ray 2 coming after
reflection from M2, suffers reflection at the silvered

surface of glass plate  G1, an additional path difference

of /2 is introduced between the two rays.

 If we observe in the direction making an angle ‘’ with
the normal to the mirrors, the total path difference is
2d cos   /2 (Fig. 4.17).

 For maximum intensity in the fringes,

      2d cos   /2    n

where n  0, 1, 2, 

Fig. 4.17 Formation of interference fringes
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Types of Fringes

Case 1:

When M 2 coincides with M1 i.e., the paths are exactly

equal, the path difference is only /2. Therefore, the field of

view is perfectly dark as shown in fig 4.18(a).

Case 2:

M1 is moved either forward or backward parallel to itself.

Now, mirror M1 is exactly perpendicular to mirror M2, i.e.,

mirror M1 and virtual mirror M 2 are parallel.

When an air film of constant thickness is enclosed between

mirrors M1 and M2, we observe sufficiently spaced circular

fringes as shown in fig. 4.18(b).

Fig. 4.18 Formation of different types of fringes by mirror

M1 and virtual image of mirror M2.
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Case 3:

When mirror M1 intersects the virtual image M2, the air

film enclosed is wedge shaped, and straight line fringes are
produced as shown in fig. 4.18(c).

If virtual image M2 lies just above the plane of mirror

M1 and they are not perfectly parallel, the fringes produced are

curved as shown in fig. 4.18(d).

If the plane of mirror M1 lies above the plane of virtual

image M2 and they are not perfectly parallel, the fringes formed

are slightly curved as shown in fig. 4.18(e).

Applications of Michelson’s Interferometer

It is used to find 

(i) the wavelength of a given light source.

(ii) the refractive index and thickness of a transparent
material

(iii) the resolution of wavelengths

(iv) the standardisation of metre

Wavelength Determination

Using monochromatic light of unknown wavelength ,
Michelson’s interferometer is adjusted for circular fringes. The
position of mirror M1 is adjusted till a particular bright fringe

coincides with the cross wire. Now, micrometer screw reading
is noted.

When mirror M1 is slowly moved, the number of fringes

n that moved across the field view of the telescope is counted.
This may be in the order of 20 or 30 fringes. Again micrometer
screw reading is noted.

The distance d moved by the mirror is given by the
difference between initial and final micrometer screw readings.
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When mirror M1 is moved through a distance 

2

, the path

difference changes by . The position of a particular bright fringe
across the cross wire is replaced by the next bright fringe.

For one fringe shift, the distance moved by the mirror

M1 is 

2

 (half of the wavelength).

Let mirror M1 move through distance d and the number

of fringes that crosses the field of view be n.

For the shift of n fringes,

distance moved by mirror M1    d    
n 
2

          or          
2d
n

Knowing d and n, the wavelength of monochromatic light
 can be calculated.

Determination of Thickness of a Thin Transparent Sheet

For this purpose, a thin film of refractive index   is
introduced in the path of one of the interfering beams (Fig. 4.19).

Fig. 4.19

If the thickness is t, then the path of the beam is increased
by   1. Therefore, the path difference between the beams
becomes 2   1 t. Suppose due to this path difference, n fringes
move across the field of view.
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Then,     2  1 t      n    

or   t      
n

2  1
     

If , n and  are known, thickness t can be calculated.
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ANNA UNIVERSITY SOLVED PROBLEMS

Problem 4.4

By moving one of the mirrors in a Michelson
interferometer through a distance of 0.1474 mm, 500
fringes cross the centre of the field of view. What is the
wavelength of light?                     (A.U. Jan 2015)

Given data:

Number of fringes that cross the centre of 
                     the field of view, n  500 

Distance moved by mirror M1,

d  0.1474 mm  0.1474    10
 3

 m

Solution:

We know that d  
n 
2

   or     
2d
n

Substituting the given values, we have

  
2    0.1474    10

 3

500

  5896    10
 10

 m

     5896 Å

Problem 4.5

In a Michelson interferometer if one of the mirrors is
moved by 0.04 mm, 125 fringes cross the field of view.
Calculate the wavelength of light used.   [A.U. April 2013]
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Given data

Distance moved by mirror M1,

d  0.04 mm  0.04    10
 3

 m

Number of fringes that crossed the field of view,

n    125

Solution:

We know that     
2d
n

Substituting the values, we have

    
2  0.04    10

 3

125

 640    10
 9

 m

     640 nm

Problem 4.6

In a Michelson interferometer, 200 circular fringes
crossed the field of view when the movable mirror is
displaced through a distance 0.0589 mm. Calculate the
wavelength of monochromatic source used. [A.U. May 2013]

Given data:

Number of fringes that crossed the field of view,
                 n  200

Distance moved by the movable mirror,

d  0.0589 mm  0.0589    10
 3

 metre

Solution:

Wavelength of the monochromatic source, 
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    
2d
n

Substituting the given values,

  
2    0.0589    10

 3

200

 0.00589    10
 5

  mm

         589    10
 9

 m

Problem 4.7

When a thin film of glass of refractive index 1.5 is
interposed in the path of one of the interfering beams
of the Michelson interferometer, a shift of 30 fringes of
sodium light is observed to cross the field of view. If
the thickness of the air film is 0.018 mm, calculate the
wavelength of the light used.            (A.U. May 2014)

Given Data:

Refractive index of the thin film,     1.5

Number of fringes crossed the centre of the 
                       field of view, n  30

Thickness of the film, 

              t  0.018 mm  0.018    10
 3

 m

Solution:

From the relation 2     1 t  n , we have

    
2     1 t

n
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Substituting the given values, we have

          
2 1.5    1    0.018    10

 3

30

     6    10
 7

 m

Part - A ‘2’ Marks Question with Answers

 1. State laws of reflection.

(i) Incident ray, normal and reflected ray lie in the same
plane.

(ii) The angle of incidence is equal to the angle of reflection
i.e.  i     r

 2. State laws of refraction.

(i) The incident ray, the refracted ray and the normal at
a point of separation of two media lie in the same
plane.

(ii) For any two medium, the ratio of sine of angle of
incidence to sine of angle of refraction is constant. It
is known as Snell’s law.

Therefore, 
sin i
sin r

    constant

 3. Define refractive index of the medium.

The ratio of velocity of light in vacuum to velocity of light
in medium, is called as refractive index.

ie., Refractive index,     
Velocity of light in vacuum c
Velocity of light in medium v

    
c
v
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 4. What is total internal reflection?

When a ray of light within a denser medium (e.g. water)
approaches the surface at an angle of incidence greater than
the critical angle, the ray of light is reflected back into the same
medium (i.e. water). This phenomenon is known as total internal
reflection.

 5. Define critical angle.

The angle of incident at which the refracted ray just graze
surface between denser and rarer media is called critical angle.

 6. Give conditions of total internal reflection.

(a) The light should incident from denser medium to rarer
medium.

(b) The angle of incidence i in denser medium should be
greater than critical angle c.

 7. Write expression for critical angle.

c    sin
 1

 



 
n2

n1
 




n1 – refractive index of denser medium

n2 – refractive index of rarer medium

 8. Mention a few applications of total internal reflection.

(i) Mirage. During the day time in the desert, it is seen
that sand at some distance from the observer looks like
a pond of water. This illusion is called mirage and it is
caused due to total internal reflection of light. (Fig 4.6)

(ii) Optical fibre. An optical fibre is a transparent fibre
used to conduct light through the phenomenon of total
internal reflection.

 9. What is interference?

This modification or change of intensity of light resulting
from the superposition of two or more waves of light is called
interference.
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10. What is air wedge?

A wedge shaped (V-shaped) air film enclosed in between
two glass plates is called air wedge.

11. What is the expression for the fringe width in air
wedge experiment?

Fringe width     

2

  wavelenth of the light source

  Angle of wedge

12. What is the expression for the thickness of the wire
in air wedge experiment?

d    
l
2

  wavelenth of the light source

l  Distance from the edge of contact

  Fringe width

13. What is Michelson interferometer?

An interferometer is an instrument for measuring small
changes in length. It is based on the principle of interference.

Michelson originally designed an interferometer which is
used to find the wavelength of monochromatic light source and
thickness of thin strips.

14. What are the applications of Michelson interferometer?

It is used to find 

(i) the wavelength of a given light source.

(ii) the refractive index and thickness of a transparent
material

(iii) the resolution of wavelengths

(iv) the standardisation of metre
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Part - B ‘16’ Marks

Anna University Questions:

 1. Explain the formation of interference fringes in an air-wedge
shaped film. How is the thickness of the wire determined
by this method?

 2. Describe Michelson interferometer and explain how the
fringes form in it. How can this be used for measuring the
wavelength of monochromatic light. Derive the formula.

(A.U. May 2013, 2018)

 3. How will you use Michelson’s interferometer to determine the
thickness of a thin transparent film or plate.  (A.U. Jan 2015)

 4. Explain the construction, types of fringes and applications
of Michelson interferometer. (A.U. May 2016)

 5. (i) Describe the construction of a Michelson’s interferometer
and discuss the different types of interference fringes formed
in it.
(ii) How will you use it to determine the wavelength of a
monochromatic source? (A.U. Dec 2012)

Assignment Problem

 1. Monochromatic light emitted by a broad source of
wavelength 580 nm, falls normally on two plates of glass
enclosing a wedge shaped film. The plates touch at one end
and are separated at a point 15 cm from that end by a
wire of 0.05 mm diameter. Find the fringe width.

(Ans.   8.7    10 4 m)

 2. Two pieces of plane glass are placed together with a piece
of paper between the two at one edge. Find the angle in
seconds of the wedge shape air film between the plates, if
on viewing the film normally with monochromatic light of
wavelength 480 nm,   0.0555 cm

(Ans.   432    10 6 radian  129)
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 3. Fringes of equal thickness are observed in a thin glass
wedge of refractive index 1.52. The fringe spacing is 1 mm
and wavelength of light is 589.3 nm. Calculate the angle
of wedge in seconds of arc. (Ans.   40 seconds of arc)

 4. In a Michelson’s interferometer 200 fringes cross the field
of view when the movable mirror is displaced through
0.0589 mm. Calculate the wavelength of monochromatic
light is used. (Ans.   589    10 9 m  589 nm)

 5. The movable mirror of Michelson’s interferometer is moved
through a distance of 0.02603 mm. Find the number of fringes
shifted across the cross-wire of eyepiece of the telescope, if
a wavelength of 520.6 nm is used. (Ans. N  100)

 6. When a thin film of glass of refractive index 1.5 is
interposed in the path of one of the interfering beams of
the Michelson’s interferometer, a shift of 30 fringes of
sodium light is observed across the field of view. If the
thickness of the air film is 0.018 mm, calculate the
wavelength of the light used.

[Hint. 2n  1 t  m ] (Ans. 600    10 9 m)

 7. A transparent film of glass of refractive index 1.5 is
introduced normally in the path of he interfering beams of
Michelson’s interferometer which is illuminated with light
of wavelength 480 nm. This causes 500 dark fringes to
sweep across the field. Determine the thickness of the film.

(Ans. 0.00024 m)
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5. Lasers

Theory of laser – characteristics – Spontaneous and
stimulated emission – Einstein’s coefficients – population
inversion – Nd-YAG laser CO2 laser – Semiconductor laser
– Basic applications of lasers in industry.

Introduction

LASER stands for Light Amplification by Stimulated
Emission of Radiation.

Laser is a device which emits a powerful,
monochromatic, collimated beam of light. The emitted
light waves from laser source are coherent in nature.

Two light waves are said to coherent, when they have the
same phase or constant phase difference.

Laser is an artificial light source which exhibits so
many superior features than the conventional light
source.

Laser light emerges as a narrow beam which can travel
long distance without much loss of intensity and energy.
Actually, the laser amplifies the light waves.

The first laser, ruby laser was invented by
Dr. T.H. Maiman in the year 1960. 

Since then, the development of lasers is extremely rapid
with laser action is being demonstrated in many solids, liquids,
gases and semiconductors.

The discovery of laser made an enormous impact on
scientific and engineering applications particularly in the fields
of communication, metrology, biology, medicine and computers.



5.1 THEORY OF LASER

Interaction of light radiation with materials
Consider an assembly of atoms in a material which is exposed

to light radiation (a stream of photons with energy h).

In general, three different processes occur when light
radiation interacts with a material. They are 

1. Stimulated absorption

2. Spontaneous emission

3. Stimulated emission

 Process - 1  Stimulated absorption

An atom in ground state with energy E1 absorbs an

incident photon of energy h and is excited to higher energy

state with energy E2 (Fig. 5.1).

This process is known as stimulated or induced
absorption.

Fig. 5.1 Stimulated absorption

It occurs only when the incident photon energy h is equal
to the energy difference between excited state and ground state
E2  E1. 

For each such a transition, a certain amount of energy
h is absorbed from the incident light beam. 
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The excited atoms do not stay in the higher energy state
for a longer time. It is the tendency of atoms in excited state
to come to the lower energy state.

Thus, the atoms in excited state quickly return to ground

state by emitting a photon of energy h.

The emission of photons takes place in two ways, namely

(a) spontaneous emission

(b) stimulated emission

5.2 SPONTANEOUS AND STIMULATED EMISSIONS

 Process - 2  Spontaneous emission

The atom in the excited state E2 (higher energy state)

returns to ground state E1 (lower energy state) by emitting a

photon of energy h (E  E2  E1) without the influence of any

external agency (Fig. 5.2).

Fig. 5.2 Spontaneous emission

Such emission of light radiation which is not
triggered by any external influence is called spontaneous
emission.

It is a random and also uncontrollable process.
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 Process - 3  Stimulated emission

Einstein suggested that there must be another mechanism
by which an atom in excited state can return to ground state.

He found that there is an interaction between the atom
in excited state and a photon. During this interaction, the photon
triggers the excited atom to make transition to ground state
E1 (Fig. 5.3).

This transition produces a second photon which is similar
to triggering photon with respect to frequency, phase and
propagation direction.

Such kind of forced emission of photons by the
incident photons is called stimulated emission. It is also
known as induced emission. It plays a key factor for the
working of a laser.

Table 5.1

Differences between
spontaneous and stimulated emission

Spontaneous emission Stimulated emission

1. Emission of light radiation is
spontaneous ie., without any
external agency.

Emission of light radiation is
stimulated (triggered) by
incident photons.

2. Emitted photons travel
randomly in all directions.

Emitted photons travel in
particular direction.

3. Emitted photons cannot be
controlled. They are not
coherant

Emitted photons can be
controlled and they are
coherent.

4. This process is a key factor
for ordinary light emission.

This process is a key factor
for laser operation.
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5.3 EINSTEIN’S A and B COEFFICIENTS (Derivation)

Consider an assembly of atoms with different energy states
at an absolute temperature T.

When light radiation is incident on these atoms, three
different processes take place. They are

(a) stimulated absorption

(b) spontaneous emission

(c) stimulated emission 

Stimulated absorption

The atom in the lower energy state E1 absorbs radiation

and is excited to the higher energy level E2. This process is

called stimulated or induced absorption (Fig. 5.4).

The rate of stimulated absorption is directly proportional
to number of atoms (N1) in energy state E1 and the energy

density (Q) of incident radiation (number of photons incident
per unit area per unit time).

Nab    N1Q

Therefore, the number of stimulated absorption transitions
occuring per unit time is given by

Nab    B12 N1Q ... (1)

where B12 is a proportionality constant.

Fig. 5.3 Stimulated emission
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This process is an upward transition. (Fig 5.4)

The atoms in excited state return to lower energy state
E1 (ground state) by emitting a photon of energy h in two ways.

(a) Spontaneous emission

(b) Stimulated emission

Spontaneous emission

The atoms in the excited state E2 return to lower energy

state E1 by emitting a photon of energy energy h without the

influence of any external agency. This emission of light radiation
is known spontaneous emission. (Fig. 5.4)

The rate of spontaneous emission is directly proportional
to the number of atoms in the excited energy state (N2).

Nsp  N2

Hence, the number of transitions per second is given by

Nsp    A21 N2 ... (2)

Here, A21 is a proportionality constant.

This process is a downward transition. (Fig. 5.4)

Stimulated emission

If the light photon is incident on the atom in the excited
energy state, the photon triggers the excited atom to make
transition to lower energy energy E1 along with emission of

photons. This kind of emission of light radiation is stimulated
emission. (Fig. 5.4)

The rate of transition is directly proportional to the number
of atoms in the upper energy level (N2) and the energy density

of incident radiation (Q).

5.6 Engineering Physics



Nst    N2Q

The number of transitions per second.

Nst    B21N2Q ... (3)

where B21 is a proportionality constant. 

This process is also downward transition.

Fig. 5.4

The proportionality constants A12, B12 and B21 are known

as Einstein’s coefficients A and B.

Under equilibrium condition, the number of downward and
upward transitions per second are equal.

  i.e.,       Nsp    Nst    Nab ... (4)

Substituting from the eqns (1), (2) and (3), in eqn (4), we
have

A21 N2    B21 N2 Q    B12 N1 Q ... (5)

Rearranging the eqn (5), we have

B12 N1 Q    B21 N2 Q    A21 N2

Q B12 N1    B21 N2     A21 N2

Q      
A21 N2

B12 N1  B21 N2
... (6)

Dividing numerator and denominator by B21 N2, we have
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Q      

A21 N2

B21N2

B12 N1

B21 N2
    

B21 N2

B21 N2

Q      
A21

B21
 

1



 
B12

B21
 



 
N1

N2
    1

... (7)

On substituting 
N1

N2
    e

h/kT
 (from Boltzmann distribution

equation) in eqn (7), we have

Q      
A21

B21
 

1



 
B12

B21
 



 e

h / kT
  1

... (8)

Planck’s radiation formula for energy distribution is given by

 Q    
8 h3

c
3  

1

e
h / kT

  1
 ... (9)

Comparing the eqns (8) and (9), we have

B12

B21
    1

B12    B21 ... (10)

and   
A21

B21
    

8 h3

c
3     or       

8 h

3  ... (11)

Since B12    B21, Einstein’s coefficients are termed as A

and B coefficients.
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Conclusion

 The spontaneous emission is more predominant than the
stimulated emission. The laser light is due to stimulated
emission. Therefore, stimulated emission should be
greater than spontaneous emission. To achive this,
population inversion is required.

 The equation (11) gives the relation between spontaneous
emission and stimulated emission coefficients. Since this

ratio is proportional to 3
, the probability of spontaneous

emission increases with the energy difference between
the two states.

Concept of Laser

The photon emitted during stimulated emission has the
same energy, phase, frequency and direction as that of the
incident photon.

If N0 is the number of atoms  in ground state, then, the
number of atoms in the excited energy state E is given by
Maxwell - Boltzmann’s distribution law,

N    N0 e
 E/kT

where k - Boltzmann’s constant.

If N1 and N2 are the number of atoms in the states of

energies E1 and E2, then from Maxwell - Boltzmann’s law,

we have

N1

N2
    

N0 e
 E

1
/kT

N0 e
 E

2
/kT     e

E
2
  E

1
/kT

N1

N2
    e

h/kT

[ ...  E2  E1    h ]

Note: The students are not expected to write the
informations given in the box in the examination.
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Thus, we have two coherent photons. Now, these two
photons incident on two other atoms in the state E2. This results

in induced emission of two more photons.

Now, there are four coherent photons of same energy.
These four photons induce further transitions with four other
atoms in the energy state E2. This gives stimulated emission of

eight coherent photons of same energy (Fig. 5.5).

Fig. 5.5. Amplification due to stimulated emission of
radiation

If the process continues in a chain, ultimately, this gives
rise to increase in intensity of coherent radiation enormously.

Stimulated emission is multiplied through a chain
reaction. This multiplication of photons through
stimulated emission leads to coherent, powerful,
monochromatic, collimated beam of light. This light is
known as laser light.

Thus for laser action, stimulated emission is most
important. It is achieved by population inversion.

5.4 POPULATION INVERSION

It is a situation in which the number of atoms in
higher energy state is more than that in lower energy state.

Usually at thermal equilibrium, the number of atoms N2

(population of atoms) at higher energy state is much less than
the number of atoms (population of atoms) at lower energy state
N1. i.e., N1  N2. (Fig. 5.6)

5.10 Engineering Physics



Fig. 5.6 Normal condition

The state of achieving more number of atoms in
higher energy state than the that of lower energy state
(i.e., N2  N1) is known as population inversion (Fig. 5.7).

Fig. 5.7 After population inversion

Conditions for population inversion

 There must be atleast two energy levels E1 and E2.

 There must be a source to supply the energy to the
medium.

 The atoms must be continuously raised to the excited state.

Active Medium or Material

A medium in which population inversion above
threshold inversion density is achieved is known as active
medium. It is also called active material.

The inversion density which is just enough to
compensate for the losses in the medium is called
thershold inversion density.

Pumping action

The process to achieve population inversion in the
medium is called pumping action.
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It is an essential requirement for producing a laser
beam.

Methods for pumping action

The methods commonly used for pumping action are

(i) Optical pumping (excitation by photons)

(ii) Electrical discharge (excitation by electrons)

(iii) Direct conversion

(iv) Inelastic collision between atoms.

(i) Optical pumping

When the atoms are exposed to light radiation of energy

h, atoms in the lower energy state absorb these radiation and

go to an excited state (Fig. 5.8). This is known as optical
pumping.

Fig. 5.8 Optical pumping

This type of pumping is used in solid state lasers like ruby
and Nd-YAG lasers.

(ii) Electrical discharge (excitation by  electrons)

In this method, the electrons are produced in an electrical
discharge tube. These electrons are accelerated to high velocities
by a strong electrical field. Now, accelerated electrons collide
with the gas atoms.

E2 > E1
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During the collision, the energy of the electrons is
transferred to gas atoms. Thereby atoms gain energy and go to
excited state (Fig. 5.9). This results in population inversion. This
is known as electrical discharge.

