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LECTURE NOTES

A system is arrangement of components or devices connected together to perform a specific
function. A control system is a type of system, which for a specific input gives corresponding
output.

Definition:

* When a number of elements or components are connected in a sequence to perform a specific
function, the group thus formed is called a system

» When a output quantity is controlled by varying the input quantity, the system is called control
system

Example: Automatic Tea/Coffee Maker, Electric Hand Drier, Automatic Electric Iron, Servo
Voltage Stabilizer, Missile launching systems etc.

BASIC STRUCTURE OF A SYSTEM

The system consists of various components such as

Input: flow of energy or material that causes process to react or respond.
Manipulated Input is a input which is subjected to control.

Disturbance Input is an undesirable and unavoidable input to the plant, also known as
Disturbance or Noise.

Command Input: The external input which is independent of the feedback control.

Reference Input Element: This element estimates the relationship between the command and
reference input.

Error Detector: Also known as comparator, it compares the reference input with feedback
signal.



Controller: This element is responsible for suitable control action. Control Signal is the output
of the controller.

Error Signal: Output of error detector
Final Control Element: Actuator element block.
Controlled System: Process, in which a particular condition is to be controlled.

Disturbance Input: Variable which designer has no control or little information is available on
magnitude or function or time.

Controlled Variable: It is influenced by both manipulated variable and disturbance.

Feedback : It is a function of controlled variable. It is Used to correct the nonlinear in the
controlled system.

CLASSIFICATION OF CONTROL SYSTEM

1. Open loop and closed loop system

2. Linear and nonlinear system

3. Time Invariant and Time Variant system

4. Continuous and Discrete system

5. SISO and MIMO system.

6. Lumped parameter and Distributed parameter system
7. Deterministic and Stochastic control system

8. Static and Dynamic system

Open loop and closed loop system Open Loop Control System: A control system in which the
control action is totally independent of output of the system.

Any physical system which does not automatically correct the variation in its output or control
system in which the output quantity has no effect upon the input quantity are called open-loop
control system.

This means that the output is not feedback to the input for correction.
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Fig: Open loop system.

In open loop system the output can be varied by varying the input. But due to external
disturbances the system output may change. When the output changes due to disturbances, it is
not followed by changes in input to correct the output. In open loop systems the changes in
output are corrected by changing the input manually.

Example:
1. Light Switch : Lamp glows whenever light switch is ,,ON irrespective of light is
required or not.
2. Volume of Stereo System: Volume is adjusted manually irrespective of output volume
level.

3. Man walking on road with closed eyes. It is very difficult to walk on the desired path.
4. Electric hand drier
5. Automatic washing machine
6. Bread toaster
Merits:

1. System are simple in construction and design.
2. Easy to maintain

3. Economical

4. Stable

=

Systems are inaccurate and not reliable
2. Recalibration of the controller is necessary time to time
3. Changes in output due to external disturbance are not corrected automatically.

Closed Loop Control System: Control systems in which the output has an effect upon the input
quantity in order to maintain the desired output value are called closed loop systems.
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Fig: Closed loop control system.

The open loop system can be modified as closed loop system by providing a feedback.
The provision of feedback automatically corrects the changes in output due to disturbances.
Hence the closed loop system is also called automatic control system. The general block
diagram of an automatic control system is shown in fig.

It consists of an error detector, a controller, plant (open loop system) and feedback
path elements. The reference signal (or input signal) corresponds to desired output. The
feedback path elements samples the output and converts it to a signal of same type as that of
reference signal. The feedback signal is proportional to output signal and it is fed to the error
detector.

The error signal generated by the error detector is the difference between reference
signal and feedback signal. The controller modifies and amplifies the error signal to produce
better control action. The modified error signal is fed to the plant to correct its output.



Example:

1. Automatic electric Iron: Heating element are controlled by output temperature of the

iron.

2. Air Conditioner: It*s function depends on the temperature of the room.

3. Water Level Controller: Input water is controlled by water level of the reservoir.

4. Man walking with eyes open in a road, eye performs as error detector, compares actual
path of the movement with prescribed path and generates error signal. This error signal
transmits the corresponding control signal to the legs to connect the actual movement to

desired path.
Merits:

1.  The closed loop systems are accurate and reliable
2.  Reduced effect of Nonlinearity and disturbance.

3. Operating frequency zone is high.

4.  Senses the environmental changes and external disturbance and accordingly takes

necessary control action.
Demerits:

1. The closed loop systems are complex and costly.
2. The feedback in closed loop system may lead to oscillatory response.
3. The feedback reduces the overall gain of the system.

SNO Open Loop Control System Closed Loop Control System

1. Feedback is absent Feedback is always present

2. An error detector is not present An error detector is always present

3. Stable It may become unstable

4. Easy to construct Complicated in construction

5. It is an economical It is costly.

6. Has small bandwidth Has large bandwidth

7. It is inaccurate. It is accurate

8. Less maintenance More maintenance

9. It is unreliable It is reliable

10. | Examples: Hand drier, tea maker Examples: Servo  voltage  stabilizer,
perspiration

Linear and Nonlinear system: Linear system obeys law of superposition. The principle of
superposition states that the response produced by simultaneous application of two different
forcing functions is the sum of individual responses.
If r(t) is input and y(t) is the output, and r1(t)— y1(t) for =0 and rp(t)— yo(t) for =0, if the
input r(t)= arq(t)+bro(t): for =0,
then for a linear system the output must be y(t)= ay1(t)+by»(t), for t>0.

Time Invariant and Time Variant system:

For a time invariant system the parameter does not vary with time, response of such
system is independent of time at which input is applied.

For time variant the response depends on time. For example, in the space vehicle
control system the mass of the vehicle reduces as time increases and fuel decreases.

Continuous and Discrete system

If all the elements of the describing equation is define for all time, then the system is

continuous time (Differential Equation).If as in sampled date system, some elemental equation
are define or used only at discrete time points, then the system is discrete time system
(Difference Equation).



SISO and MIMO system
Single input — Single output and Multi input and multi output system.

Lumped parameter and Distributed parameter system

In Lumped Parameter system the significant variable of the system are lumped at some
discrete point, hence they are described by ordinary differential equation. When the significant
variables are distributed with respect to space and time, they are described by partial fraction
with time, with variables as independent variables.

Deterministic and Stochastic control system
In deterministic system the response is predictable, whereas in Stochastic system the
variables and parameters are random and the response is not predicable.

Static and Dynamic system
In a dynamic system the present output depends on present and past inputs. In a static
system the present output depends on only the present input.

MATHEMATICAL MODELS

Mathematical modelling of any control system is the first and foremost task that a
control engineer has to accomplish for design and analysis of any control engineering problem.
It is nothing but the process or technique to express the system by a set of mathematical
equations (algebraic or differential in nature).

Analysis means the process of finding the response or output of a system when it is
excited by an input or excitation provided we know the mathematical model of the system. On
the other hand, design or synthesis means we have to find out the system equations or the
arrangement of the components, provided we know the output of the system for an input.

Commonly used mathematical models are-

1. Differential equation model.

2. State space model.

3. Transfer function model.

Transfer Function. The transfer function of a linear, time-invariant, differential equation
system is defined as the ratio of the Laplace transform of the output (response function) to the
Laplace transform of the input (driving function) under the assumption that all initial conditions
are zero.

g [input] zero initial conditions

The applicability of the concept of the transfer function is limited to linear, time-invariant,
differential equation systems. The transfer function approach, however, is extensively used in
the analysis and designs of such systems are as follows.

1. The transfer function of a system is a mathematical model in that it is an operational
method of expressing the differential equation that relates the output variable to the input
variable.

2. The transfer function is a property of a system itself, independent of the magnitude and
nature of the input or driving function.

3. The transfer function includes the units necessary to relate the input to the output;
however, it does not provide any information concerning the physical structure of the
system. (The transfer functions of many physically different systems can be identical.)

4. If the transfer function of a system is known, the output or response can be studied for
various forms of inputs with a view toward understanding the nature of the system.

5. If the transfer function of a system is unknown, it may be established experimentally by
introducing known inputs and studying the output of the system. Once established, a
transfer function gives a full description of the dynamic characteristics of the system, as
distinct from its physical description.



ELECTRICAL AND MECHANICAL
SYSTEMS Electrical Systems:
Most of the electrical systems can be modelled by three basic elements : Resistor, inductor,

and capacitor. Circuits consisting of these three elements are analysed by using Kirchhoff's
Voltage law and Current law.

Resistor: The circuit model of resistor is shown in Fig.
i(t) R
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The mathematical model is given by the Ohm's law relationship,
V() =it)R
iI(t) =V(@)/R

Inductor:The circuit representation is shown in Fig.
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The input output relations are given by Faraday's law,
V(t) = L di(t)/dt

i(t) = (/L) v dt

where Integral of v dt is known as the flux linkages. Thus

I(t) = w(t)/ L
Capacitor: The circuit symbol of a capacitor is given in Fig.

i(t) C
-+ v(t) j

bl

v(t) = (1/C)Ji dt
i(t) = C dv/dt

In eqn. idt is known as the charge on tjle capacitor and is denoted by 'q'. Thus
g=Jidt

v(®) =q)/C

Mechanical System

There are two types of mechanical systems based on the type of motion.

e Translational mechanical systems

« Rotational mechanical systems
Modeling of Translational Mechanical Systems

Translational mechanical systems move along a straight line. These systems mainly

consist of three basic elements. Those are mass, spring and dashpot or damper.
If a force is applied to a translational mechanical system, then it is opposed by opposing forces
due to mass, elasticity and friction of the system. Since the applied force and the opposing
forces are in opposite directions, the algebraic sum of the forces acting on the system is zero.
Let us now see the force opposed by these three elements individually.



Mass

Mass is the property of a body, which stores kinetic energy. If a force is applied on a
body having mass M, then it is opposed by an opposing force due to mass. This opposing force
is proportional to the acceleration of the body. Assume elasticity and frictions are negligible.

Fn o a e

M ——> F

F = Fm = Ma = 1N
—mEa = e

o Fisthe applied force, Fp, is the opposing force due to mass, M is mass, a is acceleration
e X s displacement
Spring
Spring is an element, which stores potential energy. If a force is applied on spring K,
then it is opposed by an opposing force due to elasticity of spring. This opposing force is
proportional to the displacement of the spring. Assume mass and friction arenegligible.
Fk o x K '——> x
F=Fk =kx g

F is the applied force, F is the opposing force due to elasticity of spring, K is spring constant

o X is displacement
Dashpot

If a force is applied on dashpot B, then it is opposed by an opposing force due to friction
of the dashpot. This opposing force is proportional to the velocity of the body.
Assume mass and elasticity are negligible.
4 2
[T= l & F

d
Foaw s F= Fy=B>; j LE——*

e 7p Is the opposing force due to friction of dashpot, B is the frictional coefficient, v is
velocity
o X is displacement

Modeling of Rotational Mechanical Systems

Rotational mechanical systems move about a fixed axis. These systems mainly consist of three
basic elements. Those are moment of inertia, torsional spring and dashpot.

If a torque is applied to a rotational mechanical system, then it is opposed by opposing torques
due to moment of inertia, elasticity and friction of the system. Since the applied

torque and the opposing torques are in opposite directions, the algebraic sum of torques acting
on the system is zero. Let us now see the torque opposed by these three elements individually.

Moment of Inertia

In translational mechanical system, mass stores kinetic energy. Similarly, in rotational
mechanical system, moment of inertia stores kinetic energy.

If a torque is applied on a body having moment of inertia J, then it is opposed by an opposing
torque due to the moment of inertia. This opposing torque is proportional to angular
acceleration of the body. Assume elasticity and friction are negligible.
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« T isthe applied torque, Tj is the opposing torque due to moment of inertia, J is moment
of inertia

e o isangular acceleration, 0 is angular displacement
Torsional Spring
In translational mechanical system, spring stores potential energy. Similarly, in rotational
mechanical system, torsional spring stores potential energy.
If a torque is applied on torsional spring K, then it is opposed by an opposing torque due to the
elasticity of torsional spring. This opposing torque is proportional to the angular displacement
of the torsional spring. Assume that the moment of inertia and friction are negligible.

Tka H,T:Tk:KH

T e

o T isthe applied torque, Tk is the opposing torque due to elasticity of torsional spring, K
is the torsional spring constant, 0 is angular displacement
Dashpot
If a torque is applied on dashpot B, then it is opposed by an opposing torque due to the
rotational friction of the dashpot. This opposing torque is proportional to the angular velocity
of the body. Assume the moment of inertia and elasticity are negligible.

de B
Tya 6; T=T,=Bw=B—_ j i S
R
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e Tp is the opposing torque due to the rotational friction of the dashpot, B is the
rotational friction coefficient, ® is the angular velocity, 0 is the angular displacement

Two systems are said to be analogous to each other if the following two conditions are
satisfied.

o The two systems are physically different

« Differential equation modelling of these two systems are same
Electrical systems and mechanical systems are two physically different systems. There are two
types of electrical analogies of translational mechanical systems. Those are force voltage
analogy and force current analogy.
Force Voltage Analogy
In force voltage analogy, the mathematical equations of translational mechanical system are
compared with mesh equations of the electrical system.
Consider the following translational mechanical system as shown in the following figure.

+«—3
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The force balanced equation for this system is
F=fut+tfht+fi=0
2
F=MZZ+BS+Kx ———(1)
Consider the following electrical system as shown in the following figure. This circuit consists
of a resistor, an inductor and a capacitor. All these electrical elements are connected in a

series. The input voltage applied to this circuit is VV volts and the current flowing through the
circuit is ii Amps.

i R L
AN

Vv N O

Mesh equation for this circuit is
V=Ri+Ldi/dt+1/cfidt ------ (2)

Substitute, i=dg/dt in Equation 2.
2

dg d
V=R L+

dt dt?
V—Lqu+qu++1 3
T dt? dt ¢4 ®3)

By comparing Equation 1 and Equation 3, we will get the analogous quantities of the
translational mechanical system and electrical system. The following table shows these
analogous quantities.

Translational Mechanical System Electrical System
Force(F) Voltage(V)
Mass(M) Inductance(L)
Frictional Coefficient(B) Resistance(R)
Spring Constant(K) Reciprocal of Capacitance (1c)(1c)
Displacement(x) Charge(q)
Velocity(v) Current(i)

Similarly, there is torque voltage analogy for rotational mechanical systems. Let us now
discuss about this analogy.

Torque Voltage Analogy

In this analogy, the mathematical equations of rotational mechanical system are compared
with mesh equations of the electrical system.

Rotational mechanical system is shown in the following figure.

o=
1 R
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The torque balanced equation is
T = le + Tb + Tk
d*6 deé
T=]oz+Big +K0 ———(4)
By comparing Equation 4 and Equation 3, we will get the analogous quantities of rotational
mechanical system and electrical system. The following table shows these analogous
quantities.

Rotational Mechanical System Electrical System
Torque(T) Voltage(V)
Moment of Inertia(J) Inductance(L)
Rotational friction coefficient(B) Resistance(R)
Torsional spring constant(K) Reciprocal of Capacitance (1c)(1c)
Angular Displacement(0) Charge(q)
Angular Velocity(m) Current(i)

Force Current Analogy

In force current analogy, the mathematical equations of the translational mechanical system
are compared with the nodal equations of the electrical system.

Consider the following electrical system as shown in the following figure. This circuit consists
of current source, resistor, inductor and capacitor. All these electrical elements are connected
in parallel.

V'

(‘Di R L -C

The nodal equation is

V+1Jth+CdV—'(t) 5
RTL at ®)
Substitute, V=d¥/dt in Equation 5.

) 1ldy 1 d?y

A AT
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l(t)—Cdt2+Rdt+L1,[) 6

(By comparing Equation 1 and Equation 6, we will get the analogous quantities of the
translational mechanical system and electrical system. The following table shows these
analogous quantities.



Translational Mechanical System
Force(F)
Mass(M)
Frictional coefficient(B)
Spring constant(K)
Displacement(x)

Velocity(v)

Electrical System
Current(i)
Capacitance(C)
Reciprocal of Resistance(1R)(1R)
Reciprocal of Inductance(1L)(1L)
Magnetic Flux(y)

Voltage(V)

Similarly, there is a torque current analogy for rotational mechanical systems. Let us now

discuss this analogy.
Torque Current Analogy

In this analogy, the mathematical equations of the rotational mechanical system are
compared with the nodal mesh equations of the electrical system.

By comparing Equation 4 and Equation 6, we will get the analogous quantities of rotational
mechanical system and electrical system. The following table shows these analogous

quantities.

Rotational Mechanical System
Torque(T)
Moment of inertia(J)
Rotational friction coefficient(B)
Torsional spring constant(K)
Angular displacement(0)

Angular velocity(m)

Electrical System
Current(i)
Capacitance(C)
Reciprocal of Resistance(1R)(1R)
Reciprocal of Inductance(1L)(1L)
Magnetic flux(y)

Voltage(V)

These analogies are helpful to study and analyze the non-electrical system like
mechanical system from analogous electrical system.

Examples

1. Write the differential equations governing the mechanical system shown in fig .And

determine the transfer function?

—x, —
/ K, —
; M' _=I Mz :
; et U Nt —»f(t)
7B Ky
/

B

Solution

SIN 777 77777777

B,

In the given system, applied force f(t) is the input and displacement X is the output

Let, Laplace transfer of f(t)=£{f(t) = F(s)}

Laplace transfer of x =)=£{X} = X(s)
Laplace transfer of X;= £{X;} = X;(s)

10
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Hence the required transfer function is X(s)

F(s)
At Node 1 (M1)

» X,
oty
B "{bl

1\.[1 < —tb

< t}(l

< tk

d?X, dX;
fm1 = Mld—tz; fr1 =B d_tifkl = K1Xy;

d
fo = BE(Xl = X); fr = K(X1 — X);
By Newton’s second law,fr1 + fo1 + fo + fur + e =0

d*X, dx,
“My—+B;,—
1 ge2 1 gt

+ B (X; — X)+K; X+ K(X; — X);
On taking Laplace transform of above equation with zero initial conditions we get,

M;s?X,(s) + BysX;(s) + Bs[X;(s) — X(s)] + K1 X,(s) + K[X,(s) —X(s)] =0

X.(s)[Mys? + (B; + B)s + (K; + K)] — X(s)[Bs + K]=0

X.(s)[M;s? + (B; + B)s + (K, + K)] = X(s)[Bs + K]

Bs + K
2 X,(s) = X(S)M (1)

T+ BB st K K)o

At Node 2 (M2)
3L

S

,

[

JBH'/H:.