Fig. 5.9 Electrical discharge method

The energy transfer is represented by the equation

A      e

      A


      e

where  A   – Gas atom (or molecule) in ground state

  A

 – Same gas atom in excited energy state

  e

 – Electron with more kinetic energy

  e – Same electron with less energy.

This method of pumping is used in gas lasers like argon
and CO2 lasers.

(iii) Direct conversion

In this method, the electrical energy is applied to a direct
band gap semiconductor like GaAs. The recombination of
electrons and holes takes place. During the recombination
process, the electrical energy is directly converted into light
energy (Fig. 5.10).

Fig. 5.10 Direct conversion
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This method of pumping is used in semiconductor diode
laser (e.g. GaAs laser). 

(iv) Inelastic collision between atoms

In this method, a combination of two gases (say A and B)
is used. The excited energy levels of gases of A and B nearly
coincides each other. (Fig. 5.11).

Atom A Atom B

Fig. 5.11 Inelastic atom–atom collision

During the electrical discharge, atoms of gas A are excited

to higher energy states A

 due to collision with the electrons. 

A      e

      A


      e

   e

 – Electron with more kinetic energy

   e – Same electron with less energy.

Now A

 atoms at higher energy state collide with B atoms

in lower energy states. Due to this inelastic collision, B atoms

gain energy and excited to higher state B

. Hence, A atoms lose

energy and return to lower state.

A

      B      A      B



Thus, population inversion in the energy states of B is
achieved. This method is used in He - Ne laser.
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5.5 CHARACTERISTICS OF LASER LIGHT

Laser is basically a light source. Laser light has the
following important characteristics

(i) High directionality

(ii) High intensity

(iii) Highly monochromatic

(iv) Highly coherent

(i) High directionality

An ordinary light source emits the light in all directions.
But, a laser source emits light in only one direction. The
divergence of laser beam is very small (Fig. 5.12). So, laser light
has high directionality. 

Fig. 5.12. High directionality

(ii) High Intensity

Laser source emits light as a narrow beam and its energy
is concentrated in a small region (spot). This concentration of
energy gives a high intensity to the laser light (Fig. 5.13).

(iii) Highly monochromatic

Ordinary light spreads over a wavelength range of the
order of 100 nm.
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But a laser beam has very little spreading of the order of
1 nm. (Fig. 5.14). Thus, laser beam is highly monochromatic.
ie., it emits only one colour of light.

Fig. 5.14 Spectral width of laser

(iv) Highly Coherent

The light emitted from a laser source consists of wave
trains. These wave trains have same frquency, phase and
direction. So, they are coherent (Fig. 5.15).

Laser light has a high degree of coherence. The coherence
of laser emission results in extremely high intensity and hence
more power.

Fig. 5.13. High intensity
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These important properties make the laser light
superior to other conventional light sources such as
flame, Sunlight, ordinary electric bulbs, CFL, etc.

Table 5.2 
Differences between ordinary light and Laser light

S.No. Ordinary Light Laser Light

1. Light emitted is not
monochromatic.

Light emitted is highly
monochromatic.

2. Light emitted does not
have high degree of
coherence

Light emitted has high
degree of coherence.

3. Emitted light spreads in all
directions (not directional)

Emitted light spreads only
in one direction 
(directional)

4. Light is less intense and
bright

Laser light is more intense
and bright.

Basic components of a laser system

A laser system consists of three important components.
They are

Fig. 5.15. Coherence
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(a) Active medium or material 

(b) Pumping source 

(c) Optical resonator

(a) Active medium or material

It is a medium in which atomic transitions take place to
produce laser action. The active medium may be a solid, liquid,
gas, dye or semiconductor.

(b) Pumping system

It is a system used to produce population inversion in the
active medium.

(c) Optical resonator

An optical resonator consists of a pair of reflecting surfaces
in which one is fully reflecting (R1) and the other is partially

reflecting (R2). (Fig. 5.16). The active medium is placed in

between these two reflecting surfaces.

The photons generated due to stimulated emission are
bounced back and forth between these two reflecting surfaces.

This induces more and more stimulated transition leading
to laser action.

Fig. 5.16 Optical resonator

Types of lasers

Based on the type of active medium, the laser systems are
broadly classified into the following types.
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Sl.No. Type of Laser Examples

1. Solid state laser Ruby, Nd:YAG lasers

2. Gas laser He - Ne, CO2, Argon lasers

3. Liquid laser SeOCl2, Europium chelate lasers

4. Dye laser Rhodamine 6G , Coumarin dye
lasers

5. Semiconductor laser GaAs, GaAsP, GaAlAs, InP lasers.

5.6 Nd - YAG LASER

Nd - YAG laser is Neodymium based laser. Nd stands
for Neodymium (rare earth element) and YAG for Yttrium
Aluminium Garnet Y3 Al5O12.

It is a four - level solid state laser.

Principle

The active medium Nd-YAG rod is optically pumped by

krypton flash tube. The neodymium ions Nd
3   are raised to

excited energy levels. During transition from metastable state
to ground state, a laser beam of wavelength 1.064 m is emitted.

Construction

The construction of Nd-YAG laser is shown in fig. 5.17.

A small amount of yttrium ions  Y3  is replaced with

neodymium ions Nd
3   in the active medium of Nd-YAG rod.

The active medium Nd-YAG crystal is cut into a cylindrical
rod. The ends of this rod are highly polished and optically flat
and parallel. The cylindrical rod (laser rod) and a pumping
source (krypton flash tube) are kept in an elliptical reflector
cavity in order to focus most of the light into Nd YAG rod.
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The optical resonator is formed by using two external
reflecting mirrors. One mirror M1 is fully reflecting while the

other mirror M2 is partially reflecting.

Working

The energy level of Nd
 3 

 ion in Nd - YAG laser is shown
in fig 5.18.

 When krypton flash tube is switched on, the neodymium
ions are excited from ground state Eo to upper energy

levels E3 and E4 (pump bands) due to absorption of light

radiation of wavelengths 0.73 m and 0.80 m.

 The neodymium ions from these excited energy levels
make a transition to energy level E2 by non-radiative

transition. E2 is a metastable state.

 Now, the neodymium ions are collected in this energy
level E2. Thus, the population inversion is achieved

between E2 and E1.

 A neodymium ion makes a spontaneous transition from
E2 to E1 by emitting a photon of energy h. This emitted

photon triggers a chain of stimulated photons between
E2 and E1.

Fig. 5.17 Nd - YAG Laser
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Fig. 5.18 Energy level of Nd 3  in Nd - YAG laser

 The photons thus generated travel back and forth
between two mirrors and grow in strength due to induced
emission. Hence, the photon number multiplies more
rapidly.

 After enough strength is attained, an intense laser light
of wavelength 1.06 m 10600 Å is emitted and flow
through the partially reflecting mirror M2. This

corresponds to transition of ions from E2 to E1.

Characteristics

 Type: It is a four-level solid state laser.
 E1, E2, E3 and E4

 Active medium: Nd-YAG rod.

 Pumping method: Optical pumping.

 Pumping source: Krypton flash tube.

 Optical resonator: Two ends of Nd-YAG rod polished
with silver (one end is fully silvered and other is
partially silvered).

 Power output: 20 kW.
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 Nature of output: Pulsed or continuous beam of light.

 Wavelength of output: 1.06 m (infra-red).

Advantages

 This laser has high energy output.

 It is much easier to achieve population inversion.

Disadvantages

The electron energy level structure of Nd
3 

 in Nd - YAG
is complicated.

Applications

 Nd-YAG laser is used in range finders and illuminators.

 It is widely used in resistor trimming, scribing,
micro-machining operations such as welding, drilling etc.

 It finds many medical applications such as endoscopy,
urology, neurosurgery.

Molecular Gas Laser

In a molecular gas laser, laser action takes place by
transitions between vibrational and rotational energy levels of
gas molecules. 

5.7 CARBON DIOXIDE CO2 LASER

The first molecular CO2 gas laser was developed by Indian

born American Scientist Prof. C.K.N. Patel.

It is a four-level molecular gas laser. In this laser,
transition takes place between vibrational energy states of
carbon dioxide molecules. It is a very efficient laser.

Energy states of CO2 molecules

A carbon dioxide molecule has a carbon atom at the centre
with two oxygen atoms attached, one at each sides. Such a
molecule vibrates in three independent modes. They are
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(a) Symmetric stretching mode

(b) Bending mode

(c) Asymmetric stretching mode

(a) Symmetric stretching

In this mode of vibration, carbon atom is at rest. Both
oxygen atoms vibrate such that they are moving away or
approaching the fixed carbon simultaneously along the axis of
the molecule (Fig. 5.19).

Fig. 5.19 Symmetric stretching mode

(b) Bending

In this mode of vibration, both oxygen atoms and carbon
atom vibrate perpendicular to molecular axis (Fig. 5.20).

Fig 5.20 Bending mode

(c) Asymmetric stretching

In this mode of vibration, both oxygen atoms and carbon
atom vibrate asymmetrically, i.e., oxygen atoms move in one
direction while carbon atom moves in the opposite direction (Fig.
5.21).

Fig. 5.21 Asymmetric stretching mode
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Principle

The laser transition takes place between the
vibrational energy states of CO2 molecules.

Construction

It consists of a quartz discharge tube 5 m long and 2.5 cm
in diameter (Fig. 5.22). This discharge tube is filled with the
gas mixture of CO2, nitrogen and helium with suitable partial

pressures.

The terminals of the discharge tube are connected to D.C.
power supply. The ends of this tube are fitted with NaCl
Brewster windows so that the laser light generated is plane
polarised.

The optical resonator is formed with two concave mirrors
one fully reflecting M1 with the other partially reflecting M2.

Working

The energy level diagram of nitrogen and carbon dioxide
molecules is shown in fig 5.23.

Fig. 5.22 CO2 laser
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When the electrical discharge occurs in gas mixture, the
electrons collide with nitrogen molecules and they are raised to
excited energy states.

This process is represented by the equation

N2    e

    N2


    e

N2  Nitrogen molecule in ground state

e

  Electron with high energy

N2

  Nitrogen molecule in excited state

e  Same electron with lesser energy

Since excited energy level of nitrogen is very close to E5

energy level of CO2 molecules, CO2 molecules are excited by

energy transfer and population inversion is achieved.

Fig. 5.23. Energy levels of nitrogen and carbon dioxide
molecules and transitions between these energy levels
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This process is represented by the equation

N2

    CO2    CO2


    N2

    N2

   Nitrogen molecule in excited state

   CO2   Carbon dioxide molecule in ground state

   CO2

   Carbon dioxide molecule in excited state

    N2   Nitrogen molecule in ground state

Any of the spontaneously emitted photon triggers laser
action in the tube.

There are two possible types of laser transition.

(i) Transition E5  E4

This transition produces a laser beam of wavelength
10.6 m.

(ii) Transition E5  E3

This transition produces a laser beam of wavelength

9.6 m.

Normally 10.6 m transition is more intense than 9.6

m transition. The power output from this laser is 10 kW.

Note: The helium gas is used to conduct heat generated in the
central region of the discharge tube to the walls of the
discharge tube.
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Characteristics

 Type : Molecular gas and four level laser.

 Active medium : A gas mixture of CO2, N2 and helium.

 Pumping method : Electrical discharge method.

 Optical resonator : It is formed with two concave
                   mirrors.

 Power output : 10 kW.

 Nature of output : Continuous wave or pulsed wave.

 Wavelength of output : 9.6 m and 10.6 m 
               (96000 Å and 106000 Å infra red).

Advantages

 The construction of CO2 laser is simple.

 The output from this laser is continuous.

 It has high efficiency.

 It has very high output power.

 The output power can be increased by increasing the
length of discharge tube.

Disadvantages

 The contamination of oxygen by carbon monoxide has
some effect on laser action.

 The operating temperature plays an important role in
determining the output power of the laser.

 The corrosion may occur at the surfaces of the discharge
tube.

 Due to high power laser light, accidental exposure may
damage eyes, since it is invisible (infra red region) to our
eyes.
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Applications

 High-power CO2 laser finds application in material

processing, welding, drilling, cutting, soldering, etc.

 The low atmospheric attenuation (10.6 m) makes CO2

laser suitable for open air communication.

 It is used in remote sensing.

 It is used in the treatment of liver and lung diseases.

 It is mostly used in neurosurgery and general surgery.

 It is used to perform microsurgery and bloodless
operations.

Solid-state Diode lasers (Semiconductor diode laser)

Laser light can also be produced in semiconductors. The
most compact of all lasers is semiconductor diode laser.
It is also called injection laser.

Types of semiconductor diode lasers

Broadly there are two types of semiconductor diode lasers.
They are

1. Homojunction semiconductor diode lasers

2. Heterojunction semiconductor diode lasers.

Homojunction Semiconductor Laser

A diode laser which makes use of the same type of
semiconductor material on both sides of the junction is known
as a homojunction diode laser.

Example: Gallium Arsenide (GaAs) laser
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Heterojunction Semiconductor Laser

A diode laser which makes use of different semiconductor
materials on the two sides of the junction is known as
hetrojunction diode laser. 

Example: A junction laser having GaAs on one side and
GaAlAs on the other side.

Direct band gap semiconductor

   In this type of semiconductor during the recombination of
hole and electron, a photon of light is released.

Example: Ga As

   It is used in the fabrication of light emitting diodes (LEDs)
and lasers. 

Indirect band gap semiconductor.

   During the recombination of hole and electron, heat energy
is released.

Example: Germanium and silicon.

5.8 SEMICONDUCTOR LASER (Homo - junction)

Definition

It is a specially fabricated p - n junction diode.

This diode emits laser light when it is forward - biased.

Principle

When the p-n junction diode is forward-biased (Fig. 5.24(a)),
the electrons from n-region and holes from p-region cross the
junction and recombine with each other.

During the recombination process, the light radiation
(photons) is released from a certain specified direct band gap
semiconductors like Ga-As. This light radiation is known as
recombination radiation (Fig. 5.24(b)).
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The photon emitted during recombination stimulates other
electrons and holes to recombine. As a result, stimulated
emission takes place and laser light is produced.

(a)     (b)   
Fig. 5.24 Semiconductor diode laser principle

Construction

The construction of homo-junction semiconductor laser is
shown in fig 5.25. The active medium is a p - n junction diode
made from a single crystal of gallium arsenide. This crystal is
cut in the form of a platelet having a thickness of 0.5 mm.

This platelet consists of two regions n type and ptype.

The metal electrodes are connected to both upper (p-region)
and lower (n-region) surfaces of the semiconductor diode. The
forward bias voltage is applied through metal electrodes.

Now the photon emission is stimulated in a very thin layer
of pn junction.

The end faces of the pn junction are well polished and
parallel to each other. They act as an optical resonator through
which the emitted light comes out.
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Working

The energy level diagram of homojunction semiconductor
laser is shown in fig 5.26.

When the pn junction is forward-biased, the electrons and
holes are injected into junction region.

The region around junction contains a large number of
electrons in the conduction band and holes in the valance band.

Now the electrons and holes recombine with each other.
During recombination, light photons are produced.

When the forward - biased voltage is increased, more light
photons are emitted. These photons trigger a chain of stimulated
recombinations resulting in the emission of more light photons
in phase.

These photons moving at the plane of the junction travel
back and forth by reflection between two polished surfaces of
the junction. Thus, the light photons grow in strength

Fig. 5.25 Semiconductor diode laser (Homojunction)
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Fig. 5.26 Energy level diagram of a semiconductor laser

After gaining enough strength, laser beam of wavelength
8400 Å is emitted from the junction.

The wavelength of laser light is given by 

Eg    h    
hc


    
hc
Eg




 . . .         

c


 


where Eg  band gap energy in joule

Characteristics

 Type : Solid state semiconductor laser.

 Active medium : A pn junction diode made from a 
                 single crystal of gallium arsenide.

 Pumping method : Direct conversion method.

 Power output : a few mW.

 Nature of output : Continuous wave or pulsed output.

 Wavelength of output : 8300 Å to 8500 Å.

Advantages

 This laser is very small in size and compact.

 It has high efficiency.

 The laser output can be easily increased by increasing
the junction current.

P               N
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 It is operated with less power than ruby and CO2 lasers.

 It requires very little additional equipment.

 It emits a continuous wave output or pulsed output.

Disadvantages

 Laser output beam has large divergence.

 The purity and monochromacity are poor.

 It has poor coherence and stability.

Application

 This laser is widely used in fibre optic communication.

 It is used in laser printers and CD players.

 It is used to heal the wounds by infrared radiation.

 It is also used as a pain killer.

Semiconductor Laser (Hetero Junction) 

A diode laser with a pn junction made up of different
semiconductor materials in two regions ie., n - type and
p - type is known as heterojunction semiconductor laser.

Principle

When the pn junction diode is forward biased, the electrons
from n-region and the holes from p-region recombine with each
other at the junction. During recombination process, light photon
is released.

Example

Diode laser having a junction of GaAs and GaAlAs

Construction

Generally, this laser consists of five layers as shown in
fig. 5.27. A layer of GaAs p-type (3rd layer) acts as active region.
This layer is kept between two layers having wider band gap
Ga Al As - p - type (2nd layer) and Ga Al As n - type (4th layer).
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The bias voltage is applied through the metal electrodes fixed
on top and bottom layers of hetero junction semiconductor laser.

The end faces of the junctions of 3
rd

 and 4
th

 layers are
well polished and parallel to each other. They act as an optical
resonator.

Fig. 5.27 Heterojunction Semiconductor laser

Table 5.4
Comparison table of Different Types of Lasers

S.
No.

Characteristics Nd-YAG laser CO2 laser Semiconductor 
laser

1. Type Solid state laser Molecular gas
laser

Semiconductor
laser

2. Active medium Yitrium
Aluminium
Garnet
(Y3 Al5 O12)

Gas mixture of
CO2, N2 and He

pn junction

3. Pumping
method

Optical pumping Electrical
discharge method

Direct
conversion

4. Optical
resonator

Ends of the
polished rods in
silver

Metallic concave
mirror of gold or
silicon coated
with aluminium

End faces of the
junction diode
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S.
No.

Characteristics Nd-YAG laser CO2 laser Semiconductor 
laser

5. Power output 2  104 W 10 kW 1 mW

6. Nature of
output

Pulsed Continuous or
pulsed

Pulsed or
continuous wave
form

7. Wavelength 1.06 m 9.6 m and 10.6

m

8300 - 8500 Å

5.9 BASIC APPLICATIONS OF LASER IN INDUSTRY

Material processing

Material processing involves cutting, welding, drilling and
surface treatment.

When the material is exposed to laser light, then light
energy is converted into heat energy. Due to heating effect, the
material is heated then melted and vapourised.

Laser instrumentation for material processing

A laser setup used for material process, such as surface
treatment, welding, cutting and drilling is shown in fig 5.28.

Fig. 5.28 Laser instrumentation for material processing
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The light output from the laser source is incident on a
plane mirror. After reflection, the laser light passes through a
shutter to control its intensity.

There is a focusing lens assembly to get a fine beam.
Further, there are shielding gas jet and powder feeder.

The shielding gas is used (i) to remove the molten material
and help in vaporisation (ii) to provide cooling effect.

For different materials, different gases are used.

The powder feeder is used to spray the metal powder on
the substrate for alloying or cladding.

The different types of laser heat treatment processes are
shown in fig. 5.29.

Laser Annealing

In annealing, there is no separate heat affected zone and
melting takes place over few picometer thickness.

Laser hardening

In hardening process, there is a heat affected zone in the
form of hemisphere.

Laser surface alloying

Laser alloying involves the controlled melting of a work
piece surface to a desired depth using laser. The powdered
alloying element is added simultaneously with heating in small
time intervals (0.1 to 10 seconds).

Laser cladding

In this process, a laser beam melts a very thin layer of
work piece. This thin layer mixes with the liquid cladding alloy
and form metallurgical bonding between the cladding and
subtrate.
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Advantages

 Heat treatment of metals using laser radiation is very
fast.

 Compared to other methods of heating, lasers are able
to localise thermal treatment even to spots inaccessible
by other methods.

Laser welding

Welding is joining of two or more metal pieces into
a single unit.

For welding of two metal plates, the metal plates are held
in contact at their edges and laser beam is allowed to move
along the line of contact of the plates.

The laser beam heats the edges of the two plates to their
melting points. Metals fuse together where they are in contact.
(Fig. 5.30)

Fig. 5.29 Laser Heat Treatment Processes
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Fig. 5.30 Laser Welding

Advantages

 It is a contact - less process and hence, there is no
possibility of impurities into joint.

 The heat affected zone is relatively small because of the
small spot size of laser beam.

 Laser welding can be done even with very small pieces
without any difficultly.

 The welding is done at very high rates. (faster)

 Any dissimilar metals can be welded.

Laser cutting (or) Drilling

The principle of laser cutting is the vaporization of
the material at point of focus of the laser beam.

The laser cutting setup is shown in fig. 5.31. When laser
beam is incident on the material, due to heating effect the
material is melted and vapourised at the point of incidence. The
vaporized material is removed with the help of a gas jet.

The gas jet is also used to cool the adjacent edges of the
cut metal. 

5.38 Engineering Physics



Advantages

 Laser cutting can be done at room temperature and
pressure without preheating and vacuum condition.

 The microstructure of surrounding layers are not affected
since heat affected zone is very narrow.

 Higher cutting speed can be achieved.

 The laser cutting has improved edge quality. The surface
quality is maintained in the original condition since there
is no bead formation due to scattering of molten material.

Soldering

It is a process in which two or more metals are joined
together by melting and putting a filler metal (solder) into
the joint, the filler metal having a lower melting point than
the adjoining metal.

 Laser soldering, the newest soldering method.

Laser Soldering

It is a process in which selectively heats solder by
means of laser irradiation to form a bond between two
parts.

Fig. 5.31 Laser Cutting or Drilling
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Principle

Laser soldering is a technique where a precisely focused
laser beam provides controlled heating of the solder alloy leading
to a fast and non-destructive of an electrical joint.

The process uses a controlled laser beam to transfer energy
to a soldering location. The absorbed energy heats the solder until
it reaches its melting temperature leading to the soldering of the
contact and this completely eliminates any mechanical contact.