2
b2

‘ ty
fi
d?x

dax d
fm2 =Ma— i foa =Ba i fp = BE(X_Xl);fk =KX - X;)

By Newton’s second law, fmz + foz +fo + fi = f(©)

ax

d%x
M, %% 4 B, X
2 qe2 2 4t

+ B (X = X))+ K(X = X;)= £(£)
On taking Laplace transform of above equation with zero initial conditions we get,
M,s%2X(s) + BysX(s) + Bs[X(s) — X,(s)] + K[X(s) — X;(s)] = F(s)

X(s)[Mys?+ (B, +B)s + K] — X;(8)[Bs + K] = F(S) v vvevev e e (2)

11



Substituting X;(s) from equation (1) in equation (2) we get,

B K)?
X(5)Mys? + (B + B)s + K] = 3= (B(l i;)s)+ 7T FO

[M;s? + (B, + B)s + K|[M,s? + (B; + B)s + (K; + K)] — (Bs + K)?

X(s) M52 + (B, + B)s + (K, + K)

= F(s)

X(s) M;s? + (B; + B)s + (K; + K)
" F(s) [M;s2+ (By+B)s+ (K; +K)][M;s2 + (B; + B)s +] — (Bs + K)2

2. Write the differential equations governing the mechanical rotational system as shown in
fig, obtain the transfer function of the system.

{Applied Torque) (Output)

SOLUTION
In the given system, applied force f(t) is the input and displacement X is the output.

Let, Laplace transfer of T = L(T)=T(s)
Laplace transfer of e =L(e)=0(s)
Laplace transfer of e1=L(e1)=01(s)

0(s)
T(s)

The system has two nodes and they are mass Jjand Jo, the differential equations governing the
system are given by torques balance equations at these nodes.

Hence the required transfer function is=

Let the displacement of mass Jq be 1 The free body diagram of J; is shown in fig. the opposing

forces acting on Jyare marked as Tj, and T

Free body diagram-1 T
Il 1k

R sa B

T 0,

d“0,
Tj :J1Fi Ty = K(6, —0)

By Newton’s second law,Tj; + T =T

d2e,
K0, -0)=T

h g
On taking Laplace transform of above equation we get,
J15%61(s) + K6,(s) — KO(s) = T(s)

(J15%2 + K)01(5) — KO(S) = T(S) vevev e e e er e e e v (1)

12



Free body diagram-2
yalag T Ty Ty

5 I, 9‘3, ¥ }‘)
0
d?o dé

T}, ZIZF;Tb :BE; Ty = K(0 —6,)

By Newton’s second law,Tj, + T, + T, = 0

d29+Bd9+K(9 6,)=0
]Zdtz dt =

On taking Laplace transform of above equation we get,

J,520(s) + BsO(s) + K8(s) —K08,(s) =0

(J,s2+ Bs + K)8(s) — 6,(s) =0

(J,s> + Bs + K)
6:(s) = ———

Substitute 6, (s)from equation 2 in equation 1 we get,

(J,s2 + Bs + K)
K

1€ N ¢-)

(J15% +K) 0(s) — KO(s) =T(s)

(J1s2+K) + (lzs; + Bs+K) — K? 6(s) = T(s)

0(s) B K
T(s) (J;s2 + K) + (J,s% + Bs + K) — K2

3. Write the differential equations governing the mechanical system shown in fig. draw the
force current electrical analogous circuit.
LLL LSS LSS S0 )

72 =B,
lf(t)

il
Solution:
Node-1 > X,
—> Vv,
i
M, —— t‘bl
== fk‘l

d2X1 d(Xl _Xz)
M1F+31T+K1(X1_X2) == 0

13



Node-2

d%X, d(X, — X;)

Mz dt2 + By dt

Force- Current analogous circuits
The electrical analogous is given by:

dx,
+ B, at + K (X, — X1) + KX, = f(b)

f(t) = I(t) M1 — C1 Bl — I/Rl K1—> 1/L1
Vi— V1 M, — C, B, — 1/R» K, — 1/L,
Vo — Vo B]_Z — l/R]_Z
Thus the systems equations are:
dv,
C1E+R_1(v1 vy) + ) (vi —vy)dt=0 ... (1)
1

4.Determine the transfer function Y2(,s)/F(s) of the shown fig.

Ki

- 0000

Bl l

o] g

K>

000 ~

RRe

Solution:

Let Laplace transform of f(t) = L{f(t)} =F(s)
Let Laplace transform of y; = L{y1} =Y(s)
Let Laplace transform of y, = L{y.} =Y(S)

The system has two nodes and they are mass M; and M..
The differential equations governing the system are the force balance equations of at these

nodes.

Consider Mass M1,

14



Free Body diagram of M1 ,
fe) = M, ‘22;1 + B4 Ky (Y — V) + Ky Yy -1
on taking Laplace Transform of equation (1) wit
h zero initial conditions,
M;1S%Y1(s) +BsY1(s) + Ky Y(s) + Kz [Ya(s) - Ya(s)] = F(s)
Y1(8)[M1S® +Bs+(K1+K2)] - Ya(5)Kz = F(s) 2

Consider Mass M,

M, d‘Yz/dt‘ +K, [Yz— Yl] =0
On taking Laplace Transform of equation (3) with zero initial conditions,
M32S%Y(s) +Ky [Ya(s) — Ya(s)] = 0 -4
Ya(s) [M2S 2 + Ky] — K; Ya(s) = 0;
Ya(s) = Ya(s) [M2S 2+ Ko] / Ky
Substituting equation Y(s) from equation (5) into equation (2) we get,
Yo(s) [M 28 2 + Ky] 1 Ky +[M1S? +Bs+(K1+K5)] - Ko Ya(s) = F(s)
Ya(s) (M 2S 2 + K3 +[M;S% +Bs+(Ky+K3)] - Ko*) I Kz =F(s)

Yo(s) 1 F(s) =Kz /([M2S 2+ Ky] +[M1S? +Bs+(Ky+Ky)] - Ko?)

5.Write the differential equations governing the mechanical rotational system shown in fig.
Draw the torque-voltage and torque-current electrical analogous circuits and verify by
writing mesh and node equations.

R, % K
T :
+ - u .
T B,

Solution:

The given mechanical rotational system has three nodes. The differential equations governing
the mechanical rotational system are given by torque balance equations at these nodes.

Let the angular displacements J1, Jo and J3 be 01, 02 and 63 respectively. The corresponding
angular velocities be ®1, w2 and 3

Consider Js.
By Newtons second law we get
d’o d®©,-9,) .

T.= ‘]1?21; Tu=B, at T = Ki(6,-6,)

By Newtons second law T, + T,,+ T,,= T

d’e d(o,- 0
‘]1 dtzl + B1 ( tjt 2) + Kl(el- 92):T ___________ (1)
Consider J,
d’o d(e,-9,) d(o,-0,)
sz: Jz_dtzz  T=B, a 3 T,= K (0,-0,); T, = 31#
By Newtons second law, T, + T, + T,,+ T, =0
d’0, d(0,-90 d0.- 0
2 dt22 + ( zjt 3) +K,(0,-0,) + B, (é—tl)zo .......... 2)

15



Consider J,

d?e, T.=B, d(0,-0,)

dz’

T'3_ ‘]3

i ;Tk3= K393

By Newtons Second law, T;+ T, +T,;=0
d 62 + B, d(6,-0,)
° dt dt

+K0,=0 e ®)

On replacing the angular displacement by angular velocity in the differential equations we get
. d?6 _dw d9_ d@—f it
\aez T dc a4 @

dw1
]1 + Bi(w; — w,) + K f(ah wp)dt =

]2 dt +B1(w2 — w) + By(w; — w3) +K1f(0)2 w)dt =0

]3 dt +Bz((1)3_ (1)2) +K3-]-(U3dt = 0

Torque voltage analogous circuit
The electrical analogous elements for the elements of mechanical rotational systems are given
below

w1 — i1 J1—L B1—R1 K1 — 1/Cq
w1 — 12 Jo— Lo Bo—Ro K3 — 1/C3
®3 — i3 J3— L3

The Mesh basis equations using Kirchhoff™s voltage law for the circuit is given by

diy ., 1. .
Li—+Ri(iy — i) + _f(ll —iy)dt = e(t)
d C,
1
L, — 2 + Ry(iz — i) + Ry(ip —i3) + _f(iz — i) dt = e(t)
dt Gy

The electrical circuit is given by

L1 L2 L3
I} . J_ i) o
elt) ('_'"j T C3 " e() |

— L
=Ry §R2

Torque current analogous circuit
The electrical analogous elements for the elements of mechanical rotational systems are
T—it) o>V J1— Cq1 B1=1/Rq K1 — 1/L1
W2 — V) Jo— Co B2=1/R» K3 — 1/L3
w3 —v3 J3— C3

The node basis equations using Kirchhoff™s current law for the circuit is

dv, 1
C,— dt R — (v —vy) +— f(vl vy) dt = i(t) ... (D
dv, 1 1
Co,—— T +—(v2 “171)+R—2(172—173)+L—1 (v, —v)dt=0 ... (2)
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1 1
dt+R_2(v3_v2)+va3dt:O ...... (3)

The electrical circuit is given by

Vi

i0(1)a— e o =

6.Write the differential equations governing the mechanical system shown in fig. Draw the
force-voltage and force current electrical analogous circuits and verify by writing mesh
and node equations.

S -

- ~ I ~J00 &
) —| | |Biz M (| B2
—— 5o | /
THZ JF TR LLOLLZALLTETT
Solution: B,
At M1:

d?X, dX, d
fm1 = MlF; fo1 = B1Ei fr1z = B12E(X1 = X3); frn = Ki(X1 — X2)

d?X, dx, d
M, dt? + BIW'F B12E(X1 - Xz) + Kl(Xl _XZ) =0

At M2:

d2x,  dx, d
Mzﬁ‘l‘ BZW-I_ Blza(XZ _Xl) + K2X2 + Kl(XZ _Xl) = 0

Replacing the displacement by velocity in the differential equation we get,

d*X _dv _dX_ 'X_j it

dz dr Cdr AT
dv;

My S By 4 By = v) + [ (= X de = £0)
dv,

M2E+B2v2+B12(v2_v1)+jKz(VZ_Vl)dt = 0

Force voltage analogous circuit
The electrical analogous elements for the elements of mechanical system is given by

f(t) = e(t) M1 — L[4 B1 — Ry Ki—1/Cqy
Vi=1i1 My — Lo Bo— Ry Ko — 1/Co
B12 — R12

The mesh basis equations using Kirchhoffs voltage law for the circuit shown is
diy 1
Llﬁ‘l' R1i1 + R12 (Il - 2) +_C -[(ll 'ig) dt= e(t)
1
di EN
Lo dt + Rpix+Rp2(ip-i1)+C J(lz-ll)dtzo
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L1
[}
«(a)

i Cl_]_ m:_C2

Force current analogous circuit
The electrical analogous elements for the elements of mechanical system is given by

f(t) = i(t) M1 — Cq B1— 1/Rq Ki—1/11
V1 — V1 My — Co By — 1/Ro Ko — 1/Ly
Vo — V2 B12 — /Ry

The node basis equations using Kirchhoff™s current law for the circuit is

1 1
— i — — — =1i(t) ... 1
C, Tt + R v + Re (vi —vy) + I j(vl v,y) dt = i(t) (1)

1 1 1 1
— 4 — — — — — - =0 .... 2
C, Tt + R vy, + R (vy —vy) + L j(vz) dt + I j(vz v)dt =0 (2)

oo
V1 [—‘;"‘.l"-.—'l V2
(4)C1_— 2K & Sw g L2

7.Derive the transfer function of the system show in the figure.

X
; K '_’XZ
M1 0000 —— N2
O ke 1 Kg

(ON@) O_Q
N0 W ) S N i N S8

Applying Newton second law at M1 ,
M5 KX - X5) = F ()
Taking Laplace transform on both sides,
M;s%X1(s) + K[X1(s) — X,(s)] = F(5)
X1(s)[Mys? + K] — KX,(s) = F(s)
Applying Newton second law at M»
dzx,
M2W+K(X2 _Xl) = 0
Taking Laplace transform on both sides,
M,s2X,(s) + K[X,(s) — X1(s)] =0
X,(s)[Mys? + K] —KX,(s) =0
X2()[Mys® + K] = KX, (s)
X M,s? + K
X, (s) = 2(9)[ I?S ]

18



substitute value of x; (s) in (1)
X5(s)[M,s? + K]

[M;s? + K] — KX,(s) = F(s)
[M,s? + K][M;s? + K]

X5(s)( X —K) =F(s)
Xz(s)([Mzs +K][1V;;s + K] - )—F(s)
Xz(S) _ K

F(s)  [M,s? + K][M;s? + K] — K2

Substituting the value of M1 =2kg and M2=1kg we get
X2(9) K
F(s) = (S°+K)(@25* +K) - K®

8. In the system shown in the fig below, R, L, C are electric parameters while K, M, B are

mechanical parameters. Find the transfer function X(s)/E1(s) for the system where E1(t) is
input voltage while X(t) is the output displacement.

Apply Kirchhoff™s voltage law at loop 1 in the above fig we get
1

Taking Iaplace Transform of the above equation \Rl_
Rl (s) +=11(s) = L(s)] = E(s) (or) -
(R+ 2h(s) — 2 | ()] = Es) === (1) o) T ca
Apply Kirchoff's Voltage law at loop 2 we get T
Lﬂ"‘ ](lz i1)dt = —ey =—I('bﬁ
dt

Taking laplace Transform of the above equation
1
SLI(s) + = 112(s) = L(s)] = — sK; X(s)

1
75 129 = L) = = 5K, X(s) = sLLy(s)

é l;(s) — I,(s)] = sKp, X(s) + sLI,(s) ———(2)

Substituting (2) in (1)
RI;(s) + sK, X(s) + sLI,(s) = E(s)
From equation (2)

1 1
Ell(s) = sK, X(s) + sLL,(s) + EIZ(S)

=sK, X(s) + (sL + %)12 (s)

L, (s) = s%2K, C X(s) + (s?LC + 1)I,(s) — ——(3)
Substituting (3) in (1)

(R + i) [(52LC + DI, () + 57K, € X(5)] = —1,(5) = E(s)
Cs 2 b Cs 2

Apply Newtons Second law at M
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d*x dX
Fc =KC]2 =MF+BE+2KX
Taking Laplace Transform

K.I,(s) = [Ms? + Bs + 2K]X(s)

[Ms? + Bs + 2K]

I(s) = K X(s)

Substituting this value of I (s) in eqn (3)
[Ms? + Bs + 2K]

K.

(szLC + sL + R) )X(s) + (s?2K, RC + sKp)X(s) = E(s)

After simplying the equation we get
X(s)

E(s)

K.

[(RLCs* + L(M + RCB)s3 + {RM + LB + RC(2LK + K,K,)}s? + (RB + 2LK + K,K,)s + 2RK]

BLOCK DIAGRAMS

Block diagram of a system is a pictorial representation of the functions performed by
each component and of the flow of signals. Such a diagram depicts the interrelationships that
exist among the various components. Differing from a purely abstract mathematical
representation, a block diagram has the advantage of indicating more realistically the signal
flows of the actual system.

In a block diagram all system variables are linked to each other through functional
blocks. The functional block or simply block is a symbol for the mathematical operation on the
input signal to the block that produces the output. The transfer functions of the components are
usually entered in the corresponding blocks, which are connected by arrows to indicate the
direction of the flow of signals. Note that the signal can pass only in the direction of the arrows.
Thus a block diagram of a control system explicitly shows a unilateral property.

Figure above shows an element of the block diagram. The arrowhead pointing toward the
block indicates the input, and the arrowhead leading away from the block represents the output.
Such arrows are referred to as signals.

The dimension of the output signal from the block is the dimension of the input signal
multiplied by the dimension of the transfer function in the block. The advantages of the block
diagram representation of a system are that it is easy to form the overall block diagram for the
entire system by merely connecting the blocks of the components according to the signal flow
and that it is possible to evaluate the contribution of each component to the overall performance
of the system.

In general, the functional operation of the system can be visualized more readily by
examining the block diagram than by examining the physical system itself. A block diagram
contains information concerning dynamic behaviour, but it does not include any information on
the physical construction of the system. Consequently, many dissimilar and unrelated systems
can be represented by the same block diagram.

It should be noted that in a block diagram the main source of energy is not explicitly
shown and that the block diagram of a given system is not unique. A number of different block
diagrams can be drawn for a system, depending on the point of view of the analysis.
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Summing Branch
point point

R(s) E(s) ()
@[

1

Summing Point. Referring to Figure, a circle with a cross is the symbol that indicates a
summing operation. The plus or minus sign at each arrowhead indicates whether that signal is to
be added or subtracted. It is important that the quantities being added or subtracted have the
same dimensions and the same units.

Branch Point. A branch point is a point from which the signal from a block goes
concurrently to other blocks or summing points.

Block Diagram of a Closed-Loop System. Figure below shows an example of a block diagram
of a closed-loop system. The output C(s) is fed back to the summing point, where it is compared
with the reference input R(s). The closed-loop nature of the system is clearly indicated by the
figure. The output of the block, C(s) in this case, is obtained by multiplying the transfer function
G(s) by the input to the block, E(s).Any linear control system may be represented by a block
diagram consisting of blocks, summing points, and branch points.