Working

Laser soldering is a technique where a 30 - 50 W laser is
used to melt and solder an electrical connection joint. Diode laser
systems based on semiconductor junctions are used for this purpose.

The wavelengths are typically 808 nm through 980 nm.
The beam is delivered via an optical fiber to the workpiece, with
fiber diameters 800  m and smaller.

Since the beam out of the end of the fiber diverges rapidly,
lenses are used to create a suitable spot size on the workpiece at
a suitable working distance. A wire feeder is used to supply solder.

Both lead - tin and silver - tin material can be soldered.

Laser Soldering Process
1. The laser illuminates the soldering point. (Fig. 5.32)

2. The illuminated area emits heat (surface heat emission).

3. The heat transfers into the surrounding area and is
                raised to the melting temperature.

4. Solder is supplied.

Fig. 5.32 Laser soldering
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Types of lasers used in soldering 

Three main types of lasers are found suitable for soldering
process. They are 

 Carbon dioxide laser (gas laser)

 Nd:YAG laser (a solid state laser) 

 Semiconductor Laser (diode laser).

Advantages of laser soldering:

In contrast to other conventional soldering techniques, laser
soldering offers a lot of advantages. They include 

 Localized / selective heat input and Ideal for heat
sensitive components.

 High precision – spot sizes in the order of 100s of microns

 Fast control of heat input (laser on / off)

 It reduces intermetallic compound formation and produce
high quality joint. 

 It also has low maintenance 

Applications

The primary application for laser soldering is laser
soldering of circuit boards in the electronics industry.

Surface Defect Detection

High intensity laser beam is used to study the surface
defects in materials such as ICs, aircrafts, etc. The laser beam
reflected from the surface of the material under investigation.
The laser light is also directly obtained from the source as a
reference are used to produce interference between the two laser
beams. Information about the material is obtained by forming
the interference pattern.

Fig. 5.33 shows the experimental arrangement to study
surface defects in materials.
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A high intensity laser beam from the source S falls on the
converging lens L1. The lens L1 focuses the laser beam on the

object O. The optical diffraction pattern of the image is focused
on the photographic plate  P  or photodiode  D . 

Fig. 5.33 Surface Defect Detection

The photodiode senses the light and converts the light
energy into electrical signals. Using the signal analyser along
with the necessary software, the image of the defect is obtained.
Thus surface defects in materials can be studied.

Types of laser for material processing
In most of the material processing applications, the

following lasers are used

(a) High power CO2 - laser with continuous waves or

pulsed waves.

(b) Nd - YAG laser.

Laser Application in Holography
One of the most important applications of the laser

in the production of three dimensional images of an
object in a process called holography.

In conventional photography a negative is made first and using
it a positive print is produced later. The positive print is only a
two dimensional record of light intensity received from a three
dimensional object.

It contains information about the square of the amplitude
of the light wave that produce the image but information about
the phase of the light wave is not recorded and is lost.

In 1947 Dennis Gabor the English physicist developed
a new technique of photographing objects.
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He called this technique wavefront construction.

According to this technique both the phase and intensity
components of the wave are recorded and when viewed the
photograph shows a three dimensional image of the object. This
technique is named holography.

Fig. 5.34 explains the principle of holography. A weak but
broad beam of laser light is split into two beams namely a
reference beam and object beam. The reference beam is
allowed to reach the photographic plate directly while the object
beam illuminates the object.

The part of the light scattered by the object travels towards
the photographic plate and interferes with the reference beam
and produces an interference pattern on the photo graphic plate.

The photographic plate carrying the interference pattern is
called a hologram. Holos means complete in Greek and
“gramma” means writing. Thus a hologram means complete
recording. Like any ordinary photographic plate, a hologram is
developed, fixed and stored.

Applications of Laser in Communication

1. Since laser beam has enormous bandwidth and it
permits 10 million telephone conversation or 8000 TV
programmes simultaneously.

Fig. 5.34 Generation of a hologram

Note: Gabor was awarded in 1971 the Nobel prize in physics
for this invention.
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2. Narrow angular spread and directionality of laser beam
makes it a very useful tool for communications with
satellites and rockets to the moon and other planes i.e.,
inter planetary communications.

3. Since the laser light is not absorbed by water, it is
possible to establish underwater communication
between sub-marines.

4. Fibre Guides: The optical fibers are increasingly used
in communications, where these are termed as fibre
guide. (Fig. 5.35)

Here laser light is used as a source.

Applications of Laser in Engineering

Since large quantity of coherent energy can be concentrated
at a point with laser it finds applications in defence.

1. Death Ray: Since laser beam is highly energetic, a
powerful laser beam is used to destroy very big objects
like aircrafts, missiles etc. in a few seconds by directing
the laser beam on the objects. For this reason it is
called as death ray of war weapon. (Fig. 5.36)

2. Laser Gun: In a laser gun a highly convergent beam
is focussed on the enemy at a short range, which can

Fig. 5.35 Laser communication system block diagram

Fig. 5.36 Laser as a Death Ray
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vapourise the governing part of the weapon system or
sensitive part of enemy body.

3. LIDAR: Laser beam can exactly determine the size,
form, distance, velocity and direction of any distant
objects (enemy plane, miscible, etc.) by receiving the
reflected laser beam on a cathode screen as in RADARS
(Radio Detection And Ranging).

In the case of RADAR, radio waves are used. But it
laser is used, it is called LIDAR (Laser RADAR) i.e.,
Light (laser) Detection And Ranging (Fig. 5.37).

4. Laser can be used for automatically guiding rocket and
satellites.

5. Laser can be used for forecasting earthquakes.

6. Computer print outs are done with laser printers.

Chemical applications

Laser can be used to

 accelerate some chemical reactions.

 create new chemical compounds by destroying atomic
bonds between molecule.

Biological applications

 drill minute holes in cell walls without damaging the
cell itself.

 carry out minute microsurgical operations within cells.

Fig. 5.37 LIDAR
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ANNA UNIVERSITY SOLVED PROBLEMS

Problem 5.1

Calculate the relative population of sodium atoms in
sodium lamp in the first excited state and the ground
state at a temperature of 250C. [   590 nm]
                                    [ A.U. Jan 2018]

Given data:

Planck’s constant h    6.625    10
 34

 Js

Velocity of light c    3  10
8
 ms

 1

Boltzmann’s constant k    1.38  10
 23

 JK
  1

Temperature T  250C    250  273    523 K

Wavelength     590 nm    590    10
 9

 m

Solution:

Let N2 be the population of the first excited state and

N1 be the population of the ground state.

We know that 

N2

N1
      

e
 E

2
  kT

e
 E

1
  kT      e

 E
2
  E

1
  kT

    e
 h  kT

    e
 hc  kT

Substituting the given values,

N2

N1
      e 







 

   6.625  10
 34

    3    10
8

5.9    10
 7

    1.38    10
 23

   523
 







  e
[ 46.674]

    5.37  10
 21
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N2

N1
    5.367    10

 21

The ratio between the atoms in the first excited state and

the ground state is 5.367    10
 21

.

Problem 5.2

Laser action occurs by transition from an excited state
E2 to the ground state E1    0. If the transition

produces a light of wavelength 6930 Å, find the energy
level of the excited state.              (A.U. Dec 2017)

Given data

    6930 Å    6930    10
 10

 m

h    6.625    10
 34

 Js

c    3    10
8
 ms

 1

E1    0.    ground state

Solution

E2    E1    h    
hc


.

Substituting the given values, we have

    
6.625    10

 34
    3    10

8

6930    10
 10

Energy of the excited state 

E2    2.868    10
 19

 J    1.79 eV.
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Problem 5.3

Find the relative population of the two states in a Nd -
YAG laser that produces a light beam of wavelength
6943 Å at 300 K.                        (A.U. May 2019)

Given data

  6943 Å    6943    10
 10

 m

T  300 K

Solution

The population ratio is given by

N2

N1
    exp [    E2    E1/kT ]

E2    E1    h    
hc


  

  
6.625    10

 34
    3    10

8

6943    10
 10

 m

  2.863    10
 19

 J

N2

N1
    exp 




 

    2.863    10
 19

1.38    10
 23

    300
 



    exp  69.2

N2

N1
    8    10

 31
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Problem 5.4

In a laser action the energy of the stimulated photon is

39.62    10
 20

 J. What is the wavelength of the stimulated
photon?                                  (A.U. Jan 2016)

Given data

Energy of the stimulated photon E    39.62    10
  20

 J

Planck’s constant h    6.625    10
 34

 Js

Solution

We know that E    h 

    
E
h

      
39.62    10

 20

6.625    10
 34    5.98    10

14

We know that c    

    
c


    
3    10

8

5.98    10
14

    0.50    10
 6

    5    10
 7

 m
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Problem 5.5

Determine the wavelength of radiation given out by a
laser with an energy of 3 eV, given that

h    6.63    10 34
 Js and c  3    10

8
 ms

 1
.    (A.U. May 2020)

Given data

Energy  E     3 eV    3    1.6    10
 19

 J

h    6.63    10
 34

 Js

c    3    10
8
 ms

 1
 

Solution

We know that E  h and 

c      or     
c


    E      h    
hc


    
hc
E

Substituting the given values, we have

    
hc
E

    
6.63    10

 34
    3    10

8

3    1.6    10
 19

    4.14    10
 7

 m

    414    10
 9

 m    414 nm

    414 nm
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Problem 5.6

Calculate the wavelength of light emission from GaAs
whose band gap is 1.44 eV               (A.U. Jan. 2018)

Given data

Band gap Eg    1.44 eV    1.44    1.6    10
 19

 J

h    6.625    10
 34

c    3    10
8
 ms

 1
 

Solution

Wavelength     
hc
Eg

Substituting given values,

    
6.625    10

 34
    3    10

8

1.44    1.6    10
 19

    8.626      10
 7

 m

  8626    10
 10

 m 

Wavelength      8626 Å 
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ANNA UNIVERSITY PART - A ‘2’ Marks Q & A

 1. What is stimulated emission? (A.U. Jan. 2017)

The process of induced emissions of photons caused by the
incident photons is called stimulated emission. This process is
a key factor for the operation of a laser.

 2. What are the conditions necessary for stimulated
emission of radiation? (A.U. April 2018)

(i) The atoms must be in the excited state.

(ii) The photon of light radiation must strike the atoms in
the excited state.

 3. Write the differences between spontaneous emission
and stimulated emission (A.U. Dec. 2020)

Spontaneous emission Stimulated emission

1. Emission of light radiation is
not triggered by external
influence

Induced emissions of light
radiations caused by incident
photons

2. Emitted photon travels in
random direction

Emitted photon travels in
particular direction

3. Emitted photons cannot be
controlled

Emitted photons can be
controlled.

4. This process is a key factor
for ordinary light.

This process is a key factor
for laser operation

 4. What is meant by population inversion and how is it
achieved? (A.U. Jan. 2019)

The establishment of a situation in which the number of
atoms in higher energy level is more than that in lower energy
level is called population inversion. It is an essential requirement
for producing a laser beam. It is achieved by pumping action.
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 5. Explain the need for population inversion in the
production of laser? (A.U. Dec. 2020)

Stimulated emission process is a key factor for the
production of laser. For stimulated emission, more number of
atoms must be in the excited state.

Establishing a situation in which number of atoms in
higher energy state is more than that in lower energy state is
called population inversion. Hence, population inversion is
needed in the production of laser.

 6. What is pumping action? (A.U. May 2019)

The process of creating a population inversion in the atomic
states is known as pumping action. It is essential requirement
for producing a laser beam.

 7. What are the methods commonly used for pumping
action? (A.U. Dec 2018)

(i) Optical pumping (excitation by photons)

(ii) Electrical discharge method (excitation by electrons)

(iii) Direct conversion

(iv) Inelastic collision between atoms.

 8. What is optical pumping? (A.U. Jan 2019)

When the atoms are exposed to light radiations (of energy
h), atoms in the lower energy state absorb these light radiations
and go to excited state. This method of pumping is called optical
pumping.

It is used in solid state lasers like ruby laser and Nd -
YAG laser.

 9. What is meant by active material in laser?
(A.U. Jan 2021)

A material in which population inversion can be achieved
is called as active material.
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10. What are the characteristics of the laser? (or) What
are the properties of the laser beam?

(A.U. Jan 2018, May 2019, Jan 2020)

 Laser light is highly coherent

 It is highly powerful and intense.

 It is directional and monochromatic.

 It is capable of travelling over long distance without any
energy loss.

 It is extremely bright.

 Laser beam is not easily absorbed by the water.

11. Under which conditions a set of laser beams is said
to be coherent? (A.U. Dec. 2019)

A set of laser beams is said to be coherent if they have
same frequency and constant phase difference among them with
respect to space and time.

12. Compare the characteristics of laser with ordinary
light. (A.U. Jan. 2018, May 2019, Jan 2020)

Ordinary light Source Laser Source

1. Light emitted is not
monochromatic.

Light emitted is highly
monochromatic.

2. Light emitted does not have
high degree of coherence

It has high degree of
coherence.

3. Emits light in all directions
(not directional)

Emits light only in one
direction (directional)

4. Light is less intense and less
bright

Laser light is much intense
and bright.

13. What is optical resonant cavity? (A.U. Jan. 2021)

It is a pair of mirrors with active material in between
them. One of the mirrors of the resonant cavity is made partially
reflecting to serve as an output element passing the light (laser)
out of the resonator. The other mirror is a highly reflecting one.
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14. What is the function of resonator cavity in laser?
(A.U. May 2019)

Resonator cavity is made of a pair of fully reflecting plate
and a partially reflecting plate. Both of them are optically plane
and accurately parallel. The active medium is placed between
these mirrors. 

The photons emitted along the axial direction during
stimulated emission travel back and forth across the active
medium and grow in strength. After enough strength is attained,
laser beam emerges out from the partial reflector.

15. What is the principle of laser action? (A.U. May 2019)

Stimulated emission process is a key factor for the laser
action. This can be multiplied through chain reaction. This
multiplication of photons through stimulated emission leads to
coherent, powerful, monochromatic, collimated beam of
light-emission.

16. What are the three important components of any
laser device? (A.U. Jan 2016)

(i) Active medium

(ii) Pumping source

(iii) Optical resonator

17. What are the conditions required for laser action?
(A.U. Dec 2019)

 Population inversion should be achieved.

 Stimulated emission should be predominant over
spontaneous emission.

18. What are Einstein’s coefficients? (A.U. Jan 2019)

In Einstein’s theory of spontaneous and stimulated
emission, if N1 and N2 are the number of atoms in the lower

energy state E1 and higher energy state E2, then the number

of stimulated absorption transition is given by
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Nab    B12 N1 Q

The number of spontaneous emission transition is given by

Nsp    A21 N2

The number of stimulated emission transition is given by

Nst    B21 N2 Q

Also B12    B21  and  
A21

B21
    

8h

3

where Q is the energy density of the incident radiation.
A21, B12 and B21 in the above three equations are called

Einstein’s Coefficients.

19. How lasers are classified? or Mention the various
types of lasers. (A.U. May 2019)

(i) Solid state lasers

(ii) Gas lasers

(iii) Liquid lasers

(iv) Dye lasers

(v) Semiconductor lasers.

20. What is Nd - YAG laser? (A.U. May 2020)

Nd - YAG is a neodymium based laser.

Nd    Neodymium (rare earth element Nd
 3 

).

YAG      Yittrium Aluminium Garnet (Y3 Al5 O12).

It is a four level solid state laser.
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21. What are the applications of Nd-YAG laser ?
(A.U. Jan. 2017)

(i) It finds many applications in range finders and
illuminators

(ii) It finds applications in resistor trimming, scribing,
micro machining operations such as welding, drilling
etc.

(iii) It finds applications in medical field like endoscopy,
urology, neurosurgery, ENT, gynaecology, dermatology,
dental surgery and general surgery.

22. What is CO2 laser ? (A.U. Jan. 2016)

It is a four level molecular gas laser. The active medium
of this laser is CO2 gas. Laser transition takes place between

the vibrational energy states of the CO2 molecules. It is a very

useful and efficient laser. 

23. What is the active medium in CO2 laser ?

(A.U. May 2016)

A gas mixture consisting of CO2, nitrogen and helium is

the active medium.

24. What are the applications of CO2 laser ?

(A.U. April 2017)

(i) High power CO2 lasers find applications in materials

processing, welding, drilling, cutting, soldering etc.,
because of their very high output power.

(ii) It is used in laser remote sensing.

(iii) It has found wide applications in neurosurgery and
general surgery.

(iv) It is used to perform micro-surgery and bloodless
operations.
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25. What is semiconductor laser ? (A.U. Jan. 2019)

Semiconductor diode laser is a specially fabricated pn
junction device. It emits laser light when it is forward biased.

26. What is homo-junction laser ? (A.U Jan. 2020)

Homo-junction means that a p-n junction is formed from
a single crystalline material.

Example: Gallium Arsenide (GaAs).

27. What are the drawbacks of homojunction laser
diodes ? (A.U. April 2019)

 The output beam has large divergence.

 Coherence and stability are poor.

 Optical confinement is very poor.

28. What are the applications of semiconductor laser ?
(A.U. May 2018)

(i) It is mostly used in optical fiber communications.

(ii) It is used to heal the wounds by means of infrared
radiation.

(iii) It is used in computer laser printers and for writing
and reading CD’s.

29. What is laser material processing ? (A.U. May 2019)

Material processing involves cutting, welding, drilling and
surface treatment using laser beams.

When the material is exposed to laser light, then light
energy is converted into heat energy. Due to heating effect, the
material is heated then melted and vapourised. Also a fine beam
of laser acts like a machine tool to do cutting, welding etc.

30. Mention the applications of lasers in industry.
(A.U. Jan. 2015, May 2016)

Nd : YAG and CO2 lasers are very much used in industries

for the following processes :
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(i) Welding

(ii) Cutting

(iii) Drilling

(iv) Heat treatment of metallic and non metallic (plastic,
ceramic, glass) materials.

(v) Non - Destructive Testing (NDT): Testing the materials
for flaws or defects without damaging them.

31. What is laser welding ? (A.U. Dec 2018)

In this technique, a focussed laser beam is incident on spot
where the two parts are to be welded. The spot-contact points
get welded due to heating affect of fine laser beams.

32. What are the advantages of laser welding ?
(A.U May 2020)

(i) Laser welding is contactless, therefore there is no
possibility of introduction of harmful impurities.

(ii) Laser welding can be performed faster in atmospheric
pressure unlike electron beam welding where vacuum
is a must.

(iii) Dissimilar materials can be welded

33. What is heat treatment of laser ? (A.U. Jan 2019)

A powerful laser beam is incident on a metal surface. That
portion at which laser light is incident gets heated. As the beam
is moved away to other areas, the heated spot cools down
rapidly. This procedure is used for heat treatment of metal
surfaces which enhances the strength of the metal.

34.  What are advantages laser cutting ? (A.U. Jan 2018)

(i) Laser cutting is used for wide range of processed
materials (paper, cloth, plywood, glass, ceramics, sheet
metal);

(ii) This laser cutting introduces minimum mechanical
distortion and minimum thermal damage in the
material being cut

(iii) This cutting process has high chemical purity.
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ADDITIONAL Q&A

 1. What is laser?

Laser stands for Light Amplification by Stimulated
Emission of Radiation.

Laser is a light source. It produces a powerful,
monochromatic, collimated beam of light in which the light
waves are coherent.

 2. What is stimulated absorption?

An atom in the ground state with energy E1 absorbs a

photon of energy h and go to an excited state (higher state)
with energy E2 provided that the photon energy h is equal to

the energy difference E2  E1. This process is called stimulated

absorption or simply absorption.

 3. What is spontaneous emission?

The atom in the excited state E2 (higher energy state)

returns to the ground state E1 (lower energy state) by emitting

a photon of energy h without the action of an external agency.
Such an emission of radiation which is not triggered by an
external influence is called spontaneous emission

 4. What is gas laser?

Gas laser is a type of laser, in which gases such as CO2,

Nitrogen and He-Ne are used as active medium for laser operations.
CO2, Nitrogen and He-Ne are the important gas lasers.

Anna University Part - B ‘16’ Marks Questions

 1. For atomic transitions, derive Einstein relations and hence
deduce the expressions for the ratio of spontaneous emission
rate to be stimulated emission rate.

[A.U. Jan. 2019, Jan 2020]
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 2. Explain the construction and working of Nd - YAG laser
with neat diagram. [A.U. May 2015, Jan. 2019, Jan. 2021]

 3. Explain the modes of vibrations of CO2 molecule. Describe

the construction and working of CO2 laser with necessary

diagrams. [A.U. Jan 2019, Jan 2020, Jan 2011}

 4. Explain the lasing schemes and working of a Nd:YAG laser.
[A.U. Jan 2020]

 5. Describe the construction and working of CO2 laser

[A.U. Dec 2018, 2019, May 2020]

 6. (a) Explain the modes of vibrations of CO2 molecule.

   Describe the construction and working of CO2

   laser with necessary diagrams.
(b) Classify lasers based on active medium with one
   example for each [A.U. Dec 2019]

 7. Describe the construction and working of CO2 laser. What

are the engineering applications of lasers? 
[A.U. Dec 2019, Jan 2020] 

 8. (a) What is molecular gas laser? With neat sketch, explain
the construction and working of CO2 laser using energy level

diagram.

(b) List out the applications of laser beam in industries
and in medical field. [A.U. Jan 2020]

 9. (i) With a neat diagram, explain the construction and
working of a CO2 laser.

(ii) Outline the use of lasers in heat treatment.
[A.U. Jan 2021]

10. Describe the construction and working of semiconductor
laser. [A.U. Jan 2019]

11. With suitable diagram explain how laser action is achieved
in homojunction Ga-As laser.

[A.U. Jan 2019, Jan. 2020, Jan 2021]
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12. Explain the principle, construction and working of a
semiconductor diode laser with necessary diagrams.

[A.U. Jan 2010]

13. What are different pumping mechanisms used in lasers?
Give an example for each. [A.U. Jan 2017]

14. Discuss the applications of Lasers in industry. 

PROBLEM FOR PRACTICE

 1. Find the wavelength of emitted photons from a GaAs laser
diode, which has a bandgap of 1.44 eV. (Ans: 8626 Å)

 2. A CO2 laser source emits light at a wavelength of 9.6 m

and has an output power of 10 kW. How many photons
are emitted in each hour by this laser?

(Ans: 1.739    1027)

 3. A laser source emits lights of wavelength 0.621  m and has
an output of 35 mW. Calculate how many photons are
emitted per minute by this laser source.
 

(Ans: 6.562    1018 photons / minute)

 4. Transition occurs between a metastable state E3 and an

energy state E2, just above the ground state. If emission is

at 1.1 m and E2    0.4    10
 19

 J, find the energy of the

E3 state.
(Ans: 2.2068    10 19 J

 5. If laser action occurs by the transition from an excited state
to the ground state E1    0 and if it produces light of 650

nm wavelength, what is the energy level of the excited state.

(Ans: 3.0576    10 19 J)

 6. Given Eg    1.43 eV. Find the wavelength of the light

emitted by the diode for the given energy gap. Also find
the colour of light emitted.

(Ans:     8671.32 Å, IR)
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6. Basic Quantum Mechanics

Photons and light waves - Electrons and matter waves
- Compton effect - The Schrodinger equation (Time
dependent and time independent forms) - meaning of
wave function - Normalization - Free particle - particle
in a infinite potential well: 1D, 2D and 3D Boxes -
Normalization, probabilities and the correspondence
principle

Introduction

 The most outstanding development in modern science is
the conception of quantum mechanics. The quantum
mechanics is better than Newtonian classical mechanics
in explaining the fundamental physics.

 The fundamental concepts were not different from those
of everyday experience, such as particle, position, speed,
mass, force, energy and even field. These concepts are
referred as ‘classical’.

 The world of atoms cannot be described and understood
with these concepts. For atoms and molecules, the ideas
and concepts used in dealing with optics in day to day
life is not sufficient. Thus, it needed new concepts to
understand the properties of atoms.

 A group of scientists Neils Bohr W. Heisenberg,
E Schrodinger, P.A.M. Dirac, W. Pauli, and M. Born
conceived and formulated these new ideas in the
beginning of 20

th
 century. This new formulation, a

branch of physics, was named as quantum mechanics.

Limitations of Classical Mechanics

 The classical physics is complete and beautiful in
explaining daily experiences where big bodies are
involved. But it breaks down severely at subatomic level
and failed to explain some of the phenomenon totally.



 The phenomenas which classical physics failed to explain
are black body radiation, photoelectric effect, emission of
X-rays, etc.

 In classical physics, a body which is very small in
comparison with other body is termed as ‘particle’
whereas in quantum mechanics, the body which cannot
be divided further is termed as ‘particle’.

 The other main difference is the quantized energy state.
In classical physics, an oscillating body can assume any
possible energy. On the contrary, quantum mechanics
says that it can have only discrete non-zero energy.

Need of Quantum Mechanics

 Classical mechanics successfully explained the motions of
object which are observable directly or by instruments
like microscope.

But when classical mechanics is applied to the particles
of atomic levels, it fails to explain actual behaviour.
Therefore, the classical mechanics cannot used to explain
in atomic level, e.g. motion of an electron in an atom.

 The phenomena of black body radiation, photoelectric
effect, emission of X-rays, etc. were explained by Max
Planck in 1900 by introducing of the formula

E  nh       
... (1)

where,   n  0, 1, 2, 

h  Planck’s constant  6.63  10
 34

 J/s

 This is known as ‘quantum hypothesis’ and marked
the beginning of modern physics. The whole microscopic
world obeys the above formula.
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6.1 PHOTONS AND LIGHT WAVES - (Duality of
Radiation and Matter)

The wave and particle duality of radiation is easily understood
by knowing a difference between a wave and and a particle.

Wave
 A wave originates due to oscillations and it is spread

out over a large region of space. A wave cannot be
located at a particular place and mass cannot be carred
by a wave.

 Actually, a wave is a spread out disturbance specified
by its amplitude A, frequency , wavelength ,
phase  and intensity I.

 The phenomena of interference, diffraction and
polarisation require the presence of two or more waves
at the same time and at the same position.
It is very clear that two or more particles cannot occupy
the same position at the same time. So one has to
conclude that radiation behaves like waves.

Particle
 A particle is located at some definite point and it has

mass. It can move from one place to another. A particle
gains energy when it is accelerated and it loses energy
when it is slowed down.

 A particle is characterized by mass m, velocity v,
momentum p and energy E.

 Spectra of black body radiation, Compton effect,
photoelectric effect, etc. could not be explained on wave
nature of radiation.
These phenomena established that radiant energy
interacts with matter in the form of photons or quanta.
Therefore, Planck’s quantum theory came to conclude
that radiation behaves like particles.

 Thus, radiation sometimes behaves as a wave and at
some other times as a particle. Now, wave - particle
duality of radiation is universally accepted.
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Scattering of X - rays

Like ordinary light waves, X - rays are scattered by matter
in two different ways. They are

(a) Coherent scattering or classical scattering or
Thomson scattering.

(b) Incoherent scattering or Compton scattering.

(a) Coherent scattering

In coherent scattering, X - rays are scattered by electrons
without any change in their wavelengths. This type of scattering
was explained by Thomson on the basis of classical
electromagnetic theory.

(b) Incoherent scattering (Compton scattering)

In Compton scattering, the scattered X - ray consists of two
components, one is having the same wavelength as that of the
incident X - rays and the other has a slightly longer wavelength.
This type of scattering was studied by Compton on the basis of
particle nature of light radiation.

6.2  COMPTON EFFECT

Compton effect refers to the change in the wavelength
of  scattered X - rays by a material.

Statement

When a beam of X - rays is scattered by a substance
of low atomic number, the scattered X - ray radiation
consists of two components. 

One component has the same wavelength  as the
incident ray and the other component has a slightly
longer wavelength .

The change in the wavelength of scattered X - rays
is known as Compton shift. The phenomenon is called
Compton effect.
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The radiations of unchanged wavelength in the scattered
radiations are called unmodified radiations. The radiations of
longer wavelength are known as modified radiations.

The change of wavelength is due to loss of energy of the
incident X - rays. 

Explanation

The compton effect was explained on the basis of quantum
theory of radiation. The X - radiation consists of quanta or

photons each having an energy of h. These photons move with

velocity of light (c). They obey the laws of conservation of energy
and momentum when they undergo collision.

The whole process is treated as a particle - particle
collision between X - ray photon and a loosely bound
electron of the atom in the scattering substance.

When a photon of energy h collides with a free electron

of the scattering substance, which is assumed to be at rest
initially, the photon transfers some of its energy to the electron
(Fig. 6.1).

The electron gains kinetic energy  and it recoils with
velocity v. Therefore, the scattered photon has lower energy, (lower
frequency and longer wavelength) than that of the incident one.

Fig. 6.1 Compton effect
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Theory of Compton effect (Derivation)

Consider an X - ray photon striking an electron at rest
(Fig 6.2 a). This X - ray photon is scattered through an angle
 to X-axis from its initial direction of motion (Fig. 6.2 b).

Let the frequency of scattered photon be  and its energy
h. During the collision, X - ray photon gives a fraction of its
energy to the free electron. This free electron of mass m gains
energy and it moves with a velocity v at an angle  to X-axis.

Total energy before collision

   Energy of incident photon  h

   Energy of electron at rest = mo c
2

       where mo – rest mass of the electron, 

                  c – velocity of light.

Total energy before collision     h    mo c
2

Total energy after collision

Energy of scattered photon  h 

Energy of scattered electron  mc
2

(a) Before collision (b) After collision
Fig. 6.2 Compton effect
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where m is the mass of electron.

when it moves with velocity v.

Total energy after collision     h     mc
2

Applying the law of conservation of energy, i.e., 

Total energy before collision    Total energy after collision

h    mo c
2
      h  mc

2

mc
2
    h    h     mo c

2

mc
2
    h        mo c

2 ...(1)

Total momentum along X-axis

Before collision

Momentum of photon along X-axis   
h
c

Momentum of electron along X-axis   0

Total momentum along X-axis   
h
c

After collision
Since the momentum is vector quantity, it is resolved along

X-axis and Y-axis, then 

Momentum of photon along X-axis     
h
c

 cos 

Note: From de-Broglie’s concept, 

        momentum of the particle p    
h


 

   But,     
c


 for photon       p    
h

c/
    

h
c
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Momentum of electron along X-axis   mv cos 

Total momentum along X-axis after collision

   
h
c

 cos   mv cos 

Applying the law of conservation of momentum ie., 

Total momentum before collision    Total momentum after collision

      
h
c

    
h
c

 cos     mv cos  ....(2)

h
c

    
h
c

 cos     mv cos          

h
c

     cos     mv cos 

h    cos     mvc cos 

mvc cos     h   cos  ....(3)

Total momentum along Y-axis

Before collision
Momentum of photon along Y-axis = 0

Momentum of electron along Y-axis = 0

Total momentum along Y-axis = 0

After collision

Momentum of photon along Y - axis    
h
c

 sin 

Momentum of electron along Y - axis     mv sin 

      [negative sign indicates negative Y - direction]

Total momentum along Y - axis    
h
c

 sin   mv sin 
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Applying the law of conservation of momentum ie.,

Total momentum before collision    Total momentum after collision

0    
h
c

 sin   mv sin 

mv sin     
h 

c
 sin 

...(4)

mvc sin     h  sin  ....(5)

Squaring eqn (3) and eqn (5) and then adding, we get

mvc cos 2  mvc sin 2  h
2   cos 2  h sin 2

... (6)
L.H.S. of eqn (6)

  m
2
v

2
c

2
cos

2  m
2
v

2
c

2
 sin

2
 

  m
2
v

2
c

2
 sin

2
   cos

2
 

  m
2
v

2
c

2
                             [ ...  sin

2  cos
2  1 ]

R.H.S. of eqn (6)

   h
22

  2 cos   2 cos
2
   h

22 sin
2
 

  h
2
 [ 2

  2 cos   2 cos
2
    2 sin

2
  ]

  h
2
 [ 2

  2 cos   2 sin
2
    cos

2
  ]

       h
22

  2 cos   2 [ ...  sin2    cos2     1 ]

L.H.S = R.H.S of eqn. 6

  m
2
v

2
c

2
  h

22
  2 cos   2 ...(7)

Squaring eqn (1). on both sides, we get

mc
22  h     moc

22 ...(8)
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m
2
c

4
   h

2  2  mo
2
 c

4
  2h    mo c

2

m
2
c

4
    h

22
  2     2    2h   mo c

2
    mo

2
 c

4
  ....(9)

Subtracting eqn (7) from eqn (9), we get

m
2
c

4
  m

2
v

2
c

2
    h

22
  2  2  2h   mo c

2
 

                mo
2
 c

4
  h

22
  2 cos   2

m
2
 c

2
 c2

  v
2  h

22
  2h

2
   h

2
 2  2h    mo c

2

                 mo
2
 c

4
  h

22
  2h

2  cos   h
2 2

m
2
c

2
 c2

  v
2     2h

2    2h   moc
2
    2h

2 cos     mo
2
 c

4
 

                    

 m
2
c

2
 c

2
  v

2
     2h

2
  1  cos    2h    mo c

2
    mo

2
 c

4
...(10)

From the theory of relativity, the variation of mass with
velocity is given by 

m    
mo




 1    

v
2

c
2 




... (11)

Squaring the eqn (11) on both sides, we have

m
2
    

mo
2

1    
v

2

c
2

    
mo

2

c
2
  v

2

c
2

    
mo

2
 c

2

c
2
  v

2

m
2
 c2

  v
2    mo

2
 c

2
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Multiplying c
2
 on both sides, we have

  m
2
 c

2
 c2

  v
2    mo

2
 c

2
 c

2

m
2
 c

2
 c2

  v
2    mo

2
 c

4 ...(12)

Substituting eqn (12) in eqn (10), we get

mo
2
 c

4
   2h

2
   1  cos   2h    mo c

2
  mo

2
 c

4

   2h     mo c
2
    2h

2
   1  cos 

    or 
  


    
h

mo c
2 1  cos 




    



    
h

mo c
2 1  cos 

1


    
1


    
h

mo c
2 1  cos  ... (13)

Multiplying c on both sides of eqn (13), we have

c


    
c


    
hc

mo c
2 1  cos 

c


    
c


    
h

mo c
 1  cos 

        
h

mo c
 1  cos 

Therefore, the change in wavelength is given by

d  
h

mo c
 1  cos 

... (14)

It is found that the change in wavelength d does
not depend on the wavelength of the incident radiation












 

...      
c


  

c
 

    
 











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and the nature of the scattering substance. But it depends
only on the angle of scattering .

 Case - 1  When   0,  then

d    
h

mo c
  1  cos 0

d    
h

mo c
  1  1 [ ...  cos 0  1 ]

  
h

mo c
  0

d    0

i.e. Along the incident direction, there is no change in wavelength

 Case - 2  When   90,  then

d    
h

mo c
 1  cos 90 

d    
h

mo c
  1  0 [ ...  cos 90  0 ]

d    
h

mo c

Substituting for  h,  mo and c, we have

d    
6.625  10

 34

9.11  10
 31

  3  10
8

d    0.0243 Å

This difference in wavelength is known as Compton
wavelength of electron.
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 Case - 3  When   180, then

d    
h

mo c
  1  cos 180

d    
h

mo c
 1   1 [ ...  cos 180   1 ]

d    
h

mo c
 1  1    

2h
mo c

d    
2h

mo c

d    2  0.0243 Å 


 . . . 

h
mo c

    0.0243 Å 


d    0.0486 Å

Thus, the change in wavelength is maximum at     180.

Experimental verification of Compton effect

A beam of monochromatic X-rays of wavelength  is made
to incident on a scattering substance (Fig. 6.3). The scattered
X-rays are received by Bragg spectrometer.

Fig. 6.3 Experimental verification of Compton effect
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 The intensity of scattered X-rays is measured for various
scattering angles. The graph is plotted (intensity Vs wavelength)
as shown in fig. 6.4.

It is found that the curves have two peaks, one
corresponding to unmodified radiation and other corresponding
to modified radiation.

The difference between two peaks on the wavelength axis
gives Compton shift.

The curves show that the greater the scattering angle, the
greater is Compton shift in accordance with the expression.

Fig. 6.4 Graph between intensity of the scattered
X-rays and wavelength ()             
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      d    
h

mo c
 1  cos 

The change in wavelength d  0.0243 Å at   90 is found
to be in good agreement with the theoretical value 0.0243 Å.
Thus, Compton effect is experimentally verified.

The experimental observations were in perfect agreement
with the prediction of the above equation, thus holding the
Einstein’s concept of photon as completely valid.

Physical significance of compton effect

In the compton effect, the compton shift is explained on
the basis that the X-ray photons collide with electrons. In the
collision, the energy exchange between the two occurs as it is
a kind of particle-particle collision.

Thus, it demonstrates the particle nature of X-rays which
we know are electromagnetic waves, or in other words, it
signifies the particle nature of waves in general.

6.3 ELECTRONS (Particles) AND MATTER WAVES 
- (Concept of Matter Waves)

 Particle nature of matter is very well established. Now
it is known that matter is composed of atoms, electrons,
protons and neutrons. They are the building blocks of
all types of atoms.

 Electromagnetic theory and quantum theory established
wave-particle duality of radiation. But inspite of the
success of this duality of radiation, the postulates of
Bohr’s theory of atomic structure remained unexplained
for a long time.

 On this background, in 1924 De Broglie extended the idea
of dual nature of radiation to matter and proposed that
matter possesses particle as well as wave characteristics.
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 He believed that motion of electron within an atom
is guided by a peculiar kind of waves called ‘Pilot
waves’.

 While introducing the concept of matter waves, De
Broglie was guided by wave - particle duality of radiation
and the way in which nature manifests herself.

The concept of wave nature of matter is developed from
the dual character of radiation which sometimes behaves as a
wave and at other times as a particle.

de - Broglie’s Hypothesis

Louis de - Broglie proposed a very bold and novel
suggestion that like light radiation, matter or material
particle also posseses dual (two) characteristics i.e.,
particle – like and wave – like.

The moving particles of matter such as electrons, protons,
neutrons, atoms or molecules exhibit the wave nature in addition
to particle nature.

According to de - Broglie hypothesis, a moving particle is
always associated with waves. (Fig. 6.5)

 Waves and particles are the only two modes through
which energy can propagate in nature.

 Our universe is fully composed of light radiation and matter.

 Since nature loves symmetry, matter and waves
must be symmetric.

Fig. 6.5 particle and wave nature of moving particle
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 If electromagnetic radiation like light, X - rays can act
like a wave and a particle, then material particles
(electrons, protons etc) should also act like a particle and
a wave.

 Every moving particle is always associated with a wave.

de - Broglie waves and its wavelength

The waves associated with the matter particles are
called matter waves or de - Broglie waves.

From Planck’s theory, the energy of a photon (particle
nature) of frequency  is given by

E   h ... (1)

According to Einstein’s mass - energy relation

E    mc
2 ... (2)

   where m - mass of the photon 

    c - velocity of the photon.

Equating (1) and (2), we get

h    mc
2
     ...(3)

              
hc


    mc
2
                


     

c


 


    
hc

mc
2

                            
h

mc
 (for electromagnetic radiation)

         Since   mc    p momentum of a photon, 

then      
h
p

 ...(4)
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The wavelength of de - Broglie wave associated with any
moving particle of mass m with velocity v (momentum p  mv)
is given by

    
h
p

    
h

mv
...(5)

This equation (5) is known as de - Broglie’s wave equation.

de - Broglie wavelength in terms of energy

We know that the kinetic energy E    
1
2

 mv
2

Multiplying by m on both sides we get,

mE    
1
2

 m
2
 v

2 ...(6)

2mE    m
2
v

2

or      m
2
 v

2
    2mE      

Taking square root on both sides,

m
2
v

2
   2 mE

mv  2 mE

We know that     
h

mv
... (7)

substituting for mv in eqn (7), we have

de - Broglie wavelength    
h

2mE

de - Broglie’s wavelength in terms of accelerating
potential associated with electrons

When an electron of charge e is accelerated by a potential
difference of V volts, then the electron gains a velocity v and hence,

Workdone on the electron     eV ... (1)
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This workdone is converted into the kinetic energy

     of the electron as 
1
2

 mv
2

  Workdone = kinetic energy

eV    
1
2

 mv
2 ... (2)

2 eV    mv
2

mv
2
    2 eV

Multiply by m on both sides, we have

m
2
v

2
    2 meV

Taking square root on both sides, we get

m
2
v

2
     2meV

mv    2meV ... (3)

From the de - Broglie’s concept, the wavelength associated
with any moving particle is given by

    
h

mv
... (4)

Substituting eqn (3) in eqn (4), we have

    
h

2meV
... (5)

Substituting the given values, we have

h    6.625  10
 34

 Js,  e    1.6  10
 19

 C 

m    9.1  10
 31

 kg
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    
6.625  10

 34

2  9.1  10
 31

  1.6  10
 19

  V

    
12.25  10

 10

V
 metre

...(6)

    
12.25
V

 Å
...(7)

Properties of Matter Waves

1. If the mass of the particle is smaller, then the
wavelength associated with that particle is longer.

2. If the velocity of the particle is small, then the
wavelength associated with that particle is longer.

3. If v  0, then   , i.e., the wave becomes
indeterminate and if v  , then   0. This indicates
that de - Broglie waves are generated by the motion of
particles.

4. These waves do not depend on the charge of the
particles. This shows that these waves are not
electromagnetic waves.

5. The velocity of de - Broglie’s waves is not constant since
it depends on the velocity of the material particle.

ANNA UNIVERSITY SOLVED PROBLEMS

Problem 6.1

An electron is accelerated by a potential difference of
150 V. What is the wavelength of that electron wave? 
                                  (A.U. Jan 2017)

Given data

Accelerating voltage applied to the electron V  150 V
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Solution

We know that the de - Broglie wavelength

    
12.25  10

 10

V
 metre

Substituting the given values, we have

    
12.25  10

 10

150
  metre

    
12.25  10

 10

12.24
  metre

    1.001  10
 10

 metre

    1.001 Å

Problem 6.2

Calculate de – Broglie wavelength of an electron of
energy 100 eV                       (A.U. Jan 2011)

Given data

Energy of electron E  100 eV

E    100  1.6  10
 19

 joule

 ...  1 eV    1.6  10
 19

 J 

Mass of the electron m  9.1  10
 31

 kg

Planck’s constant h    6.625  10
 34

 Js

Solution

We know that     
h

mv
    

h

2mE

Substituting the given values, we have
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  
6.625  10

 34

2  9.1  10
 31

  100  1.6  10
 19

de - Broglie’s wavelength   1.235  10
 10

 metre

  1.235 Å

Note: At the time de - Broglie proposed his hypothesis, there
was no experimental evidence to show that the particles of
matter like electrons, protons, neutrons etc., have wave
properties.

    However, the wave nature of atomic particles was
experimentally verified by the American scientists Davisson and
Germer in 1927 and by G.P. Thomson in 1928 and thus the
truth of de Broglie concept was established.

Concept of Wave Function

In quantum mechanics it is postulated that there exists a
function determined by the physical situation. The function is
called wave function.

It is also postulated to contain all possible information
about the system. Hence, it is also called as state function.

The wave function may vary with respect to both the
position coordinates of the physical system and the time. It is
then called the total wave function, and is represented by

the capital form of the greek letter  (pronounced as psi). 

If the wave function has variation only with position (i.e.,
space) and not with time, it is represented by the lower case

greek letter .

The total wave function can be represented by the equation,
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  Ae
i kx  t ...(1)

where, A is a constant, and  is the angular frequency of
the wave.