When the output is fed back to the summing point for comparison with the input, it is
necessary to convert the form of the output signal to that of the input signal. For example, in a
temperature control system, the output signal is usually the controlled temperature. The output
signal, which has the dimension of temperature, must be converted to a force or position or
voltage before it can be compared with the input signal. This conversion is accomplished by the
feedback element whose transfer function is H(s). The role of the feedback element is to modify
the output before it is compared with the input.

R(s) E(s) C(s)

G(5)

H(s)

For the system shown in Figure, the output C(s) and input R(s) are related as follows:
C(s) = G(S)E(s)
E(s) = R(s) - B(s)
E(s)= R(s) - H(s)C(s)
C(s) = G(S)[R(s) - H(s)C(9)]
C(s) = G(s)
R(s) 1+ G(s)H (s)

RULES FOR REDUCTION OF BLOCK DIAGRAM
Rule 1: Combining blocks in series or cascade:

| AG AG G A AG G
A | G, I » - B! = '-Gle >

21



Rule 2: Combining blocks in parallel:

Rule 3: Moving take off (Branch Point) ahead of the block:

AG
i S N
- AG[ G |4
Rule 4: Moving take off (Branch Point) beyond the block:
X = AG Ao LAG
]
AG J o LAS
Rule 5: Moving the summing point ahead of the block:
B
_ A+B (A+B)G AG + BG
Rule 6: Moving [th ngb the blogk: —— A <\ = (A*B)G

A-C

X)

A-C+B=A+B-

22




Rule 10: Eliminating negative feedback:

(R-CH)

Rule 11: Eliminating positive feedback:

(R-CH)G
G >
. = " 1+GH
CH 1y le
Proof :
C=(R-CH)G C(1+HG)=RG
C_ G
C=RG-CHG R _1+GH
C +CHG =RG
R C
G > . .
R
= » —_—
= 1-GH
H [«

Examples:

1. Find the transfer function of the system shown in the fig. using block diagram
reduction technique and signal flow graph technique.

Step 1: Re arranging the branch points.

R(s) +

G3

C(s)

H2 |«
+
¥ Gl
T H3

G3

C(s)

Step 2: Eliminating the feedback paths.

R(s) + +
H‘ ZH :H

Gl

H3

G3

C(s)

H2
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Step 3: Combining the blocks in cascade.

G3

C(s)

R(s) + +4 : 1
3 ¥ | Gl G2 ]

i 1- G2H1 i

- 1

Step 4: Eliminating the feedback path

G3

C(s)

=1- G2H1+ G1G2H3H1
Step 5: Combining the blocks in cascade.

1 I
; ;
RE f( :) L G1G2 a3
tl 1- G2HI+ G1G2H3H1 :
i ;

C(s)

1
1 .
E ]
1 .
BLS) f( :) g G1G2G3 :
! 1- G2H1+ G1G2H3H1 | |
E i
; I
1

G1G2G3

— 1- G2H1+ G1G2H3H1
1+ G1G2G3

G2H1+G1G2H3H1

24



_C6) — G1G2G3
R(s) 1- G2H1+G1G2H3H1+ G1G2G3H2

2. For the block diagram shown below, find the output C due to R and disturbance D.
D

R + + + C
G\ G\ Gl G2 ¥ G3
L L H1

H2

R e

H2
Step 2: Eliminating the feedback paths.
R +7N\ Gl G2 G3 ¢
& 1+G1 1+G3H1
H2

Step 3: The three forward path blocks and the feedback block is combined to give the transfer
function.

R G1G2G3 c
[(1+G1)(1+G3H1)+G1G2G3H2]

Step 4: Assuming R = 0 the block diagram in the question becomes

1 |
¥ I
: @ Gl > G2 =—>
i i
| I
|

H2

Step 5: The two feedback loops are eliminated.
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G1G2 + i GiGg2 | €1 _
TG 1+G1

H2

Step 6: The block diagram can be redrawn as

D G3 1

1+G3H1

GLG2H2),
1+G1

Step 7: The block diagram can be reduced to give the transfer function as shown.

D G3(1+G1) Cl
(1+G3HD)[(1+G1) + G1G2G3H2]

Step 8: When D = 0 output is C and is given below
C= RG1G2G3
[(1+G1)(1+G3H1)+G1G2G3H2]
When R = 0 the output is C1 and is given by
Cl= DG3(1+G1)
[(1+G1)(1+G3H1)+G1G2G3H2]
When R and D are simultaneously present the output isO = C + C1

O = G3[RG1G2+D(1+G1)]
[(1+G1)(1+G3H1)+G1G2G3H2]

3.For the system represented by the block diagram shown in figure, Determine the transfer
function C1/R1 and C2/R1.

G» —> 03——"(:'

Y

R
LI S

Hay

[ ik

» C2

%
&
¥

1%
) J
&

) A

£

Solution:
Case 1: To find C1/R1. Consider R2 and C2 to be zero.
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Step 1: Eliminate the feedback path.

|

C.

H, ¢

A 4
(@]
v

v

@ e {5

Step 3: Eliminate the feedback path.

A\ 4
(8]
y
o
Y

. &

GG HiH;
l+G4

A

Step 4 : Combining the blocks in cascade

G,G,(1+Gy)

G —»

(1+G,4)-G,G,GsHH,

...................................................

G,G,(1+Gy)
RI (] + G4) _GlG4GSH1H2

Gs

15 G,G,(1+G,)
(1+G4)-G,G,GH,H,
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Step 6 : Combining the blocks in cascade

C, - G,G,G;(1+Gy)

R, (1+G,G,)(1+G,)-G,G,G,HH,

Case 2: To find Co/R1. Consider R2 and C1 to be zero
Step 1: Eliminate the feedback path.

- ® o L o

H,

: : C;
‘-@_. Gq ca— Y o Go—»

\4
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.........................

R

.................

A 4

Ge

............................................

o » (X - G,G,G,H, |
- (1+G,) (1+G,G,) G [

---------------------------------------

G,G,G,H,
. (I+G,) (1+G,G;) ~
G,G,CLH,H, G —C

T (1+G,) (1+G,G,)

R,

Step 6 : Combining the blocks in cascade

S .GIGd(}SHZ €2
_ (1+G,) (1+G,G,) - G,G,4G,H H, Gs

Y

C, G,G,G:GeH,

R, (1+G,)(1+G,G,)-G,G,G,HH,

SIGNAL FLOW GRAPH

Signal-flow graphs represent transfer functions as lines, and signals as small circular
nodes. Summing is implicit. Thus, the main advantage signal-flow graphs over block diagrams,
is that they can be drawn more quickly, they are more compact, and they emphasize the state
variables.

Signal-flow graphs are an alternative to block diagrams. Unlike block diagrams,
which consist of blocks, signals, summing junctions, and pickoff points, a signal-flow graph
consists only of branches, which represent systems, and nodes, which represent signals.

Mason's rule for reducing a signal-flow graph to a single transfer function requires the
application of one formula. The formula was derived by S. J. Mason when he related the signal-
flow graph to the simultaneous equations that can be written from the graph (Mason, 1953). In
general, it can be complicated to implement the formula without making mistakes.

Specifically, the existence of what we will later call nontouching loops increases the
complexity of the formula. However, many systems do not have nontouching loops. For these
systems, you may find Mason's rule easier to use than blockdiagram reduction. Mason's formula
has several components that must be evaluated. First, we must be sure that the definitions of the
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components are well understood. Then we must exert care in evaluating the components with
example then discuss the Mason“s Gain formula.

Loop gain. The product of branch gains found by traversing a path that starts at a node
and ends at the same node, following the direction of the signal flow, without passing through
any other node more than once. For example,

Ggl(s)

Gi(s) Ga(s)

R(s) O

The loop gains are:
G2(s)H1(s)
G4{s)H2{s)
G4(s)G5(s)H3(s)
G4(s)G6(s)H3(s)

el A

Forward-path gain: The product of gains found by traversing a path from the input node to the
output node of the signal-flow graph in the direction of signal flow.

1. G1(s)G2(s)G3(s)G4(s)G5(s)G7(s)

2. G1(s)G2(s)G3(s)G4(s)G6(s)G7(S)

Non touching loops : Loops that do not have any nodes in common. Loop G2(s)H1(s) does not
touch loops G4(s)H2(s), G4(s)G5(s)H3(s) and G4(s)G6(s)H3(S)
Mason's Rule

The transfer function, T=C(s)/R(s), of a system repres:_egted by a signal-flow graph is

1
T=" D PKAK
A

T=T(s) = Transfer function of the system
K= Number of forward path

Pk = Forward path gain of kth forward path

A=1—(sum of all individual loopgains)
+(sum of gain products of all possible two nontouching loops)
—(sum of gain products of all possible threen ontouchingloops)+...

Ak = A for that part of the graph which is not touching k th forward path

Signal Flow Graph Algebra
Rule 1: Incoming signal to a node through a branch is given by the product of a signal at
previous node and the gain of the branch.

X 1
a .
SRR S xz:;>%

%)

X,=ax, X3= a,xl +aX,

Rule 2: Cascade branches can be combined to give a single branch whose transmittance is
equal to the product of individual branch transmittance.
a b ab
oO—>—o P—0. = O > 5.5
xl

3 X % : %
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Rule 3: Parallel branch may be represented by single branch whose transmittance is the sum
of individual branch transmittance.
a

. ] atb -
= O > O
X, X X, : X,

Rule 4: A mixed node can be eliminated by multiplying the transmittance of outgoing
branch (from the mixed node) to the transmittance of all incoming branches to the mixed
node.

X a X, ac
} C

X
%2 b 3 X Xy be

Rule 5: A loop may be eliminated by writing equations at the input and output node and
rearranging the equation to find the ratio of output to input. This ratio gives the gain of
resultant branch.

ab
1—-bec
O — O
x
O —E'l} O l‘;) —r ' U X3
X, X
b
(o a 1-bc
o > O > O
X, X, X

Steps to construct the Signal Flow Graph:
The Signal flow graph is constructed from its describing equations, or by direct reference to
block diagram of the system. Each variable of the block diagram becomes a node and each
block becomes a branch. The general procedure is

1. Arrange the input to output nodes from left to right

2. Connect the nodes by appropriate branches,

3. If the desired output node has outgoing branches, add a dummy node and a unity gain

branch.
4. Rearrange the node and/or loops in the graph to achieve pictorial clarity.

Examples:
1. Determine the transfer function of the system using Mason’s Gain formula.
G4 G5
G4
Xl Gl 2/ G2 3 G3\4/G6 5 G7 6 G8\7 8 X2
—<H2
H1

Step 1: There are four forward paths P1, P2, P3, P4; K = 4.
X1 Gl 2 G2 3 G3 4 G6 5 G7 6 G8 7 8 X2

-~ -~

P1=G1G2G3G6G7G8



X @i 3 G 3 &5 A Mz

P2 = G1G2G3G5G8

G4
G4
X1 Gl 2 4 G6 5 G7 6 G8 7 8 X2
P3 =G1G4G6G7G8
G4 G5
X1 Gl 2 4 7 8 X2
P4 = G1G4G5G8
Step 2: There are 5 individual loops
2 G2 3 G3 4 GO6 S5 <7 6 a8 7
P11 = G2G3G6G7G8H1
H1
P21 = G3G6GT7H2 3 G3 4 G6 5 G7 6 G8 7

P31 = G4G6G7G8H1

N
-~
Q
o))
h
Q
~
&)
)
v}
~
«©

P41 = G4AG5G8H1

G5

P51 = G3G5H2

H2

Step 4: There are no combination of two non-touching loops.
Step 5: Calculation of and AK

= 1 — (P11 + P21 +P31 + P41 + P51)
—1 - (G2G3G6G7G8H1 + G3G6HTH2 + G4G6G7G8H1 + G4G5G8H1 + G3GSH2)
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There is no part of the graph touching with 1 forward path; Al =1
There is no part of the graph touching with 2" gorward path; Al =1

There is no part of the graph touching with 3t forward path; A1 =1
There is no part of the graph touching with 4 forward path; Al =1

Step 6: Determination of transfer function.
By Masons gain formula the transfer function is given by

T=" D PKAK
A
= 1UA(PLA1+P2A2+P3A3+P4A4)
— GlG2G3GHGT7G8+G1G2G3GHG8+G1G4AGGTG8+G1G4AGHGS
1- G2G3G6G7G8H1+G3G6H7+G4G6G7G8H1+G4G5G8H1+G3G5H2

2.Use Masons gain formula to obtain C(S)/R(s) of the system shown below by using signal

flow graph.
G4 L
e -t Y, ; G1 ey G2 G3 (= X
S R
. >—{ H2

R(S) 1 - 2 - 8 C(S)
H1 H2
Step 2: There are two forward paths P1 and P2; K =2
R I 2 3 6L % 3 G2 6 3 7 8C(S)
P1=G1G2G3
G4
RS)L 2 5 @l MS)
P2 = G1G4

Step 3: There are 4 individual loops. Let the four loops be P11, P21, P31, P41
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P11=G1G2 P21 =G2G3H2
P31 =G1G2H1 P41 =G1G2G3
Step 3: Gain product of 2 non touching loops There are no 2 non touching loops. Step 4:
Calculation of and AK

1

=1- (P11 +P21+P31+P41)
=1-G1G2 - G2G3H2 - GIG2H1 - G1G2G3
Al=1-0=1
A2=1
Step 5: Determination of transfer function

T= 1_ > PKAK
A
= 1/A(P1A1+P2A2)
- G1G2G3 + G1G4

1- G1G2 - G2G3H2 - G1G2H1- G1G2G3

3.The signal flow graph for a feedback control system is shown in the figure. Determine the
closed loop transfer function C(S)/R(S).

—H2
R(S) 1 2 G1 3 G2 4 G3 5 G4 6 G5 7 8 C(S)
S~ P Tt
5
G6

Step 1: Forward path gains
There are two forward paths K = 2

Let forward path gains be P1 and P2
R(S)1 2 Gl 3 G2 4 G3 5 G4 6 G5 7 8C(®S)

e

- - - -

R(S) 1 2 5 G4 6 G5 7 8C(S)

Ge
Gain forward path 1 = P1 = G1G2G3G4G5
Gain forward path 2 = P2 = G4G5G6
Step 2: Individual loop gain
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There are three individual loops. Let individual loop gains be P11, P21, P31
- —H2
3 G2 4 6 G5 =

\<—/}113G24G35%

Loop gain of individual loop 1 =P11 =-G2HI1
Loop gain of individual loop 2 = P12 = -G2G3H2
Loop gain of individual loop 3 = P31 =-G5H3

Step 3: Gain products of two non-touching loops
There are two combinations of two non-touching loops. Let the gain products of two non-
touching loops be P12 and P22.

3 &2 4 6 G5 7
\-<_/Hl \/}13

Gain product of 1St combination of two non-touching loops
P12 =P11P31 = (-G2H1)(-G5H3) = G2G5H1H3

Gain product of 2" combination of two non-touching loops
P22=P21P31= (-G2G3H2)(-G5H3)= G2G3G5G3H2H3

Step 4: Calculation of and AK
=1- (P11 + P21 +P31) + (P12 + P22)
= 1- (-G2H1-G2G3H2-G5H3) + (G2G5H1H3 + G2G3G5G3H2H3)
=1+ G2H1+G2G3H2+G5H3 + G2G5H1H3 + G2G3G5G3H2H3
Al = 1, since there is no part of the graph which is not touching with first forward path The
part of the graph which is not touching with the second forward path is shown below.

i & 4
A2=1-P11=1-(-GIHI)= 1+G2HI \<—/Hl

Step 5: Transfer function T
By Mason"s gain formula the transfer function T is given by,

T= (VA ).2. PKAK

=T1/A)(P1A1+P2A2)No of forward path is 2, K = 2

=G1G2G3GAG5+GAG5G6(1+G2H1)

1+G2H1+G2G3H2+G5H3+G2G5H1H3+G2G3G5H2H3
- G1G2G3G4G5+G4G5G6+G4G5G6G2H1)
1+G2H1+G2G3H2+G5H3+G2G5H1H3+G2G3G5H2H3

—G2G4G5[G1G3+G6/G2+G6H1]

1+G2H1+G2G3H2+G5H3+G2G5H1IH3+G2G3G5H2 H3
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Servomechanism

A servo system mainly consists of three basic components - a controlled device, a output
sensor, a feedback system. This is an automatic closed loop control system. Here, instead of
controlling a device by applying the variable input signal, the device is controlled by a feedback
signal generated by comparing output signal and reference input signal. When reference input
signal or command signal is applied to the system, it is compared with output reference signal of
the system produced by output sensor, and a third signal produced by a feedback system. This
third signal acts as an input signal of controlled device.

This input signal to the device presents as long as there is a logical difference between
reference input signal and the output signal of the system. After the device achieves its desired
output, there will be no longer the logical difference between reference input signal and
reference output signal of the system. Then, the third signal produced by comparing theses
above said signals will not remain enough to operate the device further and to produce a further
output of the system until the next reference input signal or command signal is applied to the
system. Hence, the primary task of a servomechanism is to maintain the output of a system at the
desired value in the presence of disturbances.

DC SERVO MOTOR

The motors which are utilized as DC servo motors generally have separate DC source for
field winding and armature winding. The control can be achieved either by controlling the field
current or armature current.
Armature Controlled DC Servo Motor
Theory:

The figure below shows the schematic diagram for an armature controlled DC servo
motor. Here the armature is energized by amplified error signal and field is excited by a constant
current source.

Field Cument Armature Inductance

Amature cunent

Field Resistonce ~ |Aimoature Resistance

Field Inductance—' | armature

From Amplifier

From Constant Current Source

The field is operated at well beyond the knee point of magnetizing saturation curve. In
this portion of the curve, for huge change in magnetizing current, there is very small change in
mmf in the motor field. This makes the servo motor is less sensitive to change in field current.
Actually for armature controlled DC servo motor, the motor should response to any change of

field current.