Separating the space and time dependent parts,  can be
expressed as,

  Ae
ikx

 e
 i t ...(2)

In the above equation, separating out the time dependent
part, we can represent the rest as a space dependent wave
function.

  Ae
ikx ...(3)

 is time independent wave function. The total wave
function is now written as,

   e
 i t

The wave function in quantum mechanics accounts for the
wave-like properties of a particle.

It is obtained by solving a fundamental equation called
Schrondinger equation. To solve the schrodinger equation it
requires the knowledge of,

(i) potential energy of the particle,

(ii) initial conditions, and

(iii) boundary conditions.

6.4  SCHRODINGER WAVE EQUATION

Schrodinger wave equation describes the wave
nature of a particle in mathematical form. It is the basic
equation of motion for matter waves.
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If the particle has wave properties, then there should be
some sort of wave equation to describe the behaviour of that
particle.

Schrodinger connected the expression of de-Broglie’s
wavelength with the classical wave equation for a moving
particle. He obtained a new wave equation. This wave equation
is known as Schrodinger wave equation.

Forms of Schrodinger wave equations

There are two forms of Schrodinger wave equations.

They are:

(a) Time independent wave equation

(b) Time dependent wave equation

One, which is general and takes care of both the position
and the time variations of the wave function, is called
time-dependent Schrodinger equation. 

It involves the imaginary quantity ‘i’.

The other one is applicable only to steady state conditions
in which case, the wave function can have variation only with
position but not with time. It is called time-independent
Schrodinger’s equation and is simpler than the other one. It
doesn’t involve ‘i’.

Accordingly we get the corresponding wave functions by
solving the respective types of schrodinger equation. The wave
functions obtained as solutions of time-dependent schrodinger
equation will always be complex.

But the wave functions obtained as solutions of time-
independent schrodinger equation are not necessarily complex
functions, though they could be complex under certain conditions.
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6.5  SCHRODINGER TIME INDEPENDENT
 WAVE EQUATION (Derivation)

Consider a wave associated with a moving particle.

Let x, y, z be the coordinates of the particle and  wave

function for de - Broglie’s waves at any given instant of time t.
(Fig 6.6)

Fig 6.6

The classical differential equation for wave motion is given by

2

x
2       

2

y
2       

2

z
2       

1

v
2 
2

t
2 ...(1)

Here, v is wave velocity.

The eqn (1) is written as 

2    
1

v
2 
2

t
2 ... (2)

where 2
     

2

x
2    

2

y
2    

2

z
2  is the Laplacian’s operator.

The solution of eqn (2) gives  as a periodic variations in
terms of time t,

 x, y, z, t   o x, y, z e i  t

    o e
 i  t

 ... (3)
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Here, o x, y, z is a function of x, y, z only which is the

amplitude at the point considered.  is angular velocity of the
wave.

Differentiating the eqn (3) with respect to t, we get

    

t

   i  o e
 i  t

Again differentiating with respect to t, we have

2

t
2       i  i o e

 i  t

2

dt
2     i

2
 2o e

 i  t

2

t
2     2 ... (4)


  

...  i
2
     1       o e

 i  t
 

Substituting eqn (4) in eqn (2), we have

2     
2

v
2  

2    
2

v
2      0 ... (5)

We know that angular frequency     2    2 

 
v


 


Here,  is the frequency      


 ...       

v


 



v

    
2


... (6)

Squaring the eqn (6) on both sides, we get

6.26 Engineering Physics



2

v
2       

2
22

2       
42

2
... (7)

Substituting eqn (7) in eqn (5), we have

  2      
42

2      0  ... (8)

on substituting,       
h

mv
 in eqn (8), We get

2
       

42

h
2

m
2
v

2

       0

2
       

42
m

2
v

2

h
2        0 ... (9)

If E is total energy of the particle, V is potential energy

and 
1
2

 mv
2
 is kinetic energy, then

Total energy = Potential energy  Kinetic energy

E      V    
1
2

 mv
2

or       E  V      
1
2

 mv
2

2 E    V    mv
2

mv
2
       2 E  V

Multiplying by m on both sides, we have

m
2
 v

2
        2m E  V ... (10)

Substituting eqn (10) in eqn (9), we get
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2      
42

h
2     2mE  V     0

2
       

82
m

h
2  E  V       0

... (11)

The eqn (11) is known as Schrodinger time
independent wave equation for three dimensions.

Let us now introduce h     
h
2

 in eqn (11),

 h2
      

h
2

2
22      

h
2

42

... (12)

where h is a reduced Planck’s constant

The eqn (11) is modified by substituting h,

2    
m

h
2

82

 E  V     0

2    
m

h
2

2  2
22

 E  V     0

2    
2m

h
2

42

 E  V     0  ... (13)

on substituting eqn (12) in eqn (13), Schrodinger
time-independent wave equation is written as

2      
2m

h2   E  V       0 ... (14)
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(or)  
h2

2m
 2    V      E

... (15)

Note: In eqn (14), there is no term representing time. That
is why it is called as time independent equation.

Special case

If we consider one-dimensional motion ie., particle moving
along only X - direction, then Schrodinger time independent
equation (14) reduces to

d
2

dx
2     

2m

h2  E    V    0
... (16)

6.6   SCHRODINGER TIME DEPENDENT 
  WAVE EQUATION

Schrodinger time dependent wave equation is derived from
Schrodinger time independent wave equation.

The solution of classical differential equation of wave
motion is given by

 x, y, z, t    0 x, y, z e i  t ... (1)

Differentiating eqn (1) with respect to time t, we get


t

     i  0 e
 i  t ... (2)

 

t

     i 2 0 e
 i  t . . .      2


t

       2  i   ... (3)

( ...    o e i  t
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
t

     2  i 
E
h

                  

 . . . E    h  or      

E
h

 


            

t

     i 
E
h
2

      i 
E
h  

                   

 . . . h    

h
2

 



t

     i 
E
h

  ... (4)

Multiplying i on both sides in eqn (4), we have

i  

t

       i  i 

 
E
h

 

      i

2
 

 
E
h

 

 

i  

t

      
E
h

  [...   i  i  i2     1]

i h

t
      E ... (5)

Schroedinger time independent wave equation is

 
h2

2m
 2     V      E

Substituting for E from eqn (5)

      
h2

2m
 2

     V     i h 

t

   



   

h2

2m
 2

  V 



       i h 


t ... (7)

or    H      E   ... (8)

where H    



  

h2

2m
 2

  V 



 is Hamiltonian operator

 E    ih 

t

 is energy operator.
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The eqn (7) is known as Schrodinger time dependent
wave equation.

Note: In eqn (7), there is term 

t

 representing time. That is

why it is called time dependent wave equation.

6.7  MEANING OR PHYSICAL SIGNIFICANCE OF WAVE
 FUNCTION 

1. The variable quantity which describes de-Broglie wave
is called wave function .

2. It connects the particle nature and its associated wave
nature statistically.

3. The wave function associated with a moving particle
at a particular instant of time and at a particular point
in space is related to the probability of finding the
particle at that instant and at that point.

4. The probability 0 corresponds to the certainty of not
finding the particle and probability 1 corresponds to
certainty of finding the particle.

i.e.,   
  d  1, if particle is present.

                   0, if particle is not present.

   where 
   complex conjugate of 

5. The probability of finding a particle at a particular
region must be real and positive, but the wave function
 is in general a complex quantity.

Applications of Schrodinger’s time independent wave
equation

6.8 MOTION OF A FREE PARTICLE

Let us consider electrons propagating freely in space in the
positive x-direction and not acted upon by any force.
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As the electrons are not acted upon by any force, their
potential energy V is zero. Schrodinger equation

2
     

82
 m

h2  E    V     0  reduces to

d
2
 

dx
2     

82
 m

h
2  E     0 ... (1)

Taking 
82

 mE

h2     k
2
 in the above equation, we get

d
2
 

dx
2     k

2
     0

The general solution of the above equation is

 x    Ae
i k x

    Be
 i k x

where A and B are constants. As it is assumed that the waves
propagate only in the positive x-direction, we can write

 x, t    Ae
i k x

 e
 i  t

There are no boundary conditions to be considered and
hence there are no restrictions on k. All values of the energy
are allowed. The allowed energy values form a continuum and
are given by

E    
h

2
 k

2

82
 m

... (2)

A freely moving electron therefore possess a continuous
energy spectrum as shown in fig. 6.7.

6.32 Engineering Physics



It is noted from equation (2) that

k    2mE

h
2

. . .  p    2 m E 

k    
2 m E

h
    

p
h

 

 
p
h

    
1


 


  
p
h

2

    
2p
h

    
2


(de Broglie equation)

The k known as wave vector describes the wave properties
of the electrons. Further, it is seen from the relation (2) that

E  k
2

The plot of E as a function of k gives a parabola, as
explained in fig. 6.8.

The momentum is well defined in this case. Therefore,
according to uncertainty principle it is difficult to assign a
position to the electron. The uncertainty in position will be
infinity which means that the electron position is indeterminate.

Fig. 6.7: The energy
continuum of free electron

Fig. 6.8: The parabolic
relationship between energy
and E and wave vector k in

case of a free electron.

Basic Quantum Mechanics 6.33



6.9 PARTICLE IN A INFINITE POTENTIAL
(One - Dimensional Box)

Consider a particle of mass m moving between two rigid
walls of a box or infinite deep potential well at x  0 and
x  a along x-axis.

This particle is bouncing back and forth between the walls
of the infinite well. The potential energy (V) of the particle inside
the box is constant. It is taken as zero for simplicity (Fig. 6.9).

The walls are infinitely high. The potential energy V of
the particle is infinite outside the walls.

Thus, the potential function is given by

Vx      0  for  0   x   a

Vx        for 0    x    a

This potential function is known as square well
potential. (Fig. 6.9)

Fig. 6.9 Particle in a one-dimensional rigid box
(infinite deep potential well)
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The particle cannot come out of the box well. Also, it can
not exist on the walls of the box. So, its wave function  is 0
for x    0 and x    a. Now, task is to find the value  within
the box i.e., between x  0 and x  a.

Schroedinger’s wave equation in one-dimension is given by

d
2

dx
2       

2m

h2  E  V     0 ... (1)

Since V  0 between the walls, the eqn (1) reduces to 

d
2

dx
2     

2mE

h2      0 ... (2)

Substituting  
2mE

h2     k
2
 in eqn (2), we get   

d
2

dx
2     k

2      0
... (3)

The general solution of eqn (3) is given by

 x      A sin kx      B cos kx ... (4)

Here, A and B are two unknown constants.

The values of the constants A and B are determined by
applying the boundary conditions.

Boundary condition (i) 

    0 at x    0

Applying this condition to eqn (4), we have

                0   A sin 0  B cos 0  



 
. . . sin 0    0

cos 0    1
 




 0    0  B  1

Hence,   B    0              
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Boundary condition (ii) 

    0 at x    a

Applying this condition to eqn (4), we have

  0    A sin ka    0
[ ... B  0 ]

A sin ka    0

It is found that either A  0 or sin ka    0

A cannot be ‘0’ since already one of the constants B is ‘0’. If A is
also 0, then the wave function is zero even in between walls of
the box. Hence, A should not be zero.

    sin ka     0

sin ka is ‘0’ only when ka takes the value of n

ie.,    ka    n

where n is positive integer 1, 2, 3 ...

   k    
n
a

... (5)

On squaring eqn (5), we have

k
2
    

n
22

a
2

... (6)

We know that k
2
    

2mE

h2     
2mE

h
2

42

       

 . . . h    

h
2

 


k
2
    

2m  42E

h
2

k
2
    

82
mE

h
2

... (7)
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Equating eqn (6) and eqn (7), we have

 
n

22

a
2     

82
mE

h
2

Energy of the particle

En    
n

2
h

2

8ma
2

... (8)

substituting eqn (5) in eqn (4), we have

n x       A sin 
n x

a
... (9)

Here n  1, 2, 3 

For each value of n, there is an energy level.

The particle in a box cannot possess any arbitrary amount
of energy. It can only have discrete energy values specified by
eqn (8). 

In otherwords, its energy is quantised.

Each value of En is known as eigen value and the

corresponding n is called as eigen function.

6.10 NORMALISATION OF WAVE FUNCTION

The constant A is determined by normalisation of wave
function as follows.

Probability density is given by 
  

We know that n x    A sin 
n  x

a


       A sin 

n  x
a

      A sin 
n  x

a

[. . .     
 the wave function is real (not complex)]


       A

2
 sin

2
 



 
n  x

a
 


 ... (10)
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It is certain that the particle is some where inside the
box. Thus, the probability of finding the particle inside the box
of length a is given by

 
0

a

   dx  1 ... (11)

Substituting  from eqn (10) in eqn (11), we have

     
0

a

  A
2
 sin

2
 



 
n  x

a
 



  dx    1 

A
2
     

0

a

  




1  cos 




 
2n x

a
 



 




2
  dx    1




 . . . sin

2
     

1  cos 2
2

 




A
2

2
 










     

0

a

 dx          
0

a

 cos 



 
2 n  x

a
 



 dx 










    1

A
2

2
 












  x 

 0

 a

      












sin 



 
2nx

a
 




2n
a












 












 0

 a

     1

The second term of the integral becomes zero at both limits

A
2

2
  x 

 0

 a
    1

Thus,  
A

2
 a

2
    1     or      A

2
    

2
a
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A     2
a

... (12)

On substituting eqn (12) in eqn (9), we have

The eigen function n belongs to eigen energy values

En and it  is  expressed as

n     2
a

   sin 
n  x

a
... (13)

This expression (13) is known as normalised eigen
function. The energy En and normalised wave functions n are

shown in fig. 6.10.

Special cases

From eqns (8) and (13), the following cases can be taken
and they explain the motion of electron in one dimensional box.

 Case (i) : For n  1 

E1  
h

2

8ma
2

Fig. 6.10 Energy levels and wave functions
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1 x     2
a

 sin 



 
x
a

 




Hence, 1 x is maximum at exactly middle of the box as

shown in fig. 6.10.

 Case (ii) : For n  2 

E2    
4h

2

8ma
2    4E1           

2 x    2
a

 sin 



 
2x
a

 



 

Hence, 2 x is maximum at quarter distance from either

sides of the box as shown in 6.10.

 Case (iii): For n  3 

E3      
9h

2

8ma
2      9E1          

3x  2
a

 sin 



 
3  x

a
 




Hence, 3 x is maximum at exactly middle and one-sixth

distance from either sides of the box as shown in fig. 6.10.
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ANNA UNIVERSITY SOLVED PROBLEM

Problem 6.3

Find the energy of an electron moving in one - dimension
in an infinitely high potential box of width 0.1 nm.   
                                 [A.U. Jan 2019]

Given data

a  0.1 nm    0.1  10
 9

 m

Solution

We know that energy of an electron 

En  
n

2
h

2

8ma
2

where  n  1, 2, 3, 

The lowest energy of the particle is obtained for n  1.

E    
1

2
h

2

8ma
2    

h
2

8ma
2

Substituting the given values, we have

 E    
6.625  10

 342

8  9.11  10
 31

  0.1  10
 92

E    6.022  10
 18

 J

  E    
6.022  10

 18

1.6  10
 19    

E    37.69 eV
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6.11  EXTENSION TO TWO DIMENSIONS (2D Boxes)

The solution of one-dimensional potential well is extended
for a two-dimensional potential well.

 In a two-dimensional potential well, the particle (electron)
can freely move in two directions (say x and y) direction.
Therefore, instead of one quantum number n, we have to use
two quantum numbers, nx and ny corresponding to the two

coordinate axes namely x and y respectively.

If a and b are the lengths of the well as shown in fig. 6.11
along x and y axes, then

Energy of the particle E    En
x
    En

y

i.e., En
x
 n

y
    

nx
2
 h

2

8ma
    

ny
2
 h

2

8ma
2

If a    b      

En
x
 n

y
    

h
2

8m
 






 
nx

2

a
2    

ny
2

a
2 







En
x
 n

y
    

h
2

8ma
2  [nx

2
    ny

2
]

Fig. 6.11 Particle in 2-Dimensional box
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The corresponding normalised wave function of the particle
in the two dimensional well is written as

n
x
 n

y
   2

a
  sin 




 
nx x

a
 



     2

b
  sin 




 
ny y

b
 




n
x
 n

y
   2

a
     2

b
  sin 




 
nx x

a
 



  sin 




 
ny y

b
 




  n
x
 n

y
  4

a b
  



 sin 

nx x

a
 



 sin 




 
ny y

b
 




...(2)

From equations (1) and (2), we understand that several
combinations of the two quantum numbers nx and ny lead to

different energy eigen values and eigen functions.

Example

Suppose a state has quantum numbers

nx  1,     ny  2

Then,     nx
2
  ny

2
    1

2
    2

2
    1    4    5

Similarly, for a combination nx  2 ,  ny  1

we have   nx
2
    ny

2
    2

2
    1

2
    4    1    5      

      E12    E21    
5h

2

8ma
2  ...(3)

The corresponding wave functions is written as

12  4
ab

 sin 
x
a

 sin 
2y
b

21  4
ab

 sin 



 
2x
a

 



 sin 




 
y
b

 



         

... (4)

Basic Quantum Mechanics 6.43



Note: Example for particle in two dimensional infinite well is
            quantum well.

6.12  EXTENSION TO INFINITE WELL THREE
 DIMENSIONS (3D Box)

The solution of one-dimensional potential well is extended
for a three-dimensional (3D) potential box.

 In a three-dimensional potential box, the particle (electron)
can move in any direction in space. Therefore, instead of one
quantum number n, we have to use three quantum numbers,
nx, ny and nz, corresponding to the three coordinate axes namely

x, y and z respectively.

If a, b, c are the lengths of the box as shown in fig. 6.12
along x, y and z axes, then

Energy of the particle  Ex  Ey  Ez

i.e., En
x
 n

y
 n

z
    

nx
2
 h

2

8ma
2    

ny
2
 h

2

8mb
2    

nz
2
 h

2

8mc
2

Fig. 6.12 Particle in a three-dimensional box
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If a  b  c as for a cubical box, then

En
x
 n

y
 n

z
    

h
2

8m
  






 
nx

2

a
2    

ny
2

a
2    

nz
2

a
2 







En
x
 n

y
 n

z
      

h2

8ma
2 [nx

2  ny
2
  nz

2
 ]

...(1)

The corresponding normalised wave function of the particle
in the three dimension well is written as

n
x
 n

y
 n

z

     2
a

 sin 



 
nx  x

a
 



   2

b
 sin 




 
ny  y

b
 



   2

c
 sin 




 
nz  z

c
 




n
x
 n

y
 n

z
  2

a
   

2
b

  
2
c

  sin 



 
nx x

a
 



 sin 




 
ny y

b
 



 sin 




 
nz z

c
 




 n
x
 n

y
 n

z
  8

a b c
  sin 




 
nx  x

a
 



 sin 




 
ny  y

b
 



 sin 




 
nz  z

c
 


 ...(2)

From equations (1) and (2), we understand that several
combinations of the three quantum numbers nx, ny and nz lead

to different energy eigen values and eigen functions.

Note: Three dimensional infinite potential well is an
example of quantion dot.

Example

Suppose a state has quantum numbers

nx  1,     ny  1,     nz  2

Then,     nx
2
  ny

2
  nz

2
    1

2
    1

2
    2

2
    1    1    4    6

Similarly, for a combination nx  1 ,  ny  2 ,  nz  1 and for

a combination nx  2,  ny  1,  nz  1 
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we have nx
2
    ny

2
    nz

2
    1

2
    1

2
    2

2
    1    1    4      6

      E112    E121    E211    
6h

2

8ma
2  

...(3)

The corresponding wave functions is written as

          

112  8

a
3  sin 

x
a

 sin 
y
b

 sin 
2z

c

121  8

a
3  sin 

x
a

 sin 
2y
b

 sin 
z
c

211  8

a
3  sin 

2x
a

 sin 
y
b

 sin 
z
c

         ... (4)

Degeneracy

 It is noted seen from equations (3) and (4) that, for several
combinations of quantum numbers, we have the same energy
eigen value but different eigen functions. Such a state of energy
levels is called degenerate state.

The three combinations of quantum numbers, (112), (121)
and (211), which give the same eigen value but different eigen
functions are called 3-fold degenerate state.

Non-degenerate state:
When only one wave function corresponds to the energy eigen
vlave, such a state is called non-degenerate state.

Suppose 

nx  2,     ny  2,     nz  2.

Then,       E222    
12 h

2

8ma
2

and 222   8

a
3    sin 

2x
a

    sin 
2y
a

   sin 
2z
a

6.46 Engineering Physics



6.13 PROBABILITY DENSITY

Probability of finding the particle between positions x and
x    dx

P x    |n|
2
 dx    

2
a

 sin
2
 



 
n  x

a
 



 dx

 Probability density, P x    
2
a

 sin
2
 



 
n  x

a
 




Probability density is maximum when

n  x
a

    

2

,    
3
2

,    
5
2

,    

or x    
a

2n
,    

3a
2n

,    
5a
2n

,    

 For n    1 (lowest energy state), x    
a
2

, i.e., the particle

is most likely to be in the middle of the box (because

|1|
2
 is maximum there).

 For n    2 (next energy state), x    
a
4

 and 
3a
4

 i.e., the

particle is most likely to be at 
a
4

 and 
3a
4

 and never found

in the middle because |2|
2
 is zero there.

 For n    3, the most likely positions of particle are

x    
a
6

 ,    
3a
6

 ,    
5a
6

The variation of probability densities |1|
2
, |2|

2
 and

|3|
2
 (for n    1, 2, 3) with x is shown in fig. 6.13.
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It is noted that quantum mechanical results as vary
drastically from the classical results.

While classical mechanics predicts the same probability for
the particle being anywhere in the box, quantum mechanics
predicts that the probability is different at different points and
there are points (nodes) where the particle is never found.

6.14  PARTICLE IN A RECTANGULAR THREE -
  DIMENSIONAL INFINITE WELL

Let a particle of mass m be in motion in a rectangular
potential deep potential (Fig. 6.14) with sides of lengths a, b, c,
parallel to the x, y and z-axes respectively.