Again, at saturation the field flux is maximum. The general torque equation of DC motor
is, torque T xol,. Now if ¢ is large enough, for every little change in armature current I, there
will be a prominent changer in motor torque. That means servo motor becomes much sensitive
to the armature current.

As the armature of DC motor is less inductive and more resistive, time constant of
armature winding is small enough. This causes quick change of armature current due to sudden
change in armature voltage. That is why dynamic response of armature controlled DC servo
motor is much faster than that of field controlled DC servo motor.

The direction of rotation of the motor can easily be changed by reversing the polarity of
the error signal.
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Transfer Function:

R! Ra La
o AW — N +
-— -+
I li + ] la T
Constant Ly é E, Va(t)
T dme By O,
Let
R = Armature resistance, Q
a
La = Armature Inductance, H
| = Armature current, A
a
Va = armature voltage, V
Eb = back emf, V,Kt: Torque constant, N-m/A
T = Torque developed by motor, N-m
0 = Angular displacement of shaft, rad
2
J = Moment of inertia of motor and load, Kg-m
B = Frictional coefficient of motor and load, N-m/(rad/sec)
Kb = Back emf constant, V/(rad/sec)

The differential equation of armature circuit is

di
Lad—:+Raia +e, =V,

Taking Laplace transform we get

La Sla(s) + Rala(s) + Ep () = Va (s)
la (S)(LaS+Ra) +Ep (s) =Val(s)

la (S)(LaS+Ra)=Va(s)—Ep(s)

Va (s) —Ep (5)

la (5) = (La Sy Ra) [1]
Torque developed by motor is proportional to flux and current
Taiyg
T=Krig
1a(e) =1 2]
Ky

According to Newton"s second law the Rotational mechanical differential equation is given

by

2
390,gdo_1
daf ot
Taking Laplace transform
JS24(s) + BSAs) =T (s) [3]

Also the back emf is proportional to the speed of shaft (Angular velocity)
e =K d¢
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Ep (s) = Kb SHs) [4]
Combining equation [1] and [3], we get
T(s) =Va(s)—Ep(s)
KT (LaS+R) .
T(s) = K1Va (s) — K1 Ep ()
(LaS+Ra)
Substituting [3] we get
K1Va (s) =Kt Ep (9)
(LaS+Ra)

JS20(s) + BSO(s) =

0(s)(3S % +BS)(Ls S + Ry ) = K1Va (s) — K7 Ep (5)
K7Va (5) = [AS)(3S 2 + BS)(La S + Ra )] + Kt Ep
(S) Substituting [4] we get
K1V (5) = [AS)(IS % + BS)(La S + Ry )] + Kt Ky SAS)
K1V, (S) = AS)[(3S % + BS)(La S + Ry ) + K7 Ky S]

0(s) _ Ky
V(s) (Js2+Bs)(L,s + R,) + KrKps

G(S) _ KT
V(s) (JL,s3) +s2(L,B +JR,) + s( BR, + K7K})

Block Diagram:

o fdy 4 1 ia($) Ta(8) 1 w(s)
a()-‘g)-" La'S+Ra —p KT — ]xg+B

Ky

Field Controlled DC Servo Motor Theory

1]

leid Cunent Armature Inductance <}= E

Floid Resislance = > Amature Resistance Amature cutent &
8 3
E -
5 Field Indmiunceg Amnatune %
£ B
2 g
O

=

o

The figure illustrates the schematic diagram for a field controlled DC servo motor. In this
arrangement the field of DC motor is excited be the amplified error signal and armature
winding is energized by a constant current source . The field is controlled below the knee
point of magnetizing saturation curve. At that portion of the curve the mmf linearly varies
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with excitation current. That means torque developed in the DC motor is directly proportional

to the field current below the knee point of magnetizing saturation curve.

_ From general torque equation of DC motor it is found that, torque T x¢l,. Where, ¢ is
field flux and I, is armature current. But in field controlled DC servo motor, the armature is
excited by constant current source, hence I, is constant here. Hence, T « ¢

As field of this DC servo motor is excited by amplified error signal, the torque of the
motor i.e. rotation of the motor can be controlled by amplified error signal. If the constant
armature current is large enough then, every little change in field current causes
corresponding change in torque on the motor shaft. The direction of rotation can be changed
by changing polarity of the field. The direction of rotation can also be altered by using split
field DC motor, where the field winding is divided into two parts, one half of the winding is
wound in clockwise direction and other half in wound in anticlockwise direction. The
amplified error signal is fed to the junction point of these two halves of the field as shown in
the figure. The magnetic field of both halves of the field winding opposes each other. During
operation of the motor, magnetic field strength of one half dominates other depending upon
the value of amplified error signal fed between these halves. Due to this, the DC servo motor
rotates in a particular direction according to the amplified error signal voltage.

The main disadvantage of field control DC servo motors, is that the dynamic response
to the error is slower because of longer time constant of inductive field circuit. The field is an
electromagnet so it is basically a highly inductive circuit hence due to sudden change in error
signal voltage, the current through the field will reach to its steady state value after certain
period depending upon the time constant of the field circuit. That is why field control DC
servo motor arrangement is mainly used in small servo motor applications. The main
advantage of using field control scheme is that, as the motor is controlled by field - the
controlling power requirement is much lower than rated power of the motor.

Transfer Function:

L | (constant)
ANV —AAMA—— T Y
f Ry i R, L,
\{ ¢ Constant
servoampiifier SOwCe
1 .
Let
Ry = Field resistance, Q
L= Field inductance, H
I¢ = Field current, A
Vs = Field voltage, V
T = Torque developed by motor, N-m
Ky = Torqgue constant, N-m/A
J = Moment of inertia of rotor and load, Kg-m?/rad
B = Frictional coefficient of rotor and load, N-m/(rad/sec)
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T=Krrit

T(8)=Kre 11(9) [1]
The differential equation of armature circuit is

dlf .
LeSI(S) +Rel¢(s)=E+(s)

It (s)(Ls S+Re)=E¢(s) [2]
According to Newton“s second law the Rotational mechanical differential equation is given
by

2
34°0,pdo_17
da® dt

Taking Laplace transform
JS2Qs) + BSAS) =T (s)
Substituting [1] we get,
JS20(s) + BSO(s) = Kre 11 (5)

1L (5) = H(S)(Jr§2+BS)

Substituting [4] in [2] we get,
2
B
OB +BS) | s4R,)=E,(5)

TF

9(8) r\TF
Ef(s) ="(3S7+BS)(L S+Rf)
f

AC SERVOMOTOR
An AC servo motor is essentially a two phase induction motor with modified
constructional features to suit servo applications.The schematic of a two phase or servo motor

is shown
Control L/ Reference
winding 4 winding
o] —
Actuation Servo v -
signal amplifier ¢ 8.3, By
o s

It has two windings displaced by 90%n the stator One winding, called as reference
winding, is supplied with a constant sinusoidal voltage.The second winding, called control
winding, is supplied with a variable control voltage which is displaced by -- 90° out of phase
from the reference voltage. The major differences between the normal induction motor and an
AC servo motor are

e The rotor winding of an ac servo motor has high resistance (R) compared to its
inductive reactance (X) so that its X / R ratio is very low.

e For anormal induction motor, X / R ratio is high so that the maximum torque is
obtained in normal operating region which is around 5% of slip.

The torque speed characteristics of a normal induction motor and an ac servo motor
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are shown in fig

4 normal induction motor

X
= large
R

Torque

ac servo
motor

Synchronous Spee
speed .

The Torque speed characteristic of a normal induction motor is highly nonlinear and
has a positive slope for some portion of the curve. This is not desirable for control
applications. as the positive slope makes the systems unstable. The torque speed
characteristic of an ac servo motor is fairly linear and has negative slope throughout. The
rotor construction is usually squirrel cage or drag cup type for an ac servo motor. The
diameter is small compared to the length of the rotor which reduces inertia of the moving
parts. Thus it has good accelerating characteristic and good dynamic response.

The supplies to the two windings of ac servo motor are not balanced as in the case of
a normal induction motor. The control voltage varies both in magnitude and phase with
respect to the constant reference vulture applied to the reference winding. The direction of
rotation of the motor depends on the phase (x 90°) of the control voltage with respect to the
reference voltage. For different rms values of control voltage the torque speed characteristics
are shown in Fig.

N B EE >
\&
N\ . Speed §

The torque varies approximately linearly with respect to speed and also controls
voltage. The torque speed characteristics can be linearized at the operating point and the
transfer function of the motor can be obtained.

Torque

Speed N =0 Ni

N3

Np<N2< N3

0 Control Winding voltage

From the torque speed characteristics, we observe that even when Ec=0, the
characteristics line runs through origin, which enables the stop of motor rapidly (decelerating
torque). From torque-control voltage characteristics, we obtain that the high speed are
nonlinear, so the AC servo motor is employed only for low speed.
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With reference to the above characteristics, we assume that all lines are traight lines
parallel to each other at rated input voltage ad are equally spaced for equal increments of

input voltage.Under this assumption, the torque developed by the motor is,
do
Tm = Kiec — K; dt
From the mechanical system we get,
. d?o LB do
o R T dt
At equilibrium the motor torque is equal to load torque
" " o d?6 N dé
e = Rty T a2 dt
KiEe (s) — Ko SAS) = IS 20 (s) + BSAs)

KiEc (s) = &s)(JS 2 + BS + Kys)
G(S) _ K1

Ec(s)  (Js?+ (B+K,)s)

K4
0(s) (B + K,)
Ec(s) J
@ s(@mErs Y

_ K .
LetK,, = Bk be the motor gain constant

J

Tm = Giry) be the motor time constant
0(s)  Kn
Ec(s) S(t,S+1)
SYNCHROS

The other names for synchros are Selsyn and autosyn. It is an electromagnetic
transducer that produces an output voltage depending upon the angular displacement.it
consists of two devices called Synchro Transmitter and Synchro Receiver. It is mostly used
as an error detector in control system.

Synchro Transmitter:

It is similar to a Y connected 3-phase alternator. Stator winding are concentric coils displaced
120deg apart. Rotor is a salient pole type wound with concentric coils excited with single
phase AC through slip rings. The Synchro transmitter acts as a transformer with single
primary winding (Rotor) and there secondary winding displaced apart from each other.

The flux produced by the rotor is displaced along its axis and distributed sinusoidally
in the air gaps depending upon its angular positions with rotor. Therefore the flux linked with
the stator winding will induce an emf proportional to the cosine of the angle between the
rotor and stator winding.

AC voltage applied across rotor Vr(t) = Asinat Phase

voltage induced in stator coils S, So and Sg are
Vs; (t) = kAsinawt cosd

Vs, (t) = kAsinawt cos(120 +6)

Vs3 (t) = kAsinat cos(240 +6)

Corresponding line voltage are
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VLl =Vsy -Vs;

zu = kAsinat[cos(120 +8) — cosd]

L= kAsin at(2sin(60 +8)sin 60)

11 = kAsinat ¥ 3sin(60 +6)

VL2 =Vs3 -Vsy

z“ _ KAsin @t[cos(240 +6) — cos(120 +6)]
J2E kAsin at(sin(180 +&) sin 60)

L2 = V3KkAsin «t sin(180 +6)

VL3 =Vs; -Vs;3

:IlLs = kAsinat[cos&— cos(240 +60)]

L3 = \—/2kAsinwt(sin(12O +6)sin120)

2 =3 KkAsinatsin(300 +6)

When 6=0; Vs; (t) = kAsinat and V|, =0

The position at which Vg1 is maximum and V| g is zero is known as “electrical zero”
or reference point of transmitter. The output of Synchro control transformer is the error signal
which is proportional to the angular displacement between the two rotor of Synchro control
transformer and Synchro transmitter.

Synchro control transformer:

The control transformer is similar in construction to a Synchro transmitter except the
rotor is cylindrical in shape so that the air gap is uniform. Stator of both transmitter and
transformer are identical and the output of the transmitter is given as input to the stator of
Synchro transformer. A voltage will be induced in the rotor of control transformer by
transformer action. This voltage is proportional to the cosine of the angle between the two
rotors.

Therefore, e(t) =k Asinat COS¢
Where ¢- angular displacement between two rotors
When ¢$=90; e(t)=0, that is error voltage is zero.
The position is known as electrical zero or reference.
Let the initial position of rotor be 90 deg out of phase as in figure
e(t)=k " Asinet cos90 = 0
Let rotor transmitter is displaced by an angle 0 and rotor of control transformer displaced by
an angle a. Then the net displacement between the rotor is (90+6-a).
e(t) =k Asinet cos(90 +0—a) =k Asinat sin(0—a)
For small angular displacement
e(t) =k A(6-0) sinat
Thus Synchro transmitter and control transformer acts as an error detector bygiving
an error signal proportional to the angular difference between the transmitter and control
transformer shaft position.

Input to the transmitter is a carrier signal error (0-a) acts as modulating signal error
signal e(t) is a modulating signal .

FEEDBACK AND FEEDFORWARD CONTROL THEORY
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In feedback system, when a disturbance enters the system, the process deviates, the
error is sensed from the feedback. The control action is based on the error signal. The main
disadvantage is that only after the disturbance enters the process, the controlled variable is
deviated, then only the corrective action is taken.

Set-point

+
Flow ‘ ( )
controller

Temperature
Steam & sensor

Process
fluid

0.6 6

Condensate

Fig: Feedback control
Whereas, in feed forward control system, the controller compensates before the
disturbance affects the process. The efficiency of disturbance control depends on the ability
to measure the disturbance. It estimates the effect of disturbance on the controlled variable,
so that we can compensate for it.

For example, in a heat exchanger, the feedback control action depends on the sensed
temperature. The input parameters to the plant are flow and temperature of the input fluid and
the steam flow.

Any disturbance affecting the plant is sensed by the temperature sensor and then the
control action is done by controlling the steam flow.

In feedforward control strategy the steam flow into the plant depends on the flow and
temperature of the fluid. It is a kind of open loop control. The disturbance is anticipated prior
to it affecting the plant. This control can minimize the transient error, with limited accuracy
since it cannot cancel un-measurable disturbance.

Steam
Feedforward Flow
control controller [~~~ ""°°
calculations
1 1
1
Flow -Temperature
sensor SEnsor
y 6
e o

Process fluid 0,6

Fig: Feed forward control
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Flow + Temperature

disturbance
Flow sensor
Temp sensor
Set-point 4
Heat
— Controller Valve exchanger
Temp sensor

Fig: Feed forward control scheme
Another control scheme uses both Feed-forward and feedback control together, such
that the system uses compensator and also provides the feedback control for unmeasurable
disturbance.

Command Controlled
compensator , variable

Controller ™ Process >
Command '
variable 1

Measurement |-

Fig: Combined Feed-forward and feedback control

MULTIVARIBLE CONTROL SCHEMES

Complex process and machines often have several variables (output) that we wish to
control, and several manipulated input variables available to provide this control. Sometimes
the control situation is simple; one input affects primarily one output and has only weak
effect in the other outputs. In such situations, it is possible to ignore weak interactions
(coupling) and design controllers under the assumption that one input affects only one output.
Input-output paring to minimize the effects of interactions and application of SISO control
schemes to obtain separate controllers for each input-output pair, results in an acceptable
performance. This, in fact, amounts to considering the multivariable system as constituting of
an appropriate number of separate SISO systems. Coupling effects are considered as
disturbance to the separate control systems and may not cause significant degradation in their
performance if the coupling is weak.

A multivariable system is said to have strong interaction (coupling) if one input
affects more than one output appreciably. There are two approaches for the design of
controllers for such system.

o Design a decoupling controller to cancel the interaction inherent in the system.

Consider the resulting multivariable system as consisting of an appropriate number of

SISO systems, and design a controller for each system.

« Design s single controller for the multivariable system, taking interacting into
account.
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UNIT Il -TIME DOMAIN ANALYSIS

Time Response:

If the output of control system for an input varies with respect to time, then it is called
the time response of the control system. The time response consists of two parts.

e Transient response

o Steady state response

|

Desired Tuput
AT )
Transient

IC5ponse

Steady-state Steady-state
fesponse  error

Response

L J

Time
Mathematically, we can write the time response c(t) as
c(t)=ctr(t)+css(t)c(t)=ctr(t)+css(t)
Where,
o Cy(t) is the transient response
e Cs(t) is the steady state response
Transient Response
After applying input to the control system, output takes certain time to reach steady state.
So, the output will be in transient state till it goes to a steady state. Therefore, the response
of the control system during the transient state is known as transient response.
The transient response will be zero for large values of ‘t’. Ideally, this value of ‘t’ is infinity
and practically, it is five times constant.
Mathematically, we can write it as
limt—ooctr(t)=0limt—ooctr(t)=0
Steady state Response
The part of the time response that remains even after the transient response has zero value
for large values of ‘t’ is known as steady state response. This means, the transient response
will be zero even during the steady state.
Standard Test Signals:
* In most cases, the input signals to a control system are not known prior to design of
control system
» To analyse the performance of control system it is excited with standard test signals
» These inputs are chosen because they capture many of the possible variations that
can occur in an arbitrary input signal
— Step signal (Sudden change)
— Ramp signal (Constant velocity)
— Parabolic signal (Constant acceleration)
— Impulse signal (Sudden shock)
— Sinusoidal signal



step signal
A step signal, u(t) is defined as
r(t) =A; t=0
=0; t<0
A unit step signal, u(t) is defined as
u(t)=1; t=0
=0; t<0

L{u®}="1

S
Following figure shows unit step signal.

$Y

A -

*- {

]
So, the unit step signal exists for all positive values of ‘t’ including zero. And its value is
one during this interval. The value of the unit step signal is zero for all negative values of
‘.

Ramp Signal:
A ramp signal, r(t) is defined as

r(t) =At; t=0
=0; t<0

A unit ramp signal, r(t) is defined as

r(t)=t; t=0 1
=0 t<0 H{r®)}= 3
)
+—— Slope = A
0 "t

the unit ramp signal exists for all positive values of ‘t’ including zero. And its value
increases linearly with respect to ‘t” during this interval. The value of unit ramp signal is
zero for all negative values of ‘t’.

Parabolic Signal
A parabolic signal, p(t) is defined as,
r(t) =A2 ; =0
=0 ; t0
A unit parabolic signal, p(t) is defined as,
r(t) =t/2; 0 1
3

=0; t<0 L{rt)}= ~




Jd——- Slope = Al
— -t

0
the unit parabolic signal exists for all the positive values of ‘t* including zero. And its value
increases non-linearly with respect to ‘t’ during this interval. The value of the unit parabolic
signal is zero for all the negative values of ‘t’.

Impulse Signal
A unit impulse signal, d(t) is defined as
r(t) =A, t=0
=0; t£0
A unit impulse signal, d(t) is defined as
o(t)=1; t=0 .
P L{5(t)}=1

)

- '
Al .0
the unit impulse signal exists only at ‘t” is equal to zero. The area of this signal under small
interval of time around ‘t’ is equal to zero is one. The value of unit impulse signal is zero for
all other values of ‘t’.

System Representation: A system can be represented in following way

1. Transfer Function in pole zero form
p T6)=K CE) _ . (s+ zl)(j( +2, )(s)(+ 2,
Whete 22229, e s ndptzosaepoles ) o ORI B )
2. Transfer Function in time constant form ~ T(s)=K 7 22 13
R(S) (1+ T Sx1+ T SX1+ rpls)

Where 7,,, 7,, 7,3, 7,y T,,, T, aré time constants.

Order & Type of the system:

The order of the system is given by the maximum power of s in the denominator transfer
functions.

The type number is specified for loop transfer function G(s)H(s). The number of poles lying
at the origin decides the type number of the system.

1
1 T 0 =
Orderl —— ype
S+ 2 S+ 2
s+1 Tvpel -
Order2 —>"= ype
s? +55+10 s(s-5)
Order 3 1 Type?2 !
rder
148’ 15+ 4 s*(s+7)



Step Response of First Order System
Consider the following 1* order system

C(s) K K

R(s) 1+7s R(s)
Where K-gain 1418
7 - time constant (time require to reach 63.2% of final value
Substitute, R(s)=1/ s in the above equation

K K
. . C(s) = R(s) =
Do partial fractions of C(s). ) (1+1s) ) s(L+17s)
s 5+1

C(s)

Cross multiply terms in right side of equation. On both the sides, the denominator term is the

same. So, they will get cancelled by each other. Hence, equate the numerator terms.

k=A(s 7 +1)+Bs

By equating the constant terms on both the sides, you will get A =k

Substitute, A = 1 and equate the coefficient of the s terms on both the sides.

0=AT+B=>B=kr

Substitute, A =k and B = —T in partial fraction expansion of C(S)

K K
ce) =KX C(s)=K[1— - j
s s+1 s 5+1

Taking Inverse Laplace of above equation
c(t) = K(l— e“”)

Slope=l

e | ' c(t) = K(l - e_“'r)

0.632

0

N = . S 2
o sl ~ (o | o
o O ' o o
O o o o) o)
Y l l \ l .
0 T r 3r 4r 5T

Impulse Response of First Order System
Consider the following 1% order system

> C(s)

K
co_ K Re— -
Where K-gain o

7 - time constant (time require to reach 63.2% of final value
Substitute, R(S) =dJ(s) =1in the above equation



K K K

T T e
Klt

C(s)=
s+1/7

Taking Laplace Transform

_ K —t/z
c(t) c(t) —?e

1
T

[
>

0 t
Relation Between Step and impulse response
The step response of the first order system is

c(t) =K(l—e V" )=K —Ke "
Differentiating c(t) with respect to t yields

det) d
dt  dt

(K _ Ke—t/r) % _ ﬁe—t/r
T

Second Order System
The general equation for the transfer function of a second order control system is given as

C(s) _ @,
R(s) s*+2w,.s+ o}

The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of the

second order and the system is said to be the second order system.
2

Here, an open loop transfer function, % s connected with a unity negative
S(s+24w,.S)
feedback.
R(s) + w2 C(s) 5
s(s +28w,) " CEs) =— @ >
— R(s) s+ 2¢w,s+ o

@ . .

I un-damped natural frequency of the second order system, which is the angular
frequency at which system oscillate in the absence of damping.
é’ damping ratio, a dimensionless quantity describing the decay of oscillations during

transient response.
Damping is an effect created in an oscillatory system that reduces, restricts or prevents the

oscillations in the system.
System can be classified as follows depending on damping effect



Overdamped system: { > 1. Transients in the system exponentially decays to steady state

without any oscillations

Critically damped system( { = 1). Transients in the system exponentially decays to steady

state without any oscillations in shortest possible time

Underdamped system 0 < { < 1.: System transient oscillate with the amplitude of oscillation

gradually decreasing to zero

Undamped system: ({= 0)System keeps on oscillating at its natural frequency without any

decay in amplitude

The characteristic equation is  s*+2 { wns+on®=0

The roots of characteristic equation are

S1,82= (- w, )+ /¢ -1

the two roots are imaginary when (= 0.

The two roots are real and equal when { = 1.

The two roots are real but not equal when { > 1.

The two roots are complex conjugate when 0 < { < 1.

Step Response of second order system

Casel : undamped system (=0.

Second order system C(s) _ a)ﬁ
R(S) S%+2(w,5+ o}

Substitute, = 0. in the transfer function.

Cis)_ o,
_ _ R(s) (s +aw?)
For Unit step input 1
R(s)==
S

0)2 6()2
C S)= n R S C S)= n
Take partial fraction and Apply inverse Laplace transform on both the sides
c(t)=1-cosw,t

{t)a (A
] S
11
| |y S
0 0 >
Case2 : under damped system 0<{<1.
C(s) _ @,
R(s) s°+2¢w,s+;
C(s) = h R(s)

s+ 2w, s+ @’

1
For Unit step input  R(S) = S

2

@,

s(s? +2¢w,s + w?)

C(s) =



The partial fraction expansion of above equation is given as
A B
Cls)= 2 s+C

s s°+2w s+’
Cross multiply and compare the coefficients on both sides to fing A,B,C

1 S+ 24w
C(s)=t- S+
S S"+2{w, S+
Add and subtract ¢?@? to denominator

1 S+ 24w,
Cl)=--3 2 2, 2 .2 2

S S +2w, s+ o +o) - o]
C(s)zl— S+ 2w,

s (s+co, ) +0?(1-¢?)
Above equation can be written as
1 S+ 24w
C(s)=—- é:_ —
S (S + é’a)n) +

Where w, =w,\J1-¢? , is the frequency of transient oscillations and is called damped

natural frequency.
The inverse Laplace transform of above equation can be obtained easily if C(s) is written in
the following form:

C(S)=1— S+§a)n é/a)n

S (S+§a)n)2 +a)§ (S+§a)n)2 +a)§

N
C(s)ZE— 5460 hoct

S (s+§a)n)2+a)§ - (S+§’a)n)2+a)§

C(s):l— S+dw, ¢ Wy
S (s+§a)n)z+w§ N (S+§a)n)2+a)§

¢

— 7é’wnt *C:(x)nt H
c(t)=1-e """ cosw,t - e """ sin w,t

N
c(t) =1—-e " cos m,t __ & edtsin w,t
N
g
1-¢?
c(t) 4

c(t) =1—e | cos w,t + sin w,t

i) 4

[ AVR WY A5 W A -

-~ Y

f=]
~Y
=



Case 3: Critically damped system ¢ =1
C(s) _ o’

n

R(S) S%+2(w,5+?

2

a,
C(s) = — R(s
(s) Gro) (s)
For Unit step input 1
h R(s)==
C(s)=—"—
) s(s+w,)

The partial fraction expansion of above equation is given as

A B C
C(S):g_(s+a)n)_(s+a)n)2

Find constants A, B,C

1 1 o,
C(s)=—- - 5
s (s+m,) (s+o,)
Take inverse Laplace transform
ct)=1-e ™ - te™"
r(t) a c(t) 4
1 Thewoo et

0 t

Case 4: Over damped system £>1
C(s) _ o?

R(S) S%+2¢w,5+ )’

2
[0

C(s) = L R(s
(s) s+ 2w, S+ o} (®)

Roots S1,52= (—¢w, )+ w,/¢? -1
For Unit step inputR(S) 1
2 S

a,

C(s) = v
S(s+s,)(S+S,)
The partial fraction expansion of above equation is given as
2
C(s) = G é+ B + ¢

s(s+s,)(s+5,) s S+S, S+5,
Find A,B,C values and substitute in the equation

~+¥



C(s)=%{ , 1 1

w, 1 1
(2,/;2 1w, + 0,7 1) s+ o, + 0, —1)}

Take inverse lapalce transform

C(t) = 1 _[ @, 1 e—(&un w"m]tJ N
s (2J¢ -1l -0, 57 1)

, 1 —[gwnwun\/z)t
(2,/;2—1 \o, +a)n,/;2—1)e J
(t) &
I

2¢% -1 l¢w, — o7 1) s+ ¢, — 0,22 -1

)

0 -~ t

(Time domain ) Transient Response Specifications:

The step response of the second order system for the underdamped case is shown in the

following figure

c(1) |
Allowable tolerance
|
| Y 005
I _____________________ - -
1 /"\\_____‘(_-_r QI :’1‘:‘:-_-?_7-*_/ or
f 0.02
0.5

0

lg -

A

~ ¥

Important timing characteristics: delay time, rise time, peak time, maximum overshoot, and

settling time.



Delay Time: (ty) The delay (ty) time is the time required for the response to reach 50% or
half the final value the very first time.
_1+0.7¢

a,

ty

Rise Time (t;) The rise time is the time required for the response to rise from 10% to 90%,
5% to 95%, or 0% to 100% of its final value. For underdamped second order systems, the 0%
to 100% rise time is normally used. For overdamped systems, the 10% to 90% rise time is
commonly used.For critically damped systems, the 5% to 95% is used.

7 —tanl{“lf]
t

r

Cl)n\/:l'_é/2
Peak Time (t,): The peak time is the time required for the response to reach the first peak of
the overshoot.
="
@, 1_4,2
Maximum Overshoot/ peak overshoot: The maximum overshoot is the maximum peak
value of the response curve measured from unity. If the final steady-state value of the
response differs from unity, then it is common to use the maximum percent overshoot. It is
defined by
Clty)-Cl@) ,
C(a)
The amount of the maximum (percent) overshoot directly indicates the relative stability of the
system.

Maximum Overshoot/ peak overshoot %M = 00

&
%M, =e V¢ x100
Settling Time (t;): The settling time is the time required for the response curve to reach and

stay within a range about the final value of size specified by absolute percentage of the final
value (usually 2% or 5%).

t, = 4 for 2% criterion

o,

3 .

t, =—— for 5% criterion

o,
Effect of addition of poles
consider system G(s) = 1

(s + 1)

10
Add a pole , system become ~ G(S) = (S"'T)(S"'l)

i) Root locus shift towards right half of the s-plane
i) Gain margin increases, system stability relatively decreases

iii) system becomes more oscillatory in nature

10



iv) range of operating values of k, for stability of the system decreases

V) settling time increases

Effect of addition of zeros

consider system  G(s) = B
s*+4s+25
Adding a Zero, system become G(s) = 25(5 +1)
s* +4s+25

i) Root locus shift towards left half of the s-plane
il) system stability relatively increases
iii) system becomes less oscillatory in nature

iv) Range of operating values of K for stability of the system increases

Steady State Error:

If the output of a control system at steady state does not exactly match with the input, the
system is said to have steady state error.Any physical control system inherently suffers

steady-state error in response to certain types of inputs.

A system may have no steady-state error to a step input, but the same system may exhibit
nonzero steady-state error to a ramp input. The magnitudes of the steady-state errors due to

these individual inputs are indicative of the goodness of the system.

Steady state error depends upon both input and type of the system. As the type number is
increased, accuracy is improved. However, increasing the type number aggravates the
stability problem. A compromise between steady-state accuracy and relative stability is

always necessary.

R(9 B9 [ o C(9

His)

ClerH(S)

E(s) = Error Signal

E(s) = R(s) - C(s) .H(s)
Output signal C(s) = E(s).G(s)
Substituting C(s) in E(S)

E(s) = R(s) - E(S).G(s) H(s)

E(S) = &
1+G(s)H(s)

11



Let e(t) error signal in time domain

o) = L{EG)]= L7
1+G(s)H(s)

Let e;s= steady state error

e, = Lte(t)

t—oowo
The final value theorem states that
LU0 = LsF()
Steady state error
e, = Lte(t)= Lt sE(s) = LtL(S)

tow -0 =01+ G(S)H(S)
Static Error Constant : The response that remain after the transient response has died out is
called steady state response. The steady sate response is important to find the accuracy of the
output. The difference between steady state response and desired response gives the steady
state error.The control system has following steady state errors for change in positions,
velocity and acceleration.
» Type-0 system will have constant steady state error when input is step signal

Positional Error Constant K | = SI;tOG(s)H (s)

» Type-1 system will have constant steady state error when input is ramp signal
Velocity Error Constant K, = LtO SG(s)H(s)

 Type-2 system will have constant steady state error when input is parabolic signal
Acceleration Error Constant K, = Lt0 S’G(s)H (s)
S—>

Where  G(s)H(s)=K CE) _ (i+ 2, \S+2, )5 +12,).....

R(s) S (S+ pl)(s+ pz)(s+ pg)
These constants are called static error coefficient. They have the ability to minimize the
steady error.

Steady state error for unit Step Input:

Steady state error e = Lt SR(S)

) 1
———~2 ___ unit Step Input R(s) ==
* 55014+ G(S)H(s) P inp () s

s¢h)
e, - SR(s)  _ Lt S
s—0] + G(S)H (S) s—01 + G(S)H(S)
ess = Lt ;
s—>0] + G(S) H (S)
1

e =
® o1+ LtOG(s)H (s)

where  Positional Error Constant K = LtOG(s)H(s)

SS

T14K,

Type-0 system:
(s+2z)(s+12,).......

(5+ P+ Py

K,=LtG(s)H(s) COEHEI=K

12



K — Lt (S+Zz)(S+2Z,).... _1,2,7,

o :H01(5+ sip) = = const
e, = =pt)o(nst Po)-eee PP Ps
1+K,
Type-1 system
(S+2z)(S+2,).......

K,=LLGS)H(s) GEH(E)=K

Lt (S+2,)(S+2Z,)..un.

P 550 5(5+ P)(S+ Py)eens
€ = L =0
1+K,

Steady state error for Ramp Input
Steady state error . SR(s) unit Ramp Input . 1
= B — S [ J—
® 55014+ G(S)H(s) s

1

S L 1

e, = Lt = Lt
5201+ G(S)H(S) s20s+SG(S)H(S)

1

e =— —— Velocity Error Constant K, = Lt sSG(s)H(s)
Lt0 SG(s)H (s) s—0

Type-0 system

K, = SI;t0 SG(S)H(s) G(s)H(s)=K

K, = Lt sK (s+2z)(s+12,)....... 0 esszizlzoo
90 (S+ P)(SH Py)eeens K, O
Type-1 system
K, = S|;t0 sG(s)H (s) G(s)H(s) = K (S+2z)(s+2,).......
S(5+ P)(S+ Py
K, = Lt sK (S+zZ)(S+2,).een. L2y _ const

550 §(S+ P)(S+ Pyl PpPyeceees

1
€, = K_ = const

v

Type-2 system

o (s+z)(s+12y).......
K,=LtsG(HE)  COHE=K G o o
K - LtsK §s+zl)(s+22) ....... o
PSP (S+ P)(S+ P,
ess:izo
I‘<V

13



Steady state error for Parabolic Input

. 1
Steady state error Parabolic Input =
y . _ SR(s) Y R(s) ~
® 55014+ G(S)H(s)
8= Lt —— 1
s-08°+5°G(S)H (s)
1
eSS = 2
L'% S“G(s)H(s)
o 1 Where Acceleration Error Constant K_ = Lt s?G(s)H (s)
ss K s—0
Type-0 system
K, = LtoszG(s)H(s) K — Lt s2K (S+2)(S+2,) e _
1 1 & 50 (S+ pl)(S+ pz) ......
e =—=—=
SS K O

Type-1 system
2, (S+Z)(S+2,).......

K, =Lts°K =0
50 S(S+ P)(S+ Py).eee
_ 1 _ 1.1
SS Ka SS Ka 0
Type-2 system
K = LtoszK 5:2 + zl)()S(+ 22)..)..... _ const e =1 — const
s ST(s+p)(S+p,).... a
Type-3system Py P2
K, = Lt K §s+zl)(s+22) ....... cw ess=i=0
50 S°(S+ p)(S+Py)...e. K,
Type Steady State Error
Unit Step Unit Ramp Unit Parabolic
0 1 0 0
1+K,
1 0 1 o
KV
2 0 0 1
Ka
3 0 0 0

The higher the constants, the smaller the steady-state error. As the steady state error is
inversely proportional to static error constant. Increasing the gain increases the static error
constant. Thus in general increases the system gain decreases the steady state error.

14



Automatic control system

Automatic control is the application of control theory for regulation of processes without
direct human intervention. In the simplest type of an automatic control loop, a controller
compares a measured value of a process with a desired set value, and processes the resulting
error signal to change some input to the process, in such a way that the process stays at its set
point despite disturbances. This closed-loop control is an application of negative feedback to
a system.