If there is no force acting on the particle inside the box,
so that in the region.

0  x  a

0   y    b

0   z    c

the potential energy V x, y, z    0

and outside the box V x, y, z    

� �
�

�

� �
�

�

� �
�

�

Fig. 6.13
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Wave Equation of the Particle

For the motion of the particle inside the box, the
Schrodinger time - independent wave equation is:

  
h2

2m
 2

     E  ... (1)

or
2

 

x
2     

2
 

y
2     

2
 

z
2     

2m

h2  E     0 ... (2)

It is assumed that the wave-function  x, y, z is equal to
the product of three functions X, Y, and Z each of which is a
function of one variable only.

Thus we have

 x, y, z    X x Y y Z z ... (3)

Substituting this equation in eqn. (2), we have,

YZ 
d

2
 X

dx
2     ZX 

d
2
 Y

dy
2     XY 

d
2
 Z

dz
2     

2mE

h2  XYZ    0 ... (4)

Note: We used ordinary derivatives instead of partial derivatives
because each of the functions X, Y and Z is a function of one
variable only.

Fig. 6.14
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Dividing eqn. (4) by XYZ, we get

1d
2
 X

Xdx
2     

1d
2
 Y

Ydy
2     

1d
2
 Z

Zdz
2     

2mE

h2     0
... (5)

In this equation 
2mE

h2  is a constant for a particular value

of the kinetic energy.

Since the velocity of the particle, being a vector quantity,
can be resolved into three components along the coordinate axes,
the kinetic energy E is expressed as the sum of the
corresponding terms Ex, Ey and Ez.

Hence,

E    Ex    Ey    Ez ... (6)

Therefore, from equations (5) and (6), we get




 
1
X

 
d

2
 X

dx
2     

2mEx

h
2  




    




 
1
Y

 
d

2
 Y

dy
2     

2mEy

h
2  




    




 
1
Z

 
d

2
 Z

dz
2     

2mEz

h
 



    0

This equation gives three independent equations:

d
2
 X

dx
2     

2mEx

h2  X    0
... (7)

d
2
 Y

dy
2     

2mEy

h2  Y    0
... (8)

d
2
 Z

dz
2     

2mEz

h2  Z    0
... (9)

The eqn. (7) is the equation for the one-dimensional case.
The boundary condition applicable to the solution is:

X 0    X a    0
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So the eigen values of Ex are given by

Ex    
2

 h2

2ma
2 nx

2

... (10)

where nx    1, 2, 3, 

and the corresponding normalized eigen functions are given
by:

X x     2
a

 sin 
nx  x

a ... (11)

The solution for Y and Z are of the same form, therefore,
we have:

Ey    
2

 h2

2mb
2 ny

2 ... (12)

Y y     2
b

 sin 
ny  y

b

... (13)

and Ez    
2

 h2

2mc
2 nz

2 ... (14)

Z z   2
c

 sin 
nz  z

c

... (15)

Eigen Values of Energy

Substituting the expressions for Ex, Ey and Ez in eqn. (6),

we have:

En
x
, n

y
, n

z
    

2
 h2

2m
 






 
nx

2

a2    
ny

2

b
2    

nc
2

c
2  





 ... (16)
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where    nx    1, 2, 3, 

ny    1, 2, 3, 

nz    1, 2, 3, 

This equation gives the eigen values of the energy of the
particle. These values are called the energy-levels of the
particle.

Wave function

The total normalized wave-function inside the box for the
stationary states is given by:

n
x
, n

y
, n

z
 x, y, z    X x Y y Z z

  8
abc

 sin 
nx  x

a
  sin 

ny  y

b
  sin 

nz  z

c

... (17)
where nx, ny and nz are integers.

The wave-function is zero outside the box. It is easily to
proved that the wave-function is normalized, because:

8
abc

    
0

a

  



 sin 

nx  x

a
 




2

 dx      
0

b

  



 sin 

ny  y

b
 




2

 dy      
0

c

  



 sin 

nz  z

c
 




2

 dz    1

From Eqs. (16) and (17) we get the following conclusions:

1. Three integers nx, ny and nz, which are called quantum

numbers, are required to describe each stationary state.

If we change the sign of the quantum numbers, there
is no change in the energy and in the wave-function
except that the minus will appear on the right hand
side of Eq. (17).

Therefore, all the stationary states are given by the
positive integral values of nx, ny and nz.
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No quantum number can be zero, because if any one
of them is taken zero, then  x, y, z    0, which would
mean that the particle does not exist in the box.

2. The lowest possible energy, i.e., the energy in the
ground state, occurs when nx    ny    nz    1 and it

depends on the values of a, b and c.

3. If the particle is confined in a cubical box in which
a    b    c    a, the eigen-values of energy are given by:

En
x
, n

y
, n

z
    

2
 h2

2ma
2 nx

2
    ny

2
    nz

2 ... (18)

In this case energy of the particle in the ground state
is given by:

E111    
32

 h2

2ma
2

... (19)

No other state will have this energy, and this state
has only one wave-function. Therefore, the ground state
and the energy-level are said to be non-degenerate.

4. In a cubical box, the energy depends on the sum of
the squares of the quantum numbers. Consequently the
particle having the same energy in an excited state will
have several different stationary states, or different
wave-functions. Such states and energy-levels are said
to be degenerate.

6.15 CORRESPONDENCE PRINCIPLE

In 1932 Niels Bohr proposed a correspondence principle.

Classical mechanics deals with the Laws of Physics governing
macroscopic bodies. The Laws of Quantum Physics are applicable
to the behaviour of microscope particles viz., atoms, nuclei etc.

Bohr’s correspondence principle bridges the gap
between the classical mechanics and quantum mechanics.
It removes the apparent discontinuity between the two.
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According to the correspondence principle, a system in a
state of higher quantum number (higher excitation) is governed
by the laws of classical mechanics. It does not mean that the
laws of classical mechanics are applicable to all large systems.

For systems at very low temperatures (near zero degree
Kelvin) or in very low state of quantum numbers (low excitation),
laws of quantum mechanics are applicable. The example are

He
3
, He II, supper conductors etc.

Statement

The principle states that for large quantum numbers,
quantum physics gives the same results as those of
classical physics.

Proof

According to classical electro-magnetic theory, an electron
revolving in a circular orbit radiates electro-magnetic waves having
a frequency equal to the frequency of revolution, including
harmonics which are integral multiples of that frequency.

The velocity of an electron revolving round the nucleus in
an orbit of radius r is given by

v
2
    

ke
2

mr ...(1)

Taking root on both sides, we have

v2
    e ke

2

mr
    

k  e
2

mr

v    e k
mr

    
e

4 0 mr

...(2)

r    
n

2
 h

2

42
 m kZ e

2
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and r    
n

2
 h

2

42
 m  1

4  o
    1    e

2
    

n
2
 h

2
 0

 me
2 ...(3)

          

 Putting Z    1 for hydrogen and k    

1
4 0

 


The frequency of revolution

    
v

2  r
...(4)

Substituting for  we have

  
1
2

  
e

4omr  r
  

1
2

 
e

4 0 mr1/2
 r

1    
1
2

  
e

 4  o m 
12 r

12 e
1

  
1
2

  
e

4  o m
12 r

32

Substituting for r, we have

  
1
2

  e

4 0 m1 / 2
 






 
n

2
 h

2
 0

 me
2  








3 / 2

    
me

4

40
2
 h

3  1

n
3

...(5)

According to Bohr’s theory of the hydrogen atom

1


    R 

 

1

n1
2    

1

n2
2 


  
me

4

8o
2
 h

3 

 

1

n1
2    

1

n2
2 


    
c


    
me

4

8o
2
 h

3 

 

1

n1
2    

1

n2
2 


...(6)
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When the quantum number involved are large i.e.
n1    n and n2    n    1 where n   1

      
me

4

8o
2
 h

3 

 
1

n
2    

1

n    12
 


  
me

4

8o
2
 h

3 



 
n    12    n

2

n
2
 n  12

 




  
me

4

8 o
2
 h

2  



 
n

2
    1

2
    2n    n

2

n
2
 n    12

 




  
me

4

8o
2
 h

3 



 

2n    1

n
2
 n    12

 




As n   1, so neglecting 1 as compared to n and 2n, we get

    
me

4

8o
2
 h

3  2

n
3 ...(7)

    
me

4

4o
2
 h

3 ...(8)

Comparing equations (4) and (5) we find that the classical
orbital frequency and frequency of radiation emitted as calculated
on the basis of quantum theory have the same value. Hence both
classical and quantum theories of the hydrogen atom make
identical predictions in the case of very large quantum numbers.

In fact ‘the greater the quantum number, the closer
quantum physics approaches classical physics’.

Significance of correspondence principle
The correspondence principle has proved to be of great use

in the computation of the intensity, polarisation and coherence
of spectral radiation. It has also been helpful in the formulation
of ‘selection rules’.
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ANNA UNIVERSITY SOLVED PROBLEM

Problem 6.4

In a Compton scattering experiment, the incident

photons have a wavelength of 3  10
 10

 m. Calculate the
wavelength of scattered photons if they are viewed at
an angle of 60 to the direction of incidence.    
                                    [A.U April 2017]

Given data 

Wavelength of incident X - rays   3  10
 10

 m,

Angle of scattering     60

h    6.625  10
 34

 Js

mo    9.1  10
 31

c    3  10
8
 ms

 1

Solution:

We know that 

         
h

mo c
 1  cos 

or       
h

mo c
 1  cos 

Substituting the given values, we have

       3    10
 10

    
6.625    10

 34

9.1    10
 31

    3    10
8  1  cos 60

  3  10
 10

    
6.625  10

 34

2.730  10
 22 1  0.5

  3  10
 10

    2.427  10
 12

  0.5
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        3  10
 10

    1.2132  10
 12

   3.012  10
 10

 m

     3.012 Å

Problem 6.5

X-rays of 1.0 Å are scattered from a carbon block. Find
the wavelength of the scattered beam in a direction
making 90 with the incident beam. How much kinetic
energy is imparted to the recoiling electron?
                                       [A.U May 2018]

Given data

Wavelength of incident X - rays     1 Å  1  10
 10

 m

        Angle of scattering     90

     h  6.625  10
 34

 Js.       

       c  3.0  10
8
 ms

 1
   

1 eV   1.6  10
 19

 joule.  

Solution

The change in wavelength is given by

              
h

mo c
 1  cos 

    
6.625    10

34

9.11    10
31

    3    10
8  1  cos 90

    0.242 1  0  10
 11
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  0.0242  10
 10

    0.0242 Å

Now           1.0  0.0242    1.0242 Å

  1.0242  10
 10

 m

Energy of incident X-ray photon   
hc


Energy of scattered X-ray photon   
hc
 

 Energy imparted to the recoiling electron 

   
hc


    
hc
 

    hc 

 
1


    
1


 


   
hc    

  
      

hc
  

  
6.625  10

 34
   3  10

8
  0.0242  10

 10
 

1.0  10
 10

   1.024  10
 10

 

  4.66  10
 17

 joule

  
4.66  10

 17

1.6  10
 19     291 eV

Problem 6.6

A neutron of mass 1.675  10 
- 27

 kg is moving with a
kinetic energy 10 keV. Calculate the De-Broglie
wavelength associated with it.            [A.U Jan 2019]

Given data

Mass of the neutron   1.675  10
 27

 kg
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Kinetic energy   10 keV    10  10
3
  eV

            10  10
3
  1.6  10

 19
 J

Planck’s constant h  6.625  10
34

 Js

Solution:

We know that     
h

2mE

Substituting the given values, we have

    
6.625  10

 34

2  1.675  10
 27

  10  10
3
  1.6  10

 19

  
6.625  10

 34

5.36  10
 42

      2.862    10 13 m

Problem 6.7

An electron at rest is accelerated through a potential of
5000 V. Calculate de - Broglie wavelength of matter wave
associated with it.                      [A.U. Jan 2020]

Given data

Accelerating potential V    5000 V

Solution

We know that     
h

2meV
  

    
12.26
V

   10
 10

 m
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Substituting the given values, we have

      
12.26  10

 10

5000

      
12.26  10

10

70.71

      0.173  10
 10

 m

    0.173 Å

Problem 6.8

Calculate de - Broglie wavelength associated with a
proton moving with a velocity equal to one-thirtieth of
the velocity of light.                     (A.U. Dec. 2019)

Given data

Velocity of the proton v    
1
30

    velocity of light

    
1

30
    3    10

8
  ms

 1

  1    10
7
  ms

1

Mass of the proton m    1.67    10
 27

 kg

Planck’s constant h    6.625    10
 34

 J s

Solution

We know that de - Broglie wavelength

                   
h

mv
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Substituting the given values, we have

    
6.625    10

 34

1.67    10
 27

    1    10
7

    3.97    10 14
 m

Problem 6.9

If the momentum of two particles are in the ratio
1 : 0.25, compare their de - Broglie wave lengths.

(A.U. Jan 2018)

de - Broglie wavelengths associated with two particles of
momentum in the ratio 1 : 0.25 are 1 and 2

    
h

mv
    

h
p

1  
h
p1

 ,        2  
h
p2

1  :  2

h
p1

  :  
h
p2

1
1

  :  
1

0.25

1  :  4

de - Broglie wavelengths are in the ratio

1 : 4

6.62 Engineering Physics



Problem 6.10

Calculate the de - Broglie’s wave length of an electron

having a velocity of 10
6
 m/sec.          (A.U. Dec. 2018)

Given data 

Velocity of the electron  v  10
6
 ms

 1

Mass of the electron m  9.1  10
 31

 kg

Planck’s constant h  6.625  10
 34

 Js

Solution   

We know that de - Broglie’s wavelength     
h

mv

Substituting the given values, we have

               
6.625  10

 34

9.1  10
31

  10
6

     7.28  10
 10

 m

     7.28 Å

Problem 6.11

Calculate the de - Broglie’s wavelength associated
with an electron which travels with a velocity
500 km s

– 1
.                             (A.U. Jan. 2017)

Given data 

Velocity of the electron 

          v  500 km / sec  500  10
3
 m s

  1

Planck’s constant h  6.625  10
 34

 Js

Mass of the electron m  9.1  10
 31

 kg
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Solution 

We know that de-Broglie’s wavelength associated with
electrons

      
h

mv

Substituting the given values, we have

      
6.625  10

 34

9.1  10
 31

  500  10
3

     0.00145  10
 6

     14.5  10
 10

 m

      14.5 Å

Problem 6.12

Calculate the minimum energy an electron can possess
in an infinitely deep potential well of width 4 nm.   
                                       [A.U. Jan 2015]

Given data

Width of potential well a  4 nm  4  10
 9

 m

For minimum energy, n  1

Mass of the electron m  9.1  10
 31

 kg

Planck’s constant h  6.625  10
 34

 Js

Solution:

       We know that  En  
n

2
 h

2

8ma
2
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Substituting the given values, we have

E1      
1

2
    6.625    10

 342

8    9.11    10
 31

    4    10
 92

        E1    3.764  10
 21

 J

      E1    
3.764    10

 21

1.6    10
 19   eV [. . . 1 eV  1.6  10 19 J]

E1    0.024 eV

Problem 6.13

An electron is trapped in a one-dimensional box of
length 0.1 nm. Calculate the energy required to excite
the electron from its ground state to the fifth excited
state.                                [A.U. April 2016]

Given data

Length of the one dimensional box 

a  0.1 nm  0.1  10
 9

 m

For ground state n  1

For 5
th

 excited state, n  6 

Solution 

We know that En    
n

2
 h

2

8ma
2

E1    
1

2
  6.625  10

 342

8  9.11  10
 31

  0.1  10
 92

E1      6.022  10
 18

 J

Basic Quantum Mechanics 6.65



For 5
th

 excited state, n  6

E6    
6

2
  6.625  10

 342

8  9.11  10
 31

  0.1  10
 92

E6    2.168  10
 16

 J

The energy required to excite the electron from its ground
state to the fifth excited state is E  E6  E1

E   2.168   10
 16

   6.022   10
 18

         2.168   10
 16

   0.06022   10
 16

    2.108  10
 16

 J 

     
2.108    10

 16

1.6    10
 19   eV        [. . . 1 eV  1.6  10

 19
 J]

E      1317 eV

ANNA UNIVERSITY PART - A
‘2’ MARKS Q&A

 1. State compton effect. (A.U. Jan 2018)

When a beam of X - rays is scattered by a substance of
low atomic number, the scattered radiation consists of two
components. One has the same wavelength  as the incident
ray and the other has a slightly longer wavelength .
This phenomenon of change in wavelength of scattered X - rays
is known as compton effect.

 2. What is Compton wavelength? (A.U. Jan 2019)

The change in wavelength corresponding to scattering angle
of 90 obtained in Compton effect is called Compton wavelength.

Mathematically,      
h

mo c
 1  cos  

mo - rest mass of electron   9.11  10
 31

 kg
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When   90,     
h

mo c
 1  cos 90

  
h

mo c
 1  0

h
mo c

    0.0243 Å

This is known as Compton wavelength of electron.

 3. What are matter waves? (A.U. Dec. 2018)

The waves associated with moving particles of matter (e.g.,
electrons, photons, etc) are known as matter waves or de-Broglie
waves.

 4. How De-Broglie justified his concept? (A.U. May 2020)

 Our universe is fully composed of light and matter.

 Nature loves symmetry. If radiation like light can act like
wave and particle, then material particles (e.g., electron,
neutron etc.) should also act as particle and wave.

 Every moving particle has always associated with a wave.

 5. Write an expression for the wavelength of matter waves?
(or) What is de - Broglie’s wave equation? (A.U. Jan 2017)

Wavelength for matter waves is

    
h

mv
    

h
p

where h  planck’s constant

m  mass of the particle

v  velocity of the particle with which the wave is
associated.

p  momentum of the particle.

 6. Write an expression for the de - Broglie wavelength
associated with electrons. (A.U. Dec. 2018)

De-Broglie wave length associated with electrons accelerated
by the potential V.
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    
h

2 mo e V

where h  planck’s constant

e  charge of the electron

m  mass of the electron

V  accelerating voltage

 7. State the properties of the matter waves.
(A.U. Jan 2020)

(i) Lighter is the particle, greater is the wavelength
associated with it.

(ii) Smaller is the velocity of the particle, greater is
wavelength associated with it.

(iii) These waves are not electromagnetic waves.

(iv) The velocity of deBroglie wave is equal to the velocity
of the material particle.

 8. Write down Schroedinger time independent and
dependent wave equations. (A.U. Jan 2021)

Schroedinger time independent wave equation is

2
     

2m

h2  E    V     0

Schroedinger time dependent wave equation




  

h2

2m
 2

    V 



     i h


t

where 2
  

2

x
2  

2

y2  
2

z
2 is Laplacian operator.

         Wave function

      m   Mass of the particle.

      E   Total energy of the particle.

      V   Potential energy.
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      and    h     
h
2

               

 9. Mention some of the physical significances of the
wave function. (A.U. Jan. 2017, May 2018, Jan 2020)

(i) The wave function  relates the particle and wave
nature of matter statistically.

(ii) It is a complex quantity and hence we cannot measure
it.

(iii) If the particle is certainly to be found somewhere in
a space of dimensions dx, dy, dz, then the probability
value is equal to one.

  i.e., P     
V

  |  |
2
 dx dy dz  1

10. What are eigen values and eigen function?
(A.U. Jan. 2018)

Energy of a particle moving in one dimensional box of
width a is given by

En      
n

2
h

2

8ma
2

For each value of n, there is an energy level.  Each value
of En is called an eigen value.

For every quantum state (i.e., for different ‘n’ values), there
is a corresponding wave function n. This corresponding wave

function is called eigen function.

Eigen function associated with an electron in a one
dimensional box is given by

n   2
a

 sin 



 
nx
a

 



.
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ADDITIONAL PART - A ‘2’ MARKS Q & A

 1. What is Schrodinger wave equation?

The equation that describes the wave nature of a particle
in mathematical form is known as Schrodinger wave equation.

 2. What is a wave function?

A variable quantity which characterises de - Broglie wave
is known as wave function and it is denoted by the symbol .

 3. Define correspondance principle.

Any new theory in Physics must reduce to well - established
corresponding classical theory when the new theory is applied
to the special situation in which the less general theory is know
to be valid.

Anna University Part - B (16 Marks) Questions

 1. (i) Define Compton effect.
(ii) Derive an expression for the wavelength of the scattered
photon (compton shift). [A.U. May 2017]

 2. (i) What is Compton effect?

(ii) Give the theory of Compton effect and show that the

Compton shift    
h

mo c
 1  cos 

[A.U. May 2019, Jan. 2020]

 3. Explain Compton effect and derive an expression for the
wavelength of scattered photon. Also briefly explain its
experimental verification. [A.U. Jan 2020, Jan. 2021]

 4. Arrive at the Schrondinger wave equation and apply the
same for a particle in a rectangular box to obtain the energy
eigen values and the corresponding eigen functions.

[A.U. Dec. 2016, April 2017, Jan. 2018, Jan. 2020]
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 5. Derive the time independent Schrodinger equation for a
one-dimensional case. Use it to prove that a particle enclosed
in a one-dimensional box has quantised energy values.

[A.U. Jan 2016]

 6. Solve Schrodinger wave equation of a particle in box (one
dimensional) and obtain the energy eigen values.

[A.U. May 2018, Jan. 2019, Jan. 2020]

 7. Derive an expression for energy levels of a particle enclosed
in one-dimensional potential box of width ‘a’ and infinite
height. [A.U. Jan 2019]

 8. Discuss free particle problem starting from schrodinger wave
equation eigen.

 9. Derive eigen value end eigen energy function for 2D
dimensional box.

10. Derive eigen value end eigen function for 3D dimensional box.

11. State Band prove Bohr’s correspondance principle.

ADDITIONAL PART B ‘16’ MARKS’ QUESTIONS

 1. Obtain the eigen values and eigen functions for an electron
enclosed in a one dimensional potential box.

ASSIGNMENT PROBLEMS

 1. In Compton scattering, the incident photons have a wavelength
0.5 nm. Calculate the wavelength of scattered radiation if they
are viewed at angle of 45 to the direction of incidence.