1 1
[ - Controller
1 SITor errar signal e(t) 4 output ult)
I detector 1
! I Output c(t)
reference i /
input r(t)  — Controller ——>{ Plant -
! 1
1 1
feed back Sensar
signal bit)

A controller is device introduced in the system to modify the error signal and to produce a
control signal. The manner in which the controller produces the control signal is called
control action. The combined unit of error detector and controller is called automatic
controller. Based on the control action controller can be classified as

e Proportional Controller

e Proprtional Integral Controller

e Proportional Derivative Controller

e Proportional Integral Derivative Controller

Proportional Controller:
» It produces an output signal u(t) which is proportional to error signal e(t)
« It amplifies the error signal and increase the loop gain of the system
» Steady state tracking accuracy
« Disturbance signal rejection
» Relative stability
« lts transfer function is represented by K,
In P controller U(t) a e(t)
u(t)= Ke(t) where K, - Proportional gain

Take laplace transform  U(s) = K E(s)

The transfer function of P controller LEJ— =K

15



Block diagram

actuating feed back
error error signal e(t) signal b(t)
detector
reference /
input r(t) Controller 7
outout u(t)

Electronic p controller:

ey R

R,
A,
—\N, | R
- > o YW
‘ Inverting amplifier |
' Sign changer

. . R
Proportional gain K = —Z
Rl

Drawback

« Produces constant steady state error (offset)
» Decreases the sensitivity of the system

Integral controller:
» It produces an output signal u(t) which is proportional to integral of the input error
signal e(t)

u(t)aj e(t)dt

K t t
u(t):?pje(t)dt—Kj e(t)dt
K,
Where K, <5 mtegral gain. T, -integral time

Take laplace transform ;. (5)=K. E(s)

S .
The transfer function of | controller ELS) = (5}

16



Block diagram

R(s . U
(s) E(s) . Es._ (s)
Feedback signal

Electronic | controller

~

3

—\W\ - R \
+ ul(t) -

Integrator ‘ . /

T il Sign changer

Integral gain K, =

u@®

Rlcl
Advantages
Its eliminate the steady state error

Proprtional Integral Controller
Proprtional Integral Controller (PI) produces output signal consists of two terms one

propotional to error signal and other propotional to integral of error signal

K t
u(t) = Ke(t)+ - [e(tt
Take lapalce trafisform

K, E(s)
Uu@i)=K E(s)+—=—=2
©)=K, ) T s
The transfer function of Pl controller

Ssfod) {5

K
Where K, :T" integral gain. T, -integral time. K- Proprtional gain

Inverse of (T, )integral time is called reset rate
Block diagram

R(9 KP(T:S+1] H
Ts

17



Electronic PI controller

R
AN e
R, G
e(t) R,
— WA | R
: + u,(t) '\/\/\l : - o
+ u(t)
Integrator with gain _
— Sign changer
R

Proportional gain K = —2
Rl
integral time. T. =R,C,

Effect of pl controller: consider closed loop system with PI controller

RS Ts+1 c(9
K |- » G(s
| p( Ts ] )
o) = —F—————
[1+Tisj 0.2 S(s+25m,)
Cs) GG "\ Ts Js(s+2m,)

R(s) 1+G(s) . 2
(s) 1+G(s) 1+Kp(1+T,sj o,
B K,o,”(L+T;s) Ts )s(s+2¢m,)
s°T (s + 26w, )+ K o0,” (1+Ts)
Kpa)n d+Ts)

ST, + 87T, 260, + K0, Ts + K, 0,
K,o, (L+Ts)

ST, + 87T, 260, + K0, Ts + K, 0,

2
(Kp /Ti)a)n (1+TiS) Kpa)nz(l+TiS)

K =
3 2 2 2 2: 2
s° +5 25, + K o, s+?"a)n T, (s + 260, )+ K j0," (L+T;s)

~ K,@,”(L+T;s)
ST, + 87T, 260, + K0, Ts + K, 0,

Inference:
» There is a increase in order by one and introduces zero in the system
» The increase in order of the system results in less stable
» The type number of the open loop system increases by one ,this will reduces the
steady state error
» Increase in zero increases the peak overshoot

18



Propotional Plus derivative (PD) Controller:
Propotional Plus derivative (PD) Controller produces output signal consists of two terms one
propotional to error signal and other propotional to derivative of error signal

de(t)

u(t)=K,e(t)+K,T,
Take lapalce transform
U(s) = K,E(s) + K, T, SE(s)

The transfer function of PD controller

£6) =K, ([1+T,s)

Where T, -Derivative time. K- Proprtional gain

block diagram

actuating Controller
ErTOr error signal e(t)  output uit)
detector 4
reference / ! 'I
input rit) v » K P 1+ TD I
feed back
signal b {t)
Electronic PD controller
C, R
A W AW
. R2
e(t) R, '
—LAAN, \ R
P WA
u(t)
Differentiator

with gain

Proportional gain K = %
1

[+
! Sign changer
Derivative time. T, =RC,

Effect of PD controller: consider closed loop system with PD controller

R(s)

c(9

K, (1+T,s)—>G(s)
Let open loop TF is given by 2
G(S)zw—”
(s + 2w,
a)n
C(s) _ G(s) _ K”(1+Tds)s(s+2ga)n)
RE) 1+6() 1+K,(1+T,s)—

S(S + 260, ) 19



K,o,” (L+T,5) ~ K,@,” (L+T,9)
s(s+2¢m, )+ Kpa)nz(1+Td s) s*+2cw, s+ Kpa)n2 + Kpa)nszS
~ K,@,” (L+T,9)
s* + (26, + Kpa)nsz)S+ Kpoon2

Inference:
* Increase in zero and damping ratio
* Increase in zero increases the peak overshoot
« But Increase in damping ratio reduces the peak overshoot

Proportional integral derivative (PID ) Controller:

Propotional Plus integral plus derivative (PID) Controller produces output signal consists of
three terms one propotional to error signal and aother one propotional to integral of error
signal and third one propotional to derivative of error signal

)= ,e0)+ Jelck k., okl

Take lapalce transform

U(s) = K,E(s)+ 2 E(S)

—+ K, T, sE(s)

The transfer function of PD controller

%:Kp(l+%+ns}

Where . K, - Proprtional gain T;-integral time. T, -Derivative time

Block diagram

R(s) E(s U(s
©) KP[1+~1—+T;13] u—r-( )
Ts
Feedback signal
Electronic PID controller
C, R, .G ‘ R
u _’\/\/\/_1 /\/V\(

et)| R :
—NW——— - R .
’\u(t) ,\/\/\( ) = )
g q, L o
/ . u(t)
Amplifier I
: Sign changer

¥
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. . R
Proportional gain K = —2
Rl

integral time. T, =R,C,

Derivative time. T, =RC,

Effect of PID controller
» Proportional controller stabilizes the gain but produces a steady state error
» The integral controller eliminates the steady state error
« The derivative controller reduces the overshoot of the response

Uncontrolled

Controlled
variable

-

Offset
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UNIT I11- FREQUENCY DOMAIN ANALYSIS

3.1 Introduction

The frequency response is the steady state response of a system when the input to the system us a
sinusoidal signal.

Let us consider a Linear Time Invariant (LTI) system as shown in Figure 3.1.
Let x(t) is a sinusoidal input signal with unity amplitude. The response or output y(t) is also a

sinusoidal signal of same frequency. But it’s Magnitude and the Phase angle is different
compared with the input signal.

x(t ol LTIsystem _,y(t)

Figure 3.1 LTI system
Where; x(t)= X sin ot & y(t) =Y sin (ot + ¢)

The magnitude and phase relationship between the sinusoidal input and the steady state output of
a system is called the frequency response. In LTI systems, the frequency response is independent
of the amplitude and the phase of the input signal.

Normally, the frequency response of a system is obtained by varying the frequency of the signal
by keeping the magnitude of the input signal at a constant value.

In the system transfer function T(s), if ‘s’ is replaced by ‘j®’, then the resulting transfer function
T(jo) is called the sinusoidal transfer function. Then the frequency response can be obtained
from T(jo) and also T(jw) is a complex function of frequency.

The magnitude and phase of T(jo) are functions of frequency and can be evaluated for various
values of frequencies.

The frequency response can be evaluated for both open-loop system and closed-loop systems as
follows;

Open-loop transfer function, G( jo)=|G( jo)£G( jw) (3.1)
Loop transfer function, G(je)H( jo)=|G( jo)H( jo)|£G(jo)H( jo) (3.2
Closed- loop transfer function, < JW; =M(jo)=|M(jo)M(jo) (3.3)

where M( jw) is a closed loop parameter.



Advantages of Frequency response

a. The absolute and relative stability of the closed loop system can be estimated from the
knowledge of their open-loop frequency response.

b. The practical testing of systems can be easily carried with available sinusoidal signal
generators and precise measuring equipments.

c. The transfer function of complicated systems can be determined experimentally by frequency
response tests.

d. The design and parameter adjustment of the open-loop transfer function of a system for
specified closed-loop performance is carried out more easily in frequency domain.

e. If the system is designed using the frequency response, the effects of noise disturbance and
parameter variations are relatively easy to visualize and incorporate corrective measures.

f. The frequency response analysis and designs can be extended to certain non-linear control
systems.

3.2Frequency domain specifications

The performance and characteristics of a system in frequency domain are measured in terms of
frequency domain specifications.

The common frequency domain specifications are discussed below;

a. Resonant Peak (M)

The maximum value of the magnitude of closed-loop transfer function is called the resonant peak
(My). A large ‘My’ corresponds to a large overshoot in transient response.

b. Resonant Frequency (or)

The frequency at which the resonant peak occurs is called resonant Frequency (wr). This is
related to the frequency of oscillation in the step response and thus it is indicative of the speed of
transient response.

¢. Bandwidth (wb)

The bandwidth (wb) is the range of frequencies for which the system gain is more than -3 dB.
The frequency at which the gain is -3dB is called the cut-off frequency. Bandwidth is normally
considered in closed-loop system and it transmits the signals whose frequencies are less than the
cut-off frequency. A large bandwidth corresponds to a small rise time or fast response.

d. Cut-off Rate
The slope of the log-magnitude curve near the cut-off frequency is called the cut-off rate. The
cut-off rate indicates the ability of the system to distinguish the signal from noise.

e. Gain Margin (Kg)

The Gain margin (Kg) is defined as the reciprocal of the magnitude of open-loop transfer
function at phase-cross over frequency. The frequency at which the phase of open loop transfer
function is 180° is called the phase cross-over frequency (®pc).

1
G(jmy )

Gain margin (Kg) indB = 20log K, =20 Iogﬁ

| Dpe

Gain margin (Kg) = (3.4)

=—2010g[G( jo,, )

(3.5)




The gain margin indicates the amount by which the gain of the system can be increased without

affecting the stability of the system.

f. Phase Margin (y):

The phase margin (y) is the amount of additional phase lag at the gain cross over frequency
required to bring the system to the verge of instability. The gain cross over frequency (wgc) is the

frequency at which the magnitude of the open-loop transfer function is unity.

The phase margin (y) is obtained by adding 180° to the phase angle ¢ of the open loop transfer

function at the gain cross over frequency.

Phase margin (y) = 180° + ¢4, ; Where ¢, = ZG( jo,,)

3.3 Frequency response of second order system

2
second order system Ces) =M(s) = @n
R(s) $* + 2w, S+’

sinusoidal transfer function obtained by substituting s = jo

2
n

(j0)* +2¢o, (jo) + o;

n

M (joo) = “

2

@y

—0° + j2lw 0+ o]
1

B [ . @
1-(C)*+j2g —
@y, @y,

. I
Normalized frequency U = —

@y,

. 1
MO e

M-Magnitude of closed loop transfer function
o — Phase of closed loop transfer function

M =|M(jo)] = !

- u?y? + (2c0) e

a=/M(jw) =—tan‘1(12_452)

Resonant Peak (Mr): M

1
"2 1=

Resonant Frequency (or) o, = ®,/1-2¢°

1
Bandwidth (ob) @, =o,U, = a)nb—Zé’z +42-4,7 +4§4F

(3.6)



Gain Margin (Kg)= infinite ()

B ngz +.4c? +1};

Phase Margin (y) y =90—tan %

3.4 Correlation between frequency domain and time domain specifications:

The correlation between time and frequency response has an explicit form only for first and
second order systems. The correlation for the 2" order system is discussed below.

Chose the standard form of transfer function of second order system:

). @ 3.7)

R(s) s2+2&m,5+a?
Where, { — damping ratio and on — undamped natural frequency.

The sinusoidal transfer function of the system is obtained by letting s=jw,

C(j . ? @
%ZT( Ja)): in)? i 2 :_ 2 2
jo) (jo) +2&0,(jo)+ o] o + j280,0+ @

. o _ 1 -3 ; o5 (3.8)
—u®)+
wg(_”znzg;ulj 1{@} e ® ’

n n

n n

Where, u = (ﬂj is the normalized frequency.

a)n
Magnitude of closed-loop system, M =[T( jo)|= L (3.9)
J(1-u?)? +(240)?
Phase of closed loop system; a = /T(jow)= _tanl[lZ@ZJ (3.10)
—u

The magnitude and phase angle characteristics for normalised frequency ‘u’ for certain values of
‘¢’ are shown in Figure (a) and (b). The frequency at which M has a peak value is known as the
resonant frequency. The peak value of the magnitude is the resonant peak ‘M;. At this
frequency, the slope of the magnitude curve is zero.

Dy

Let o be the resonant frequency and u, =( J be the normalized resonant frequency.

The expression for resonant frequency rcan be obtained by differentiating M with respect to ®
and equating dM/du to zero.

The M and the corresponding phase ar can be obtained by substituting the expression for o in
the equation of M and a.



[ _ 2
It can be shown that; M, =;; U =41-2&%; @, =—tan™ 1-2¢ and o, = w,\1-2&2
28,1 &2 4

When (=0, o, = »,{/1-2&* =, and M, = !

2E,J1— £2 B

Hence, it is clear that, as  tends to zero, wr approaches wn and My approaches infinity.

[e e}

For 0< ¢ <1/+/2, the resonant frequency always has a value less than wn and the resonant peak
has a value greater than one.

For &£>1/+/2, the condition (dM/du)=0, will not be satisfied for any real value of ®.

A
1.4
For { =1 < 0.707
1.2
10 For {> 0.707
or(> 0.
M08
0.6
0.4
0.2
0 Ur —>

-180°

v

Figure. (a) Magnitude M as a function of u and (b) Phase a as a function of u.

Hence, when &> 1/+/2, the magnitude M decreases monotonically from M=1 at u=0 with

increasing u. It follows that, for &> 1/+/2 ; there is no resonant peak and the greatest value of M
equals one.



The frequency at which M has a value of 1/+/2 is of special significance and is called the cut-off
frequency wc. The signal frequencies above cut-off are greatly attenuated on passing through a
system

For feedback control system, the range of frequencies over which M >1/42 is defined as
bandwidth wp is equal to cut-off frequency .

In general, the bandwidth of a control system indicates the noise-filtering characteristics of the
system. Also, bandwidth gives a measure of the transient response.

The normalized bandwidth, u, = (&j = [1-22+ o-agi+E T'Z
),

n

From the equation of up it is clear that, up is a function of { alone. The graph between up and ( is

shown in Figure (c)
A

1.5

1.0
Ub

0.5

0 0.5 0.707 1
—» ¢
Figure (c). Normalized band-width as a function of {

The expression for the damped frequency of oscillation mg and peak overshoot M of the step
response for 0<&£<1 are;

—&r

Damped frequency o4 = wy1-¢* and Peak overshoot M, = e@

Comparison of the equation of M, and M, reveals that, both are functions of only C.

The sketches of Mr and Mp for various value of ( are shown in Figure (d). The sketches reveal
that, a system with a given value of M, must exhibit a corresponding value of M, if subjected to a

step input. For &£>1/+/2, the resonant peak M, does not exist and the correlation breaks down.

This is not a serious problem as for this range of (., the step response oscillations are well
damped and My, is negligible.



3.0

1.0 M,

v

0.5 0.707 1 2
Figure (d). Mrand My as a function of § ¢

!

oy /oy
0.5

A 4

0 ’ 0.707

Figure (f). @r / ®b as a function of {

The compensation of the equation of wr and wp reveals that, here exists a definite correlation
between them. The sketch of @r / b as a function of { is depicted in Figure (f).

Frequency response plots:
Frequency response analysis of control system can be carried either analytically or graphically

1.Bode plot
2.ploar plot
3.Nyquist plot
4.Nichols plot

5. M and N circles



3.5 Bode plot:

A sinusoidal transfer function may be represented by two separate plots; one giving the
magnitude Vs frequency and the other the phase angle Vs frequency. A bode plot (named after
Hendrick W. Bode) consists of two graphs; one is a plot of the logarithm of the magnitude of the
sinusoidal transfer function and the other is a plot of the phase angle in degrees; both are plotted
against the frequency in logarithmic scale.

In a Bode plot, the logarithmic magnitude of sinusoidal transfer function G(jm) is represented
as 20 log |G( je), where the base of the logarithm is 10. The unit in this representation of the

magnitude is decibel (dB). The main advantage of using the logarithmic plot is that the
multiplication of magnitudes can be converted into addition.

The Bode plot is sketched using the semi-log sheet shown in Figure 3.2.

Frequency (rad/sec)

g L
Y %
2 5
c Q
(@) D
© —~
S 3

=

Figure 3.2. Semi-log graph sheet
Example 1.

Let is draw the Bode magnitude plot for the transfer function: G(s)= —2(00( i;)lz)
S+

The rearrangement of the transfer function in the time-constant form gives ( ie. making the
10 as unity);
2(s+1)
G =217
()= 510y
Therefore, the sinusoidal transfer function in the time-constant form is given by:

2(jo+1)
(1+ jew!10)?
Our approach is to first to construct an asymptotic plot and then apply corrections to it to get

an accurate plot. The corner frequencies of the asymptotic plot in order of their occurrence as
frequency increases as;

Q) oc1 = 1; due to zeroats = -1;

G(jo)=



(i) o2 =10; due to zero at s = -10
At frequencies less than wc1, the first corner frequency. Only the factor K=2 is effective.
The approximated values are presented in Table 3.1.