[Ans:   0.5007 nm]

 2. X-rays of 1.0 Å are scattered from a carbon block. Find the
wavelength of the scattered beam in a direction making 60
with the incident beam. How much kinetic energy is imparted
to the recoiling electron? [Ans:   1.0121 Å  K.E.  149 eV]

 3. Find the change in the wavelength of an X-ray photon when
it is scattered through an angle of 180. [Ans: 0.0484 Å]
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 4. Monochromatic X-rays of wavelength 0.7078 Å are scattered
by carbon at an angle of 90 with the direction of incident
beam. What is the wavelength of scattered X-rays?

[ Ans: 0.7320 Å ]

 5. Estimate the potential difference through which a proton is
needed to be accelerated so that its de Broglie wavelength
becomes equal to 1 Å. 

(Given mass of proton   1.673  10
 27

 kg.) [ V = 0.082 V ]

 6. Calculate the de Broglie wavelength associated with an
electron carrying an energy 2000 eV. [     2.74    10 11 m ]

 7. Prove that the de Broglie wavelength of an electron
accelerated through a potential difference of V volts is

150
V

 Å.

 8. Calculate the zero point energy for an electron in a one
dimensional box of width 10 Å. [ Ans: 0.376 eV ]

 9. A beam of X-rays are scattered by free electrons. At 45
from the beam direction, the At scattered X-rays have a
wavelength of 0.022 Å. What is the wavelength of the
incident beam? (Ans: 0.0149 Å)

10. X-rays of wavelength 0.324 Å are scattered by a carbon
block. Find the wavelengh of scattered X-rays for a
scattering angle of 180. (Ans: 0.1725 Å)

11. X-rays of wavelength 0.3 Å undergoes Compton scattering
at an angle of 60. Find the wavelength of the scattered
photon and energy of the recoil electron.

(Ans:   0.3121, E  2.571  10 16 J

12. Calculate the de Broglie wavelength of an electron
accelerated to a potential of 2 kV. (Ans: 0.2744 Å)

6.72 Engineering Physics



Unit V

Applied Quantum Mechanics

 - 

Scanning Tunneling Microscope (STM)



7. Applied Quantum Mechanics

The harmonic oscillator (qualitative) – Barrier
penetration and quantum tunneling (qualitative) –
Tunneling microscope – Resonant diode – Finite
potential wells (qualitative) – Bloch’s theorem for
particles in a periodic potential – Basics of Kroning –
Penney model and origin of energy bands.

Introduction

 In quantum mechanics, the wave function of a system
gives the description of that system. We apply
Schrodinger’s wave equation to a system and then solve
it to find the wave function of the system.

 We shall study how Schrodinger’s time independent wave
equation can be applied to a system and then solved to
find the energy and wave function of the system under
given conditions.

 We also aim at learning characteristic properties of
solutions of this equation and comparing the predictions
of quantum mechanics with those of Newtonian
mechanics.

 As simple applications of Schrodinger’s time independent
wave equation, here we shall discuss the problems of:

– Harmonic oscillator

– Barrier penetration and Quantum tunneling

– Finite potential wells



7.1 HARMONIC OSCILLATOR (Qualitative)

Definition

A particle undergoing simple harmonic motion is
called a harmonic oscillator.

In harmonic oscillator, the force applied is directly
proportional to the displacement and is always directed towards
the mean position.

Examples. Familiar examples are; a simple pendulum, an
object floating in a liquid, a diatomic molecule and an atom in
a crystal lattice.

If applied force moves the particle through x, then restoring
force F is given by

F      x

F      kx ... (1)

The potential energy of the oscillator is

V       Fdx

V    k  xdx    
1
2

 kx
2

V    
1
2

  k x
2 ... (2)

where k is force constant.

In harmonic oscillator, angular frequency is given by

     k
m

Fig. 7.1 Harmonic Oscillator

7.2 Engineering Physics



Squaring on both sides

2
    



  k

m
 





2

2
    

k
m

 ,       k    m2

where m - mass of the particle

Substituting k in eqn (1), we have

V    
1
2

 m 2
 x

2

... (3)

Wave equations for the oscillator

The time - independent Schrodinger wave equation for
linear motion of a particle along the x-axis is:

d
2
 

dx
2     

2m

h2  E    V     0 ... (4)

where E   Total energy of the particle,

   V   Potential energy and

      Wave-function for the particle which is function
                    of x alone.

Substituting for V in equation (4) we get:

d
2
 

dx
2     

2m

h2  

 E    

1
2

 m 2
 x

2
 

     0 ... (5)

d
2
 

dx
2     

2mE

h2     
2m

h2     
1
2

  m2
x

2
     0

or      
d

2
 

dx
2     




 
2mE

h2     
m

2
 2

h2  x
2
 



     0 ... (6)

This is Schrodinger wave equation for the oscillator.

Applied Quantum Mechanics 7.3



Simplification of the wave equation

To simplify eqn. (6), a dimensionless independent variable
y is introduced. It is related to x by the equation

    y    ax ... (7)

               x    
y
a

, where a    m 
h

Now we have

d 
dx

    
d 
dy

 
dy
dx

    
d 
dy

 a

Differentiating

d
2
 

dx
2     

d
2

dy
2   

d
2
y

dx
2

 and    
d

2
 

dx
2     

d
2
 

dy
2  a

2

d
2

dx
2     a

2
 
d

2
 

dy
2 ... (8)     

d2y

dx2    a2

Substituting for 
d

2
 

dx
2  and x

2
 in eqn (6), we have

a
2
 
d

2
 

dy
2     




 
2mE

h2     a
4
 
y

2

a
2 



     0

a
2
 
d

2

dy
2     


 
2mE

h2     a
2
y

2
 

     0

Dividing through out by a
2
, we have

    
d

2
 

dy
2     


 
2mE

a
2
 h2    y

2
 

     0

 
...(9)

               

   ( y    ax
dy    adx
dy
dx

    a




 . . . x    

y
a

 

a  m 
h2

a2  
m 
h2

a2  
m2 2

h2

 a4  
m2 2

h2  



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Substituting for a
2
.

d
2

dy
2     







 
2mE

m
h

  h2
    y

2
 






     0
...(10)

or      
d

2
 

dy
2     


 
2E
h

    y
2
 

     0

or       
d

2
 

dy
2          y

2
      0

 ... (11)

where     
2E
h

Eigen-values of the total energy En

The wave equation for the oscillator is satisfied only for
discrete values of total energies given by

2E
h

    2n  1

             or En    
1
2

 2n  1 h

En    

 n    

1
2

 

 h ... (12)

Substituting h     
h
2

 and     2 , this expression has

the form:

En    

 n    

1
2

 

 h  ... (13)

where, n    0, 1, 2, , and  is the frequency of the classical
harmonic oscillator, given by

    

2

    
1
2

  k
m



 

. . .      k
m

 




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From eqn. (13),we get the following conclusions:

1. The lowest energy of the oscillator is obtained by
putting n    0 in eqns (12) and (13) it is:

Eo    
1
2

 h     
1
2

  h
... (14)

This is called the ground state energy or the zero point
vibrational energy of the harmonic oscillator. The
zero-point energy is the characteristic result of
quantum mechanics. The values of En in terms of Eo

are given by:

En    2n  1 Eo ... (15)

where n    0, 1, 2, 3, 

2. The eigen-values of the total energy depend only on
one quantum number n. Therefore all the energy-levels
of the oscillator are non-degenerate.

3. The successive energy-levels are equally spaced; the
separation between two adjacent energy-levels being

h  h. The energy-level diagram for the harmonic
oscillator is shown in fig. 7.2.

Fig. 7.2 Energy levels allowed for a harmonic oscillator.
Note that the oscillator cannot have zero energy
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In the figure 7.2 the horizontal lines show the energy levels
and the dashed curve is parabola representing the potential

energy V    
1
2

 k x
2

Wave functions of the harmonic oscillator

For each value of the parameter     
2E
h

    2n  1, there

is a different wave function n which consists of:

(i) the normalization constant Nn given by:

Nn    



 
m 
 h

 




1/4

 2n
 n! 1/2 ... (16)

(ii) the exponential factor e
 y

2
/2

 and

(iii) a polynomial Hn y, called Hermite polynomial in either

odd or even powers of y.

Thus the general formula for the n
th

 wave function is:

n    



 
m 
 h

 




1/4

  2n
 n! 1/2

 e
 y

2
/2

 Hn  y 
... (17)

The first six Hermite polynomials are given in the following
table:

Table 7.1

n     2n    1 En Hn  y 

0 1 1
2

 h H0  y     1

1 3 3
2

 h H1  y     2 y

2 5 5
2

 h H2  y     4 y
2
  1
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n     2n    1 En Hn  y 

3 7 7
2

 h H3  y     8 y
3
    12 y

4 9 9
2

 h H4  y     16 y
4
    48 y

2
    12

5 11 11
2

 h H5  y     32 y
5
    160 y

3
    120 y

The first six wave functions are shown in fig. 7.3.

Significance of zero point energy

For lowest (ground) state, n    0

E0    
1
2

 h

This is the lowest value of energy, called zero point
energy. Even it the temperature reduces to absolute zero, the

oscillator would still have an amount of energy 
1
2

 h.

Fig. 7.3 Wave functions for Harmonic Oscillator
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In old quantum mechanics, the energy of n
th

 level.

En    nh

whereas in wave mechanics

En    

 n    

1
2

 

 h

A comparison of two results shows that the only difference
in old quantum mechanics and wave mechanics is that all the
equally spaced energy levels are shifted upward by an
amount equal to half the separation of energy levels

i.e., 
1
2

 h (equal to zero point zero).

The existence of zero point energy is an important feature
of wave mechanics and has been found to be experimentally true.

 Experiments in scattering of light by crystals at low
temperature show that when temperature is decreased,
the intensity of scattered light tends to a finite limit and
remains unchanged with further decrease in
temperature.

 It indicates that the oscillations of the atom in the
crystal do not stop even at absolute zero.

7.2 BARRIER PENETRATION AND QUANTUM
TUNNELING (Qualitative)

 According to classical ideas, a particle striking a hard
wall has no chance of leaking through it. But, the
behaviour of a quantum particle is different due to the
wave nature associated with it.

 We know that when an electromagnetic wave strikes at
the interface of two media, it is partly reflected and
partly transmitted through the interface and enters the
second medium.
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 In a similar way the de Broglie wave also has a
possibility of getting partly reflected from the boundary
of the potential well and partly penetrating through the
barrier.

 Fig. 7.4 shows a particle with energy E    V approaching
potential barrier of height V.

 An electron of total energy E approaches the barrier from
the left. From the view-point of classical physics, the electron
would be reflected from the barrier because its energy E is
less than V.

 For the particle to overcome the potential barrier, it must
have an energy equal to or greater than V. 

Fig. 7.4
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Quantum mechanics leads to an entirely new result.
It shows that there is a finite chance for the electron to
leak to the other side of the barrier. 

It is noted that the electron tunneled through the potential
barrier and hence in quantum mechanics, this phenomenon
is called tunneling.

The transmission of electrons through the barrier is known
as barrier penetration.

Expression for Transmission Probability

 Now let us consider the case of a particle of energy
E  V approaching a potential barrier of finite height and
width as shown in fig. 7.5.

 The particle in region I has certain probability of passing
through the barrier to reach region II and then emerge
out on the other side in region III.

 The particle lacks the energy to go over the top of the
barrier, but tunnels through it. Higher the barrier and
wider it is, the lesser is the probability of the particle
tunneling through it.

Fig. 7.5 When a particle of energy E    V, approaches a
potential barrier, the de Broglie waves that correspond to

the particle are particle are partly reflected and partly
transmitted. That is the particle has a finite chance of

penetrating the barrier
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 Let us now consider a beam of identical particles, all
having kinetic energy E. The beam is incident on the
potential barrier of height V and width a from region I.

 On both sides of the barrier V    0. This means that no
forces act on particles in regions I and III.

As shown in fig. 7.5, the wave function I  represents the

particle moving towards the barrier from region-I while I 

represents the particle reflected moving away from the barrier.

The wave function II represents the particle inside the

barrier. Some of the particles end up in region III while the
others return to region I.

Quantum mechanics shows that the transmission probability
T for a particle to pass through the barrier is given by

T    
Number of particles transmitted

Number of particles incident

This probability is approximately given by

T    To e
 2 k a

where k    
2m V  E

h
 and a is the width of the barrier.

To is a constant close to unity. It shows that the probability

of particle penetration through a potential barrier depends on
the height and width of the barrier.

Significance of the study of barrier penetration
problems

1. Tunnelling is a very important physical phenomena
which occurs in certain semiconductor diodes. In such
diodes electrons pass through potential barriers even
though their kinetic energies are smaller than the
barrier heights.
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2. The tunneling effect also occurs in the case of the alpha
particles. The kinetic energy of alpha particle is only
a few MeV but it is able to escape from a nucleus
whose potential wall is perhaps 25 MeV high.

3. The ability of electrons to tunnel through a potential
barrier is used in the Scanning Tunneling Microscope
(STM) to study surfaces on an atomic scale of size.

Terminology related to microscope

(a) Microscope
A microscope is an instrument which is used to view the

magnified image of a smaller object which cannot be clearly seen
with a naked eye.  

(b) Optical microscope
It is a microscope which uses light radiation to illuminate

the object.

(c) Resolving power
It is the ability of the microscope to show two closer

objects as separated ones.

The resolving power is inversely proportional to wavelength
of light used. In an electron microscope, beam of electrons are
used to illuminate the specimen.

The wave length  associated with these electrons is about
0.1 Å or less. Hence, its resolving power is very high. The
minimum distance that can be resolved in the electron
microscope is about 10 Å.

(d) Magnification Power
It is the ability of the microscope to show the image of

an object in an enlarged manner.

Magnification power   
size  of  the  image
size  of  the  object

  

F

  D
f
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In an optical microscope, 

F  Focal length of objective lens in mm

f  Focal length of eye piece in mm

  Length of microscope (16 cm)

D  Least distance of distinct vision (25 cm)

Thus, the magnification is about 1000 X (one thousand times).

In the case of electron microscope,  is very large ( > 1 m )
F and f can be reduced to less than a millimetre. So, the

magnification power of electron microscope is about 10
5
 X.

(e) Depth of focus

It is defined as the ability of the objective of
microscope to produce a sharp focussed image when the
surface of the object is not truly plane.

The deviation from plane surface occurs when the specimen
is severely etched or when certain constituents of the structure
are depressed or elevated from the etched surface.

Electron Microscope

Definition

It is a microscope which uses electron beam to
illuminate a specimen and it produces an enlarged image
of the specimen.

It has very high magnification power and resolving power
when compared to optical microscope.

Principle

Like an optical microscope, its purpose is to magnify
extremely minute objects. The resolving power of microscope is
inversely proportional to the wavelength of the radiation used
for illuminating the object under study. 
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Higher magnification as well as resolving power can be

obtained by utilizing waves of shorter wavelength . 

Electron microscope uses electron waves whose wavelength

is given by the formula   
12.25
V

.

 For  V  10,000 V,   0.1225 Å which is extremely short.

Electron microscopes giving magnification more than 2,00,000 X
are common in Science & Technology Medical Research
Laboratories.

An electron microscope consists of the following essential
parts:

(i) Electron Gun. Its function is to provide a narrow
beam of electrons of uniform velocity.

(ii) Electrostatic and magnetic lenses. Their function is
to refract and properly focus the electron beam.

(iii) Fluorescent screen or photographic plate. They
are used to receive the highly magnified image of the
extremely small object being studied.

Types of Electron Microscopes

There are four types of electron microscopes. They are

1. Transmission Electron Microscope (TEM)

2. Scanning Electron Microscope (SEM)

3. Scanning Transmission Electron Microscope (STEM)

4. Scanning Tunneling Microscope (STM).

Fig. 7.6 gives comparison of an optical and electron
microscope.
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7.3 SCANNING TUNNELING MICROSCOPE (STM)

A scanning tunneling microscope, or STM, is a type of
electron microscope. It is commonly used in fundamental and
industrial research.

 It is an instrument used for imaging surfaces at the
atomic level.

 Due to its high resolution, individual atoms within
materials are routinely imaged and manipulated.

 Note:

Invented in the year 1981 by Gerd Binning and
Heinrich Rohrer from IBM’s Zurich Research Center in
Switzerland. It helped them to win Nobel Prize in Physics in
the year 1986.

Fig. 7.6
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Principle

It is based on the concept of quantum mechanical tunneling
of electrons.

 In this technique, a sharp narrow conducting needle
(probe) or tip is brought very near to the surface to be
examined (Fig.7.7)

 A small voltage difference about 1V is applied between
the tip and the surface of the material.

 This allows electrons to tunnel through the vacuum
between them and results in tunneling current.

 Information about surface morphology is obtained by
monitoring the tunneling current. The tip’s position scans
across the surface and it is usually displayed in image
form

Construction

The components of STM include 

1. Scanning needle tip

2. Piezoelectric controlled height and surface x, y
        scanner.

Fig. 7.7 Sketch of STM
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3. Coarse sample to tip control

4. Vibration isolation system and

5. Computer

 Needle tip for scanning the sample surface. It is often
made of tungsten.

 Piezoelectric tube is provided with tip and electrodes. It
is capable of moving X, Y, Z directions. It is used to
maintain the tip position with respect to the sample and
scanning the sample.

 Coarse sample to tip control is used to bring the tip close
to the sample.

 Vibration isolation system: It presents any vibration or
sound in the system

 The computer is used to acquire the data and it may also
used for enhancing the image with the help of image
processing as well as performing quantitative measurement.

Working

The sharp metal needle is brought close to the surface to
be imaged. The distance is of the order of a few angstroms. 

 A bias voltage is applied between the sample and the
tip. When the needle is at a positive potential with
respect to the surface, the electrons can tunnel through
the gap and set up a small “tunneling current” in the
needle. This feeble tunneling current is amplified and
measured.

 With the help of the tunneling current, the feedback
electronics keeps the distance between tip and sample
constant.

 Once tunneling is established, the tip’s bias and position
with respect to the sample can be varied and data are
obtained from the resulting changes in current.
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Scanning

 If the tip is moved across the sample in the x  y plane,
the changes in surface height and density of states
causes changes in tip current. These changes are mapped
in images to present the surface morphology.

 This change in current with respect to position can be
measured itself, or the height Z of the tip corresponding
to a constant current can be measured. These two modes
are called constant height mode and constant current
mode, respectively.

Fig. 7.8 Scanning Tunneling Microscope

Fig. 7.9 Image of reconstruction
on a clean Gold surface

Fig. 7.10 An image of
single-walled carbon nonotube
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A macroscale image of an etched tungsten STM tip is
shown in figure. 7.11.

The figure 7.12 shows a tube of Piezoelectric Tube (PZT),
coated with metal both inside and outside. 

Advantages of STM

STMs are helpful because they can give researchers a three
dimensional profile of a surface. It allows researchers to examine
a multitude of characteristics, including roughness, surface
defects and determining things about the molecules such as size
and conformation.

 For an STM, good resolution is 0.1 nm lateral resolution
and 0.01 nm depth resolution.

 The high resolution of STMs enable researchers to
examine surfaces at an atomic level.

Fig. 7.11 Tungsten tip of STM

Fig. 7.12 A piezoelectric tube used in STM tip
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 Capable of capturing much more detail than other
microscopes. This helps researchers better understand
the subject of their research on a molecular level.

 STMs are also versatile. They can be used in ultra high
vacuum, air, water and other liquids and gasses.

 They will operate in temperatures as low as zero Kelvin
up to a few hundred degrees Celsius.

Disadvantages of STM

There are very few disadvantages to using a scanning
tunneling microscope.

 STMs can be difficult to use effectively. There is a very
specific technique that requires a lot of skill and precisions.

 STMs require very stable and clean surfaces, excellent
vibration control and sharp tips.

 A small vibration even a sound, can distrub the tip and
the sample together.

 Even a single dust particle can damage the needle.

 STMs use highly specialized equipment that is fragile
and expensive.

 The electronics require for STM are extremely
sophisticated as well as very expensive.

Applications of STM

1. It is a powerful tool used in many research fields and
industries to obtain atomic scale sample imaging and
magnification.

2. One innovative applications of STM recently found is
manipulation of atoms. For example, Iron atoms are
placed on Cu surface and dragged by the STM tip and
moves across the surface to a desired position. 

3. It is used to analyze the electronic structures of the
active sites at catalyst surfaces.
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4. STM is used in the study of structure, growth,
morphology, electronic structure of surface, thin films
and nano structures.

Concept of Resonant Tunneling

An interesting phenomena occurs when two barriers of width
a separated by a potential well of small distance L as shown in
fig. 7.13. This leads to the concept of resonant tunneling.

For example, assume that incident electrons have energy
E and that all the energy states En lie above E, as shown in

fig. 7.14.

The barriers are sufficiently thin to allow tunneling and the
well region between the two barriers is also sufficiently narrow to
form discrete (quasi-bound) energy levels, as shown in fig. 7.13.

The transmission coefficient of the double symmetric
barrier becomes unity (ie., T    1), when the energy of the
incoming electron wave E coincides with the energy of one of
the discrete states formed by the well.

ie., E    En    
n

2
h

2

8 m L
2

where n    1, 2, 3 

Fig. 7.13 Double barrier junction with no applied bias. E is
the energy of the incident electron and E1, E2 are the energy

level in quasi band states in the well.
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Thus, transmission probability of the double
symmetric barrier is maximum and hence, the tunneling
current reaches peak value when the energy of electron
wave is equal to quantised energy state of the well.

This phenomenon is known as resonance tunneling.

 The double barrier junction has important applications
to a device known as Resonant Tunneling Diode (RTD)

7.4 RESONANT DIODE

 It is a device that has two tunneling junctions. Its
I-V characteristic shows negative differential
resistance characteristic.