Table 3.1 Asymptote approximation table

Factor Corner Asymptotic magnitude characteristic
frequency
2 None Constant magnitude of +6dB
I+ w1 =1 Straight line of 0 dB for ©< wc1; straight line of

+20 dB/decade for w> w,,

1/(1+ jw/10)? oc2 = 10 Straight line of 0 dB for w< wc; straight line of -
40 dB/decade for o> w,

Table 3.2 Corrections to asymptotic magnitude plot

Frequency (v) 0.5 1 2 5 10 20

Net correction

+ + + - - -
(dB) 1 3 1 2 6 2

Step 1: We start with the factor K=2. Its magnitude plot is the asymptote 1; a horizontal straight
line at the magnitude of 6 dB.

dB

Magnitude Plot
30
26 Asymptote 2 Asymptote 3
20 (20 dB/dec) (-20 dB/dec)
10 Asymptote 1

0 dB/dec

-10

0.5 1 5 10 20 100 o
Figure 3.3 (a) Magnitude plot
e Phase Angle value ~G( ja)):tanl(a))—Ztanl(%j

o(radsec) 05 1 5 10 20 100
/G(jo);deg 20 34 25 -57 -39.7 -79.15



deg
60 Phase Plot

-120

-180

-240 :
05 1 5 0 99 20 100 o

Figure 3.3 (b) Phase plot

Step 2: Let us add to the asymptote 1, the plot of the factor (1+jw) corresponding to the lowest
corner frequency wc1=1. Since this factor contributes zero dB for » < w,, =1, the resultant plot up
to ®=1 is the same as that of the asymptote 1. For ® > wc1=1, this factor contributes
+20dB/decade such that the resultant plot of the two factor is the asymptote 2 of slope +20
dB/decade passing through (6dB, 1 rad/sec) point. At, ® =wc=10, the resultant plot has a
magnitude of 26 dB as shown in Figure 3.3.

Step 3: We now add to the resultant plot of step 2, the plot of the factor 1/(1+jw/10)?
corresponding to the corner frequency wc2=10. Since this facto contributes 0 dB for o< w,,=10,

the resultant plot up to ®=10 is the same as that of step2. For o> w,, =10, this factor contributes

-40 dB/dec such that the resultant plot of the three factor is the asymptote 3 of slope (+20) + (-
40) = -20 dB/decade passing through magnitude plot of given G(jo).

The corrections at each corner frequency and at an octave above and below the corner frequency
are usually sufficient. The corner frequency wci=1corresponds to the first-order factor (1+jw); the
corrections are +3dB at =1, +1dB at ®=0.5 and +1dB at ®=2. The corner frequency wc=10
corresponds to 1/(1+jw/10)2: the corrections are presented in Table 3.2.

Example 2.

Consider the transfer function: G(jeo)= M
(jo) (1+ jo)

Our approach is to first to construct an asymptotic plot and then apply corrections to it to get
an accurate plot. The corner frequencies of the asymptotic plot in order of their occurrence as
frequency increases as;

Q) oc1 = 1; due to simple pole;

(i) o2 = 2; due to simple zero
At frequencies less than mc1, only the factor 10 (jo)? is effective.

The asymptotic magnitude plot of G(jo) is shown in Figure 3.4.



60 Magnitude Plot

50 Asymptote 1 (-40 dB/decade)
40
30
dB
20 N\
10 \
2 \
0 | E\‘
Asymptote 2 H
-10 (-60 dB/decade)
-20 Asymptote 3 ¥
(-40 dB/decade)
-30 :
0.1 0.5 1 2 4 10 o

Figure 3.4 (a) Magnitude plot
e Phase Angle value ~G( ja)):tanl(gj—wo-tanl(a))

o (rad/sec) 01 05 1 2 4 10
/G(jw); deg -183 -192 -198 -198 -192 -180

deg

Phase plot

-160

-170

-180
-190

-200

0.1 0.5 1 2 4 10 o

Figure 3.4 (b) Phase plot
Table 3.3 Corrections to asymptotic magnitude plot

Frequency (®) 0.5 1 2 4
Net correction (dB) -1 -2 +2 +1

Step 1: We start with the factor 10 (jo)2 corresponding to double pole at the origin. Its
magnitude plot is the asymptote 1, having a slope of -40 dB/decade and passing through the

point 20 log 10 = 20 dB at ®=1. Asymptote 1 intersects the 0 dB line at w=+/10 .

Step 2: Let us now add to the asymptote 1, the plot of the factor 1/(1+jm) corresponding to the
lowest corner frequency mc¢1=1. Since this factor contributes zero dB for » <1, the resultant plot
up to ®=1 is the same as the asymptote 1. For o > 1 this factor contributes -20 dB/decade such
that the resultant plot of the two factors is the asymptote 2 of slope (-40)+(-20) = -60 dB/decade



passing through the point 20 dB; 1 rad/sec. At ® = wc2=2. The resultant plot has a magnitude of
2dB as shown in Figure 3.4.

Step 3: We now add to the resultant plot of step 2, the plot of the factor (1+jw/2) corresponding
to the corner frequency wc2=2. This gives rise to a straight line of slope +20 dB/decade for » > 2,
which when added to asymptote 2 results in asymptote 3 of slope (-60)+(+20)= -40 dB/decade
passing through 2 dB, 2 rad/sec point.

To the asymptotic plot obtained are corrected as per the values shown in Table 3.3 and the exact
magnitude plot is constructed.

Example 3.

Ke—O.ZS

Find K so that the system is stable with Gain margin equal to 6 db and (b) Phase margin equal to
450 using bode plots.
Solution:

Ke %% Ke % 0.0625Ke %

Given that; &(s) = s(s+2)(s+8) sx2(s/2+1)x8(s/8+1) s(1+0.58)(1+0.1255)

Let K=1 and replacing ‘s’ with ‘jo’, we get;

0.0625Ke™02i®
jaX1+0.5jw)(1+0.125 jow)

G(jo)=

o Magnitude plot:
The corner frequencies are;
oc1= 1/0.5 = 2 rad/sec and wc= 1/0.125 = 8 rad/sec

Magnitude plot Table
Change in Slope

Term Corner frequency Slope
(rad/sec) (dB/dec) (dB/dec)
0.(}6;)25 ] 20 ]
1T ;15 > oc1=1/0.5=2 -20 -20-20=-40
1“—0% 0= 1/0.125=18 -20 -40-20=-60

Choosing mi < oc1 and oh > oc2, Let @) = 0.5 rad/sec and on = 50 rad/sec.
Let the magnitude is ; A=|G( jo);dB

Finding A for wi, ®c1, ®c2, and o



0.0625 0.0625

e When o= o A=20Iog_—‘:20log‘W‘:—18dB

jo
e When o=, A=20log 0'0_625‘ = ZOIOg‘g‘ =-30dB
e When o= wc; A= Slope froma,, tow,, x log Z” +Aato,,
cl
= —40xlog% +(-30) =-54dB
e When ®= wh;, A=Slope froma,, tom, xlog ;)h +Aat o,
2

50
= log— +(-54)=-102dB
60xog82+(5) 02d
o Phase plot:
The phase angle of G(jo) as a function of ® is given by;

¢ =-200X 180 _ 90—tan0.50—tan0.1250
T

For various values of the assumed ‘®’; the phase angle ‘¢’ is computed as shown below:

Phase plot Table

o (rad/sec) 0.01 0.1 05 1 2 3 4
@ (deg) -90 -94 -114 -134 -172 -202 -226

Computation of K:

Phase margin: y =180+4,
When, y=45°; ¢,,=y-180=45-180= -135°

With K=1, the dB gain at ¢=-135° is -24dB. This gain should be made zero to have to PM of
45°, Hence to every point of magnitude plot a dB gain of 24dB should be added. The corrected
magnitude plot is obtained by shifting the plot with K=1 by 24dB upwards. The magnitude
correction is independent of frequency. Hence, the magnitude of 24dB is contributed by the term
K. The value of K is calculated by equating 20 log K to 24dB.

Hence, 20 log K = 24; K= 10?#?%; K= 15.84

With K=1; the gain margin = -(-34) = 34dB.But the required GM is 6dB. Hence; 34-6 = 28dB is
to be added for every point and the final value will be;

20 LOG k = 28; K= 10%8/20: K= 25.12.
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3.6 Polar plot (Nyquist plot ):

Polar plot is a plot which can be drawn between magnitude and phase. Here, the magnitudes
are represented by normal values only.

The polar form of G(jo)H(jo) is

G(o)H(jo)=G(jo)H(jo)|£G(jo)H(jo)

The Polar plot is a plot, which can be drawn between the magnitude and the phase angle

of G(jo)H(jw) by varying o from zero to o. The polar graph sheet is shown in the following
figure.

This graph sheet consists of concentric circles and radial lines. The concentric circles and
the radial lines represent the magnitudes and phase angles respectively. These angles are
represented by positive values in anti-clock wise direction. Similarly, we can represent angles
with negative values in clockwise direction. For example, the angle 270° in anti-clock wise
direction is equal to the angle —90° in clockwise direction.



-230 -240 -250 -260 -270 -280 -290 -300  -310

-220 = 2320
210 w2330
-200 <2340
-190 : -350
-180 S0
-170 <0
-160 20
-150 a0
-140 -40

-130 -120 -110 -100 -90 -80 -70 -60 -50

Rules for Drawing Polar Plots
Follow these rules for plotting the polar plots.

« Substitute, s=jm in the open loop transfer function.

o Write the expressions for magnitude and the phase of G(jo)H(jo).

e Find the starting magnitude and the phase of G(jo)H(jo) by substituting ®=0. So, the
polar plot starts with this magnitude and the phase angle.

e Find the ending magnitude and the phase of G(jw)H(jw) by substituting m=c. So, the
polar plot ends with this magnitude and the phase angle.

e Check whether the polar plot intersects the real axis, by making the imaginary term
of G(jo)H(jw) equal to zero and find the value(s) of .

e Check whether the polar plot intersects the imaginary axis, by making real term
of G(jo)H(jw) equal to zero and find the value(s) of .

o For drawing polar plot more clearly, find the magnitude and phase of G(jo)H(j) by
considering the other value(s) of o.



Consider a first order system

G(s) = 1+ 7ts

Where t - time constant
Representing G(s) in the frequency domain form G(jo)

G(w) =
(o) 1+ jtw
Multiply both numerator and denominator by conjugate of denominator 1-jot

l—jtw 1 1—jtw

G j = =
() 1—jtwl+jrow 1+ 1?02

] 1 . —Tw
) = 1+ 12w? T 1+ 12w?

- - 1 2 _Tw 2 —1
Magnitude |G (jw)| = \/(1+1’2w2) + (1+T2w2) = Vit

Phase ¢ = tan™? el B tan~1 (—=
¢ <1+1'12w2> ( 1 )
Point 1  the start of the plot where ® = 0
. 1 o —1(0) _
6()| ====1 ¢ =tan (1) =
Point 2 the end of the plot where ® = o
. _ 1 _ _ -1 ﬁ —
6()| ====0 ¢ =tan (=2) =-90
Point 3 where the plot crosses the real axis Im(G(jw)) =0
—-Tw
141202

=0, w=0and w= o

Point 4 where the plot crosses the Imaginary axis Re(G(jw)) =0
1

1+72w?2
As point 3 coincides with Point 1, 2 and Point 4 coincides with Point 2, we need more values
of G(jo) evaluated at different frequencies , taking w = %

=0; 0=

1 1

. _ _ 1 _ -1(Z1) _ _
Gl =FZz=7 ¢ =tan (1)_ 45
Sketching the plot for =
1+7s

@ =0 w=0
(0, -907) (1,0%

Re

v

w=1/t

(1742, -45°)




Example 1:
Consider the open loop transfer function of a closed loop control system.

G(s)H(s)=1/ s(s+1)(2s+1)
Let us draw the polar plot for this control system using the above rules.

Step 1 — Substitute, s=jo in the open loop transfer function.
G(jo)H(jo)=1/jo(jo+1)2jo+1)

The magnitude of the open loop transfer function is
1

(N o® +1V4e? +1

The phase angle of the open loop transfer function is

M =

$»=—90°—tan 'o—tan 20

Step 2 — The following table shows the magnitude and the phase angle of the open loop transfer
function at ®=0 rad/sec and w=o0 rad/sec.

Frequency (rad/sec) | Magnitude | Phase angle(degrees)

0 o0 -90 or 270

0 0 -270 or 90

So, the polar plot starts at (0,~90%) and ends at (0,—270°). The first and the second terms within
the brackets indicate the magnitude and phase angle respectively.

Step 3 — Based on the starting and the ending polar co-ordinates, this polar plot will intersect
the negative real axis. The phase angle corresponding to the negative real axis is —180° or 180°.
So, by equating the phase angle of the open loop transfer function to either —180° or 180°, we
can compute the following:

o (rad/secy 035 04 045 05 06 07 1.0
IG(jo)| 22 18 15 12 09 07 03

£G(jw);deg  -144 -150 -156 -162 -171 -180 -198



-230 -240 -250 -260 -270 -280 -290 -300

-310

-220

-210

-200

-190

-180

-170

-160

-150

-140
-130 -120 -110 -100 -90 -80 -70 -60

Gain Margin = 1/0.7= 1.43 and Phase margin = 180-168=12°

Example 2:
10(s+2)

Sketch the polar plot for the transfer function; G(s)=
s(s+1)(s+3)

Solution:
10( jo +2)
jo jo+1)( jo+3)

Step 2: The magnitude and the phase angle will be;

10Vw? +4
(Vo +1)(Vo? +9)

Step 1:By replacing s=jm; we get G( jo) =

G(jw)| =

ZG(jow)=-90+tan™" % —tan™* co—tan’lg

-320

-330

-340

-350

Step3: By giving the values of @ and calculating the |G( jo) and £G( jw); we get the following

table

o (rad/sec) 0 08 1 15 3 5
IG( jo)| a 677 5 276 09 0.36

£G(jo);deg -90 -122 -127 -136 -150 -160

o

0

-180



-220

-210

-200

-190

-180

-170

-160

-150

-140

-230 -240 -250 -260 -270 -280 -290 -300  -310

== 320
= -330
-340

-350

-130 -120 -110 -100 -90 -80 -70 -60 -50

Gain Margin = 1/0= « and Phase margin = 180-148=32°

3.7 Effect of Lag, lead and lag-lead compensation on frequency response- Analysis:

Necessary of Compensation:

In order to obtain the desired performance of the system, we use compensating networks.
Compensating networks are applied to the system in the form of feed forward path gain
adjustment.

Compensate a unstable system to make it stable.

A compensating network is used to minimize overshoot.

These compensating networks increase the steady state accuracy of the system. An
important point to be noted here is that the increase in the steady state accuracy brings
instability to the system.

Compensating networks also introduces poles and zeros in the system thereby causes
changes in the transfer function of the system. Due to this, performance specifications of
the system change.



Methods of Compensation:

Connecting compensating circuit between error detector and plants known as series
compensation.

,.—-.

Rs) <N [ ] A | CHs)
—{+ »—— Compensator —— G(s)

\/

‘ Hs) -

Figure (1) Series Compensator

When a compensator used in a feedback manner called feedback compensation.
o ™, /—'_-\ )
-R(—S’»:"/>< JE Q) — Y
\\ \--- ‘//_.- \ ->/_-' L
n )

T— —— Compensator ——
e

Figure (2) Feedback Compensator
A combination of series and feedback compensator is called load compensation.

o 6 ey
|— ~{ Compensator — J

H(s) — ]

Figure (3) Load Compensator

Now what are compensating networks? A compensating network is one which makes some
adjustments in order to make up for deficiencies in the system. Compensating devices are may be
in the form of electrical, mechanical, hydraulic etc. Most electrical compensator are RC filter.
The simplest network used for compensator are known as lead, lag network.

Phase Lead Compensation

A system which has one pole and one dominating zero (the zero which is closer to the origin than
all over zeros is known as dominating zero.) is known as lead network. If we want to add a
dominating zero for compensation in control system then we have to select lead compensation
network. The basic requirement of the phase lead network is that all poles and zeros of the
transfer function of the network must lie on (-) ve real axis interlacing each other with a zero



located at the origin of nearest origin. Given below is the circuit diagram for the phase lead
compensation network.

I c

¢
e 1, 1 R, e

v | || v
> - ]

Figure (4) Phase Lead Compensation Network

d
1, =C—(e, —¢
1 dt(l 0)
I_ei_eO
2 R1
d e —e
I=1,+1,=C—(e —g, ) +———2
1 2 dt(l 0) Rl

e
Again, | = =%
g R,

From above circuit we get, Equating above expression of | we get,

S _cl(e g+ it
R, dt R,

Now let us determine the transfer function for the given network and the transfer function can be
determined by finding the ratio of the output voltage to the input voltage. So taking Laplace
transform of both side of above equations,

Eo(s) :i[Ei(s)— E,(s)] +Cs[E;(s)—E,(s)I( neglecting initial condition)

RZ
E E,
S B0 L e (1 +CsE (s) = 28 4 gk (5)
RZ Rl Rl
1+sCR,
Ey(s) R,
E.(s) R +R,+sRR,C
R,R,

Ei(s) R, 1+sCR,
E.(s) R,+R SR,R,C
RZRl
On substituting the a = (R1 +R2)/ R2 and T = {(R1R2) /(R1 +R2)} in the above equation.
Where, T and o are respectively the time constant and attenuation constant,

211+

we have transfer function; G, (s) = Eq(s) 21[“031

E.(s) a| 1+sT



The above network can be visualized as an amplifier with a gain of 1/a. Let us draw the pole
zero plot for the above transfer function.

Pole Zero Plot of Lead Compensating Network

Clearly we have -1/T (which is a zero of the transfer function) is closer to origin than the -1/(aT)
(which is the pole of the transfer function).Thus we can say in the lead compensator zero is more
dominating than the pole and because of this lead network introduces positive phase angle to the
system when connected in series. Let us substitute s = jo in the above transfer function and also
we have a < 1. On finding the phase angle function for the transfer function we have;
O(w) =tan" (T )—tan™(awl )
Now in order to find put the maximum phase lead occurs at a frequency let us differentiate this
phase function and equate it to zero. On solving the above equation we get;

1-sing,
‘= 1+siné,
Where, Om is the maximum phase lead angle. And the corresponding magnitude of the transfer
function at maximum 6 is 1/a.