Definition
A resonant tunneling diode (RTD) is a diode with

resonant tunneling structure. The electrons can tunnel
through some resonant states at certain energy levels.

Principle
When electron (wave) incident with energy equal to energy

level of a potential well of thin barrier, then the tunneling reaches
its maximum value. This is known as resonant tunneling.

Structure of RTD
A typical resonant tunneling diode structure is made by

using n-type GaAs for the regions to the left and right of both
barriers (regions 1 and 5) (Fig. 7.14).

Fig. 7.14 Structure of Resonant Tunnel Diode (RTD)
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The intrinsic GaAs is for the well region (region 3) and
Al Ga As or Al As for the barrier material (regions 2 and 4).

Tunneling is controlled by applying a bias voltage across
the device.

Working

Tunneling control
Tunneling is controlled by applying a bias voltage across

the device.

Without applied bias
For the case of no applied bias, the energy band diagram

is shown in fig. 7.15(a).

Practically it is very difficult to control the barrier height
as well as the width of the potential well to match with the
energy of the electron. This energy matching and hence resonant
tunneling could be achieved by biasing the potential barriers.

With applied bias

When voltage is applied, the band diagram shifts and if
the voltage is varied until the quantized discrete energy level
corresponding to the potential well matches with the energy of
the electron wave, resonant tunneling occurs. Such behavior is
shown in fig. 7.15(b).

Fig. 7.15 (b) Resonant tunneling by proper biasing of the
potential barriers Double barrier function under the action

of an applied bias
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Current - Energy characteristic for a resonant
tunneling diode

When the incident electron energy E is very different from
the energy of a discrete state En, transmission is low. As E

tends to En, transmission will increase, becoming a maximum

when E    En.

As E increases, tunneling will increase, reaching a peak

when E  E1. After that point, a further increase in E will result

in a decreasing current, as shown in Fig. 7.16.

This decrease of current with an increase of bias is called
negative resistance. Further peaks and valleys will occur as
E approaches, and then moves across other discrete energy states.

Application and uses of Resonant Tunneling Diodes (RTD)

1. One area or active application is building oscillators
and switching devices that operate at tera hertz
frequencies.

2. RTDs are very good rectifiers.

Fig. 7.16 Current - energy characteristic for a resonant
tunneling junction, where E is the energy of the incident
electron and E1 is the energy of the first quasi - bound

state in the well
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3. They are used in digital logic circuits.

4. They also used in inverters, memory cells and
transistors (Resonant Tunneling Transistors (RTTs)

Advantages

 Resonant Tunneling diodes are very compact.

 They are capable of ultra-high-speed operations because
the quantum tunneling effect through the very thin
layers is a very fast process.

7.5 PARTICLE IN A FINITE POTENTIAL WELLS
(Qualitative)

 Consider a particle of mass m moving with velocity v
along the x-direction between x    0 and x    a.

 The walls of the box are not rigid. Hence it is
represented by a potential well of finite depth.

Step I: Let E be the total energy of particle inside the box
and V be its P.E. The potential energy which is assumed to be
zero within the box and its value outside the box is finite say
Vo and Vo  E.

The variation of potential with x is shown in fig. 7.17.

Fig. 7.17 Particle in a finite potential well with potential
V  0 in the Region II enclosed between the Regions I and

III with V  Vo of finite height
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Vx    Vo x    0 Region I

Vx    0 0    x    a Region II

and Vx    Vo x    a Region III

Classically, the particle with energy E  V0 cannot be

present in regions I and III outside the box.

Consider the quantum mechanical picture of the particle
in one dimension. If  is the wave function associated with the
particle then Schrodinger’s time independent equation for it is,

d
2
 

dx
2     

2m

h2  E    V     0 ... (1)

Step II: Consider the three regions I, II, III separately and let
I, II, III be the wave functions in them respectively.

We have for region I.

d
2
 I

dx
2     

2m

h2  E    V0 I    0

... (2)

For region II,

d
2
 II

dx
2     

2mE

h2  II    0 ... (3)

...  V    0
and for region III,

d
2
 III

dx
2     

2m

h2  E    V0 III    0 ... (4)

Let 
2mE

h2     k
2
    and   

2m E    V0

h2      k2 as E  V0 ... (5)
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Then the equation in the three regions is written as,

d
2
 I

dx
2     k2 I    0

d
2
 II

dx
2     k

2
 II    0

d
2
 III

dx
2     k2 III    0 ... (6)

Step III: The solutions of these equations are of the form.

I    Ae
k x

    Be
 k x for x  0

II    P  eikx
    Q  e ikx for 0  x  a

and III    C  ek x
    De

 k  x for x  a

Step IV: As x   ,  should not become infinite. Hence
B    0 and C    0.

Hence the wave functions in three regions are

I    Ae
k x

II    P  eikx
    Q  e ikx

and III    D  e k x

Step V: The constants A, P, Q and D can be determined by
applying the boundary conditions. The wave function  and its

derivative 
d 
dx

 should be continuous in the region where  is

defined.

I 0    II 0
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


 
d I

dx
 


 x    0

    



 
d II

dx
 


 x    0

II a    III a




 
d II

dx
 


 x    a

    



 
d III

dx
 


 x    a

... (8)

 Using these four conditions, we get four equations from
which the four constants A, P, Q, D can be determined.
Thus the wave functions can be known completely.

 The first three wave functions and probability densities
when plotted against x are as shown in fig. 7.18.

 The eigen functions are similar in appearance to
those of infinite well except that they extend a
little outside the box.

 Even though the particle energy E is less than the
P.E. V0 , there is a definite probability that the

particle is found outside the box.

 The particle energy is not enough to break through
the walls of the box but it can penetrate the walls
and leak out.


�


�


�

� �
�

�

� �
�

�

� �
�

�

Fig. 7.18
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 This shows penetration of the particle into the
classically forbidden region.

 The energy levels of the particle are still discrete but
there are a finite number of them. Such a limit exists
because, soon the particle energy becomes equal to V0.

For energies higher than this the particle energy is not
quantised but may have any value above V0.

 These predictions are unique in quantum
mechanics and shows different behaviour from
that expected in classical physics.

Band theory of solids (Zone theory)

The free electron theory explains the properties like
thermal conductivity, electrical conductivity and specific heat of
most of the metals.

But, it fails to explain why some solids are conductors,
some are insulators and others are semiconductors.

A solution to this problem was given by band theory
of solids and is called zone theory.

According to free electron theory, the potential energy of the
electron inside the crystal through which an electron moves is
supposed to be constant (zero). So it is completely free to move
about in the crystal, restrained only by the surface of the crystal.

Postulates

1. According to band theory, potential energy of electron
within the crystal is periodic due to periodicity of the
crystal i.e., free electrons move inside periodic lattice
field.

2. The potential energy of the solid varies periodically
with the periodicity of space lattice ‘a’ which is nothing
but interatomic spacing.
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Inside a real crystal, the electrons (–ve charge) move
through periodic arrangement of positively charged holes (+ve
charge) as shown in the fig. 7.19(a)

Fig. 7.19(b) shows one dimensional periodic potential
distribution for a crystal. It is assumed that the potential energy
of the electron at the positive ion site is zero and it is maximum
when it is half way between the adjacent nuclei.

7.6 BLOCH’S THEOREM FOR PARTICLES IN A
PERIODIC POTENTIAL

The motion of electron inside the lattice is not free as
expected, but the electron experiences a periodic potential
variation. The potential energy on the electron is maximum
between adjacent ions and gradually decrease as the electron
moves towards ions as shown in fig.7.20.

Fig. 7.20 One-dimensional periodic potential distribution
on electron in crystal lattice

Bloch Theorem
It is a mathematical statement regarding the form

of one electron wave function for a perfectly periodic
potential.

Fig. 7.19 One dimensional periodic potential distribution
for a crystal
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Statement

If an electron in a linear lattice of lattice constant
‘a’ characterised by potential function V x    V x    a
satisfies the Schrodinger equation

d2
  x

dx
2     

2m

h2  [E  V x]  x    0
... (1)

then the wave functions  x of electron (with energy E)
is obtained as a solution of Schrodinger equation are of
the form

 x    uk x e
ikx ... (2)

where uk x    uk x    a ... (3)

Here uk x is also periodic with lattice periodicity.

The potential V x is periodic as V x  V x  a where
a is a lattice constant.

From the Block theorem, we can say that the free electron

is modulated by the periodic function uk x eikx

In other words the solutions are plane waves modulated
by the function uk x which has the same periodicity as the

lattice. This theorem is known as Bloch Theorem. The functions
of the type (2) are called Bloch functions.

Proof

If equation (1) has the solution with the property of
equation (2), we can write the property of the Bloch functions
i.e., equation (3) as

 x    a    e
ik x  a

 uk x  a

(or)  x  a    e
ikx

  eika
 uk x  a
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Since uk x    a    uk x, we can write the above equation as

 x    a    e
ikx

 e
ika

  uk x ... (4)

Since  x    e
ikx

 uk x, we can write the above equation as

 x    a    e
ika

   x ... (5)

      (or)  x  a    Q  x ... (6)

      where Q    e
ika

If  x is a single-valued function, then

we can write  x     x  a Thus Bloch theorem is
proved.

This equation is similar to that of eqn (2) and eqn (4) i.e.,
If the potential is a function of ‘x’ and ‘a’, then the wave function
is also a function of ‘x’ and ‘a’.

7.7 BASICS OF KRONIG PENNY MODEL

The essential feature of the behaviour of electronic
potential is studied by considering a periodic rectangular well
structure in one dimension. It was first discussed by Kronig
and Penny in the year 1931.     

The potential energy of an electron, when it moves in one
dimensional perfect crystal lattice is assumed in the form of
rectangular wells as shown in fig. 7.21.

Fig. 7.21 One dimensional periodic potential 
(Kronig and Penny model)
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In region where 0  x  a, the potential energy is zero and
in the region  b  x  0, the potential energy is Vo .

The one dimensional Schrodinger wave equations for two
regions are written as

d
2

dx
2     

2m

h2  [E  0]   0    for   0  x  a ... (1)

      (or) 
d

2

dx
2     2  0 ... (2)

            where 2
  

2mE

h2

and  

d
2

dx
2     

2m

h2  E    Vo     0    for  b  x  0    ... (3)

       (or) 
d

2

dx
2     2    0

... (4)

where 2
  

2m

h2  Vo  E

For both the regions, the appropriate solution suggested
by Bloch is of the from

  e
ikx

 UK x ... (5)

Differentiating equation (5) and substituting in equations (2)
and (4), then further solving it under boundary conditions, we get

P sin  a
 a

    cos  a  cos ka 
... (6)

      where   
2mE

h
   and   P  

mVoba

h2
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The term P is called as Scattering power of the
potential barrier. It is a measure of strength with which
the electrons are attracted by the positive ions.

The equation (6) is analysed by drawing a plot between

 a and 



 
P sin  a

 a
    cos  a 




 as shown in fig. 7.22.

From the graph, we conclude that

1. The energy spectrum of an electron consists of a large
number of allowed and forbidden energy bands.

2. The width of allowed energy band (shaded portion)
increases with increase of energy values i.e., increasing
the values of  a.

This is because the first term of equation 
P sin  a

 a
decreases with increase of  a.

3. In the limit P   the allowed energy band reduces to
one single energy level corresponding to the discrete
energy level of an isolated atom. (ie., a  )

Fig. 7.22 A plot of  a versus 



  

Psin  a
 a

    cos  a 



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4. In the other extreme case, when P  0

cos  a  cos ka

            Thus,   k

2
  k

2

2mE

h2   k
2 



. . . h  

h
2




     

 E  
h k

2

2 mE
 

 E  
h

2
k

2

82
m

 

which corresponds to free electron model.

This indicates that the particle is completely free and no

energy levels exist. Thus by varying P from 0 to  we find that

the completely free electron becomes completely bound.

E - K curve

The energy of the electron in the periodic lattice is given by

E    
h

2
k

2

8m
  k2

From the above equation as k changes, the corresponding

energy  E  also changes. For a free electron, the energy curve

is continuous as shown by dotted parabola.

But for the electron in the periodic lattice, the energy curve
is not a continuous parabola and discontinuity occur at

k    
n 
a

.
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The zone between  

a

 and  

a

 is known as first Brillouin

zone and the second zone has two parts from  

a

 to  
2
a

, and

 

a

 to  
2
a

. These zones are the allowed energy bands separated

by forbidden energy bands as shown in fig. 7.23.

7.8  ORIGIN OF ENERGY BANDS

A solid contains an enormous number of atoms packed
closely together. In the case of a single isolated atom, there are
discrete energy levels, 1s, 2s, 2p, 3s . These energy levels can
be occupied by the electrons of the atom, as shown in fig. 7.24
(a).

All the atoms of a solid, if assumed isolated from one
another, can have completely identical electronic schemes of their
energy levels. Then the electrons fill the levels in each atom
independently.

When the atoms come close together, they strongly interact
and the outer electron orbitals overlap with each other.

Fig. 7.23 Plot of energy Vs. wave vector in one dimensional
lattice
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Hence, the interactions of large number of atoms form
closely spaced energy levels known as permitted energy band.
The permitted energy bands are separated by energy gap Eg.

The lower completely filled band is valence band and upper
unfilled band is called conduction band (Fig. 7.24(b)).

Definition
A set of such closely spaced energy levels is called

an energy band.

Concept of valence band, conduction band and
forbidden band

 The energy bands in a solid correspond to the energy levels
in an atom. An electron in a solid can have only those
discrete energies that lie within these energy bands. These
bands are, therefore, called allowed energy bands.

 These (allowed) energy bands are, in general, separated
by some gaps which have no allowed energy levels. These
gap (regions) are known as forbidden energy bands.

 Band corresponding to valence electrons is called valence
band and the band beyond forbidden band is called
conduction band, into which, the electrons pass, and
move freely.

Fig. 7.24 Energy bands in a solid
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 The electrons in the outermost shell are called valence
electrons. The band formed by a series of energy
level containing the valence electrons is known as
Valence Band.

 Valence band is also defined as a band which is occupied
by the valence electrons. The valence band may be
partially or completely filled up depending on the nature
of the material.

 The next higher permitted band is the conduction
band. The energy levels occupying this band is defined
as the lowest unfilled energy band. This band may
be empty or partially filled. In conduction band, the
electrons can move freely.

 Both conduction band and valence bands are separated
by a region or gap known as forbidden band or gap which
is shown in the fig. 7.25. This band is collectively formed
by a series of energy levels above top of the valence band
and below the bottom of the conduction band.

 The energy gap between the valence band and
conduction band is called the forbidden energy gap
or forbidden band

It should be noted that no electron can exist in this band.
When an electron in the valence band absorbs enough energy,
it crosses the forbidden gap and enters into the conduction band.
(Fig. 7.26)

��

Fig. 7.25 Energy bands in
solids

Fig. 7.26 Valence band,
conduction band and

forbidden gap
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Classification of Metals, Semiconductors and Insulators

On the basis of width of forbidden gap valence and
conduction band the solids are classified into insulators,
semiconductors and conductors.

Insulators
 The band structure of insulators is as shown in fig. 7.27.

 The energy gap between conduction band and valence
band is very high and is about 10 eV.  

 The forbidden energy band is very wide. Due to this,
electrons cannot jump from valence band to conduction
band. In insulator, the valence electrons are bound very
tightly to their parent atoms.

 The conduction band is completely vacant and valence
band is completely filled.

 Even at high electric field, no electron will jump from
valence band to the conduction band because of large
energy gap. Hence, the electrical conductivity is zero.

Semiconductors

 The band structure of semiconductors is as shown in fig.
7.28.

 The forbidden gap is very small. Germanium and Silicon
are the best examples of semiconductors.

Fig. 7.27 Energy band for insulator
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 The energy gap between conduction band and valence
band is very small. It is about 0.5 eV to 1 eV.

 As temperature increases, the bonds in the valence band
break up and the created electrons move from valence
band to the conduction. The vacancies created in the
valence band due to breaking of bonds are termed as
holes.

 Hence, conduction band is partially filled and valence
band is partially vacant. These electrons and holes are
responsible for electrical conduction.

Conductor
The band structure of conductors is as shown in fig. 7.29.

There is no forbidden gap, both valence and conduction
bands overlap each other.

Fig. 7.28 Energy band for semiconductors

Fig. 7.29 Energy band diagram for conductor
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 The electrons free to move within the conductor are
responsible for electrical conduction.

 As temperature increases, the electrical conduction
decreases, because mobility decreases due to large
number of collisions with ions.

 The most important fact in conductors is that due to
the absence of forbidden gap, there is no structure to
establish holes. The total current in conductors is due
to only the flow of electrons.

Part - ‘A’ 
‘2’ Marks Questions with answers

 1. What is a harmonic oscillator?

A particle undergoing simple harmonic motion is called a
harmonic oscillator.

 2. Give examples for harmonic oscillator.

Familiar examples are; a simple pendulum, an object
floating in a liquid, a diatomic molecule and an atom in a crystal
lattice.

 3. What is significance of zero point energy is a
harmonic oscillator?

For lowest (ground) state, n    0

Eo    
1
2

 h

This is the lowest value of energy, called zero point
energy. Even it the temperature reduces to absolute zero, the

oscillator would still have an amount of energy 
1
2

 h.

In old quantum mechanics, the energy of n
th

 level.

En    nh
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whereas in wave mechanics

En    

 n    

1
2

 

 h

 4. Define barrier penetration.

The transmission of electrons through the barrier is known
as barrier penetration. The phenomena is also termed as the
tunnel effect. The phenomena of barrier penetration is entirely
due to the wave nature of matter.

 5. What is quantum tunneling?

The phenomenon of transmission of a particle through a
potential barrier of finite width and height, even when its energy
is less that the barrier height is called quantum tunneling.

 6. What are the significance of tunneling effect?

1. Tunneling is a very important physical phenomena
which occurs in certain semiconductor diodes. In such
diodes electrons pass through potential barriers even
though their kinetic energies are smaller than the
barrier heights.

2. The tunneling effect also occurs in the case of the alpha
particles. The kinetic energy of alpha particle is only
a few MeV but it is able to escape from a nucleus
whose potential wall is perhaps 25 MeV high.

3. The ability of electrons to tunnel through a potential
barrier is used in the Scanning Tunneling Microscope
(STM) to study surfaces on an atomic scale of size.

 7. What is an electron microscope?

It is a microscope which uses electron beam to illuminate
a specimen and it produces an enlarged image of the specimen.

It has very high magnification power and resolving power
when compared to optical microscope.
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 8. What are the types of electrons microscopes.

There are four types of electron microscopes. They are

1. Transmission Electron Microscope (TEM)

2. Scanning Electron Microscope (SEM)

3. Scanning Transmission Electron Microscope (STEM)

4. Scanning Tunneling Microscope (STM).

 9. What is scanning tunneling microscope?

It is an instrument used for imaging surfaces at the atomic
level.

In STM, good resolution is considered to be 0.1 nm lateral
resolution and 0.01 nm (10 pm) depth resolution. With this
resolution, individual atoms within materials are routinely
imaged and manipulated.

10. What is principle behind scanning tunneling
microscope.

STM is based on the concept of quantum barrier tunneling.

When a conducting tip is brought very near to the surface
to be examined, a bias (voltage difference) is applied between
the two can allow electrons to tunnel through the vacuum
between them.

Information is acquired by monitoring the current as the
tip’s position scans across the surface, and it is usually displayed
in image form.

11. Mention few application of STM.

1. The STM shows the positions of atoms - or more
precisely, the positions of some of the electrons. 

2. Uses of STM to study metals and semiconductors
surface can provide non-trivial real space information.

3. One innovative applications of STM recently found is
manipulation of atoms.
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4. To analyze the electronic structures of the active sites
at catalyst surfaces. 

5. STM is used in the study of structure, growth,
morphology, electronic structure of surface, thin flims
and nano structures.

12. State disadvantages of STM.

 A small vibration even a sound can disturb the tip and
the sample together.

 A single dust particle can damage the needle.

13. What is resonant diode?

A resonant tunneling diode (RTD) is a diode with resonant
tunneling structure. The electrons can tunnel through some
resonant states at certain energy levels.

14. Define resonant tunneling.

The transmission probability of the double symmetric
barrier is maximum. The tunneling current reaches peak value
when energy of electron wave is equal to quantised energy state
of the well.

This phenomenon is known as resonance tunneling.

15. State Block Theorem.

If an electron in a linear lattice of lattice constant ‘a’
characterised by potential function V x    V x    a satisfies the
Schoredinger equation

d
2
  x

dx
2     

2m

h2  [E  V x]  x    0

then the wave functions  x of electron (with energy E) obtained
as a solution of Schrodinger equation are of the form

 x    uk x e ika

         with uk x    uk x    a
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16. What is an energy band?
A set of closely spaced energy levels is called an energy

band.

17. What is valence band?
The electrons in the outermost shell are called valence

electrons. The band formed by a series of energy level containing
the valence electrons is known as Valence Band.

18. What is conduction band?
The band formed by a series of energy level containing the

conduction electrons is known as conduction band.

The energy levels occupying this band is defined as the
lowest unfilled energy band. This band may be empty or
partially filled. In conduction band, the electrons can move
freely.

19. What is forbidden gap?
Both conduction band and valence band are separated by

a region or gap is known as forbidden band or gap.

Part - B ‘16’ Marks Questions

 1. Obtain an expression for the energy levels of the harmonic
oscillator for applying Schrodinger wave equation.

 2. Discuss barrier penetration and quantum tunneling.

 3. What is the principle of scanning tunneling microscope.
Explain the construction and working scanning tunneling
microscope with a suitable diagram.

 4. Write a note on resonant diode.

 5. Discuss a particle in a finite potential well starting from
Schrodinger wave equation.

 6. Explain Bloch’s theorem for particles in a periodic potential.

 7. Discuss of Kraning penney model.

 8. Describe origin of energy bands in solid.
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