Effect of Phase Lead Compensation:

e The velocity constant Kv increases.

e The slope of the magnitude plot reduces at the gain crossover frequency so that relative
stability improves and error decrease due to error is directly proportional to the slope.

e Phase margin increases.

e Response becomes faster.

e Advantages of Phase Lead Compensation

e Let us discuss some of the advantages of the phase lead compensation-

e Due to the presence of phase lead network the speed of the system increases because it
shifts gain crossover frequency to a higher value.

e Due to the presence of phase lead compensation maximum overshoot of the system
decreases.

¢ Disadvantages of Phase Lead Compensation

e Some of the disadvantages of the phase lead compensation -

e Steady state error is not improved.

3.8 Phase Lag Compensation

A system which has one zero and one dominating pole (the pole which is closer to origin that all
other poles is known as dominating pole) is known as lag network. If we want to add a



dominating pole for compensation in control system then, we have to select a lag compensation
network. The basic requirement of the phase lag network is that all poles and zeros of the transfer
function of the network must lie in -ve real axis interlacing each other with a pole located or on

the nearest to the origin. Given below is the circuit diagram for the phase lag compensation
network.

Phase Lag Compensating Network

We will have the output at the series combination of the resistor R2 and the capacitor C. From
the above circuit diagram, we get Now let us determine the transfer function for the given
network and the transfer function can be determined by finding the ratio of the output voltage to
the input voltage. Taking Laplace transform of above two equations we get,

. . 1.
€; :|R1+|R2+Ef|dt
. 1.
e, :|R2+Ef|dt
1
E,(s)=R,I(s)+ Rzl(s)+al(s)

1
EO(S)=R2|(S)+a|(S)

1
R, +—
Transfer function, Glag(s)=E°(S)= Cs __ RCs+l
E(s) R .,p 41 (R+R;)Cs+1
1 2 Cs

On substituting it in the above equation (Where, T and [} are respectively the time constant and
DC gain), we have The above network provides a high frequency gain of 1 / . Let us draw the
pole zero plot for the above transfer function.

T=RCand g= |t B Transferfunctio,G,,(s) = 1+Ts
R, 1+ fTs
A JU-)
s plane
© % >
AT 11T 0 o

Pole Zero Plot of Lag Network



Clearly we have -1/T (which is a zero of the transfer function) is far to origin than the -1 / (BT)
(which is the pole of the transfer function). Thus we can say in the lag compensator pole is more
dominating than the zero and because of this lag network introduces negative phase angle to the
system when connected in series. Let us substitute s = jo in the above transfer function and also
we have a < 1. On finding the phase angle function for the transfer function we have;

O(w)=tan (T )—tan™( ST )

Now in order to find put the maximum phase lag occurs at a frequency let us differentiate this
phase function and equate it to zero. On solving the above equation we get Where, Om is the
maximum phase lead angle. Remember [ is generally chosen to be greater than 10.

_1-sing,
1+sing,

*Effect of Phase Lag Compensation

e Gain crossover frequency increases.

e Bandwidth decreases.

e Phase margin will be increase.

e Response will be slower before due to decreasing bandwidth, the rise time and the
settling time become larger.

*Advantages of Phase Lag Compensation

e Let us discuss some of the advantages of phase lag compensation -

e Phase lag network allows low frequencies and high frequencies are attenuated.

e Due to the presence of phase lag compensation the steady state accuracy increases.
e Disadvantages of Phase Lag Compensation

e Some of the disadvantages of the phase lag compensation -

e Due to the presence of phase lag compensation the speed of the system decreases.

3.9 Phase Lag-Lead Compensation

With single lag or lead compensation may not satisfy design specifications. For an unstable
uncompensated system, lead compensation provides fast response but does not provide enough
phase margin whereas lag compensation stabilize the system but does not provide enough
bandwidth. So we need multiple compensators in cascade. Given below is the circuit diagram for
the phase lag- lead compensation network.

) = ,
R
1 >
>Ry

i ‘ S ‘ eo

—c
v th

O (-]

Lag Lead Compensating Network



Now let us determine transfer function for the given network and the transfer function can be
determined by finding the ratio of the output voltage to the input voltage.

=
S+—— || s+
E,(s) _ R.C, R,C,

Ei(s) ( 1 1 1 ] 1
S° + + + S+
RC, R.C, R.C,) RR,.C/C,

Transfer function, G,,,_..4(s) =

E,(s) _ (R,C;s+1)(R,C,5+1)
Ei(s) R,R,C,C,s*+(R,C,+R,C,+R,C,)s+1

= Glag—lead( S) =

On substituting the aT1 = R1Cy1, R2Co = BT2, R1IR2C1C2 = afT1T2 and T1 T2 = R1R2C1Cs in the
above equation (where T1, T2 and a, B are respectively the time constants and attenuation
constants). We have Let us draw the pole zero plot for the above transfer function.

Transferfunctio,G,,; j.s(S) = (1+aT,s)(1+ fT,9)
(1+T,s)(1+T,s)
A jm
s plane
-1/8T, 11T
AT, -11BT4

Pole Zero Plot Lag Lead Network

Clearly we have -1/T (which is a zero of the transfer function) is far to the origin than the -
1/(BT)(which is the pole of the transfer function). Thus we can say in the lag-lead compensation
pole is more dominating than the zero and because of this lag-lead network may introduces

positive phase angle to the system when connected in series.
*Advantages of Phase Lag Lead Compensation

e Let us discuss some of the advantages of phase lag- lead compensation-

e Due to the presence of phase lag-lead network the speed of the system increases because

it shifts gain crossover frequency to a higher value.
e Due to the presence of phase lag-lead network accuracy is improved.



COMPENSATOR - DESIGN USING BODE PLOTS

3.10 DESIGN OF LAG COMPENSATOR

Procedure for LAG compensator design

1. Choose the value of K in uncompensated system to meet the steady state error requirement.

2. Sketch the bode plot of uncompensated system

3. Determine the phase margin of the uncompensated system from the bode plot. If the phase
margin does not satisfy the requirement then lag compensation is required.

4. Choose a suitable value of the phase margin of the compensated system.

Lety - desired phase margin as given in
d
Lety - Phase Margin of the compensated system.
Now,y =7y +e¢
n d

¢ - additional phase lag to compensate for shift in gain cross over frequency.

Chose an initial value of € =5°
5. Determine the new gain cross over frequency mgen -
Let, dgen= phase of G(jo) at new gain cross over frequency, mgen.
Now, yn =180% ®gcn OF Dgen = yn -180°
The new gain crossover frequency , ogen IS given by the frequency at which the phase of G(jo) is
(Dgcn

6. Determine the parameter, B of the compensator. The value of B is given by the magnitude of

G(jo) at new gain cross over frequency ®  Find the db gain (A ) at new gain cross
gen . gen

over frequency, ®
gcn

Agcn
Now,A =20logB or p=10%

gen

7. Determine the transfer function of lag compensator. Place the zero of the compensator
th

arbitrarily at 1/10  of the new gain cross over frequency, ®
gen.

Zero of the lag compensator

T="-— andzczi
T

0‘)gcn



Pole of the lag compensator

oo L
Al
The transfer function of lag compensator
S+—
Go(s) = I :ﬂ( 1+sT J
Sy 1+spT

8. Determine the open loop transfer function of the compensated system
9. Calculate the actual phase angle of the compensated system using the compensated transfer
function at new gain cross over frequency wgcn.

10. If new phase margin not satisfies the given specification, repeat the procedure from 4 to 10
by increasing the ¢ value by 5.

Example 1

A unity feedback system has an open loop transfer function G(s). Design a suitable lag
compensator so that phase margin is 40° and the steady state error for ramp input is less
than or equal to 0.2.

k
()= s(1+2s)

1. Calculation of gain k
given ess < 0.2 for ramp input, let ess=0.2
wkt ess=1/Kv for ramp input.
Kv=1/ess =1/0.2=5
K, = SI;tO SG(s)H (s)

=Lts K =k
s=0 | S(1+2s)

so k=Kv=5
Bode plot of uncompensated system.
Giventhat G(s)= , G(ja)):;
s(1+2s) jo(l+ j2w)
The corner frequency is 0.5 rad/sec
Term Corner Frequency rad/sec Slope db/dec Change in slope
auency P db/dec
5
-— - -20
jo
1 0.5 20 40
1+2jw) '

Select a frequency ® <o and o > ®
1 cl h c2



o =0.1 rad/sec, ® =10 rad/sec,

1 h
o, =0.1, A=20log i‘:ZOIog(E):ZOIog( > ]:34 db
JoO ®

0.1
o, =0.5 A=20log i =20log (Ej =20log (ij =20db
[0 ® 0.5

C

o, =10, A= {(slope from o, to ®, )X Iog(%)} +A(t o=0,)

10
=| (-40)xlog| — 20=-32 db
[( : g(o.sj}
® =-90° —tan" (2w)

® 0.1 0.5 1 5 10
o -101 -135 -153 -174 -177

40 |

Compensated

system NS>

0.1 1 10
© inrad'sec ﬁ

& -120
| ——— S—— — ']40
= -160

'-180

Phase margin of uncompensated system
®=-162°

PM =180 +(-162°)=18°

But the desired PM is 40°




PM of compensated system

Yn=1vd+ 5° =40°+ 5°= 45°

wkt vn =180+ Dgcn

Dgen = 45° -180° = -135°

From the bode plot find the new wgen and magnitude for new ®gen = -135°
gen = 0.5 rad/sec

Magnitude Agen = 20 db.

Am
=107 =102 =10

Zero of the lag compensator

1 a)gcn
Z,=—=—2
T 10
2010,
@y 0.5
Pole of the lag compensator
pc=i: 1 =0.005
LT 10x20
s+2
Ge(s)=— T 5 1+sT :10( 1+205j
sy L 1+sAT 1+200s

Open transfer function of new system with compensator is
OL=Gc(s)*G(s)

~ 5(1+20s)
Gols) = s(1+200s)(1+2s)

The phase angle of the new system is given by

® = tan " (20w) —90° — tan " (200w) — tan " (2w)

The phase angle at new gain cross over fruequcy (0.5 rad/sec) is -140° .
Phase margin (PM) = 180 +(-140°)=40°

Hence the new phase margin is 40° .

The compensator satisfies the requirement. Hence the design is acceptable.

Note:

If new PM is not meet the specifications. Increase the & value and them proceed the step 4 to 10.



()
(i)
(iii)

3.11 DESIGN OF LEAD COMPENSATOR
Procedure for LEAD compensator design

Determine k

Draw bode plot

Determine the Phase margin (y)
Calculate the phase angle needed

¢ =y -y+e
m d

ok wNE

¢ =max phase lead angle of the lead compensator

vy - Desired phase margin
d

v — PM of uncompensated system
¢- additional phase lead needed for compensation (5°)

6. Determine the TF of Lead compensator

1-sing 1
_ MG A= _20log| ——
“ 1+sing, g[ﬁj

From bode plot determine, ®m at which the magnitude G(jo) is A.

1
T p—t
oo
s+ 2
G.(s) = ':[ Yy (1+5sT)
. (1+asT)
ol
Example

Design a phase lead compensator for the system G(s) =

specifications
The phase margin of the system >45°
Steady state error for a unit ramp input <1/15

to satisfy the following

The gain cross over frequency of the system must be less than 7.5 rad/sec.

Solution:

1. Determine k
ess = 1/15 = 1/Ky
So, K\=15

WKkt,



K, = Lt0 SG(s)H(s)

=Lts K =k
=0 | s(s+1)

so k=Kv=15

Bode plot of uncompensated system.
Given that

15
s(1+5)

15
jo(l+ jo)

G(s)

G(jo) =

The corner frequency is 1 rad/sec

Corner Frequency Change in slope
Term rad/sec Slope db/dec db/dec
15
-— - -20
jo
L 1 20 40
(L+ jo) ' '

Select a frequency 1 < ¢ and on> o

®1=0.1 rad/sec, on =10 rad/sec,
E =201log [Ej =20log [E) =44 db
Jo ® 0.1

Dl 2010g (Ej _ 20log (Ej _24.db
Jo 0] 1

o, =0.1, A=20log

o, =1, A=20log

o, =10, A =] (slopefrom o, tomh)xlog[%ﬂJrA(at O=0,)

c

=| (-40)x log (%ﬂ +24=-16 db

$=-90°—tan" @

0.1 0.5 1 2 5 10
o rad/sec
) -96 -117 -135 -153 -169 -174
dDin
degree




3 b d - IL 3 - 'y
w boeod o -
PR M0 Bt et o ot DO Mg e - s et - OO SaE e s at b B e+ L DDOSE. o on
X g' - 0-0:".::
"o - :a -~
& -
40 f :
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.
oo &
‘.
40 s »* 31 -90
Seethw 1
j>one - - 333 o
gain | - iR 6
ses 4 ey
in 04— 2 - - -100 ‘
- e
db 38 : - m
1| o ¥ egh
: Sisde ks
-20 : T -120
e 3
. v rees e
RS .: : -134
_‘o 4 o 43ddeis _140
e B
| ¥ > % Veegeie
*
w : by o L bd o4
"o ’o il b aade ::: + lw
P 10 LB0d thad =
: eeaiii
+ - 167
g 4004444 % “hed - - ::: =
i Titege 110 -180
0.1 1 10
© inrad'sec ﬁ
From the bode plot

¢=-167 so PM=180+(-167)=13°
Step 4: find pm

va=45°, Qm=7ya—y +e=45-13+5=37°

Step 5
o =1=SIN3T_ 405
1+sin37

1 1
=-20log| —— |=-20log| —— |=-6db
Axata) g( ’(Zj 9(1’025)

From the bode plot ®wm corresponding to A=-6db,  ©n=5.6 rad/sec

1 1

o o 5.60.25




The transfer function of the LEAD Compensator

(1+sT) _ 025 (1+0.369)
1+ asT) (1+0.09s)
Open transfer function of new system with compensator is
OL=Gc(s)*G(s)
G.(s) = 15(1+0.365s)
s(1+0.09s)(1+s)

G.(s)=«

3.12 DESIGN OF LAG-LEAD COMPENSATOR

Procedure for Lag-Lead compensator design

Determine k

Draw bode plot

Determine the Phase margin ()
Calculate the phase angle needed

M owbde

Y =y te
n d

vy - Phase Margin of the compensated system.
n

v - Desired phase margin
d

- additional phase lag needed for compensation

5. Determine the new gain cross over frequency mgen from the bode plot at Ggen
Ogen = -180°
and choose gl > ®gen

6. Calculate p

Find the db gain (Ag) at mg from bode plot

At
f=107%

7. Determine the TF of Lag section

_10

a)gcl

G,(9) - ﬁ(lljsj; j

Tl

8. Determine the TF of Lead section

Take o =1/B



Determine, om (bode plot) at which the magnitude is

A=-20log (ij :

Ja
1

T =
> o da
G,(s) = e (1+5sT,)

(1+asT,)
G () = p| TIS |wg| 1HT:S.

1+ 4TS 1+al,s
Example 1:

Consider a feedback control system with open loop transfer function

G(s)=

( K 5" Design a lag-lead compensator to meet the following specifications.
s(s+

Kv >10, Phase margin=40° , Bandwidth=12 rad/sec.

Solution:
Given,G(S) = , Kv>10, Phase Margin=40, bandwidth=12 rad/sec.
S(S+5)
Step 1: Determine K
Velocity Error Constant K, = |t S.G(S)= |t S. AL T
5550 ss0 S(S+5) 5
K=50
Therefore G(S) = 0 _ 10
S(S+5) S(+0.25)
Step 2: Bode Plot of uncompensated system
Put S=jo
. 10

Gljo)=———F7—

Jo(1+0.2 jw)
Magnitude Plot
Corner Frequency wc=5rad/sec
Let o~1 rad/sec and on=50 rad/sec

Term Corner Frequency rad/sec Slope db/dec Change in slope
db/dec

10

-— - -20

jo

1
5 -20 -40

(1+0.2jw)



Let A=Magnitude in db

At o= o A =20log % =20db

At 0= oc A=20Iog%:6db

At ©= on A=-40log 5—5 +6 =-34db

Phase Plot: ¢ = /G(jw) =—-90—tan™ 0.2e
® 1 5 10 50

[0} -101.3 -135 -153.4 -174.3
Step 3:

From Plot Gain crossover frequency of uncompensated system ¢, = —143°
Now Phase Margin of uncompensated system y =180+ ¢,. =180-143=37"

Step 4: The desired Phase Margin y, = 40°

The new Phase Margin of compensated system y,. =y, +& =40° +10=50°"
Step 5: Determine New Gain crossover frequency

7o =180+ 6., = @, =7, —180 =50-180 = -130°

From the plot frequency corresponding to -130 deg is 3.8 rad/sec

Let wgen=5 rad/sec

Step 6: From plot magnitude at wgen IS Agei=6db

=20log B = f =10""?° =1.99
Agcl g

Step 7:Determine the transfer function of Lag section

1 a)gcl
Zero of Lag compensator Z., = — =
T, 10
Tl = £ = 21 PCl — i — 1
a)gcl ﬂTl 3.98
Transfer function of Lag section isG., = 1.99—(1Jr 2S)
(1+3.98S)

Step 8: Determine the transfer function of Lead section



Let o =1/ 8 = 0.5025

The db gain corresponding to wm IS — 20Iogi =-3.db, From plot frequency corresponding to

Ja
-3db is om= 8.4rad/sec
1
T, = =0.16
* ona
Therefore Transfer function of Lead section is G, = 0.5025_ (L 0-165)
(1+0.0804S)

Step 9: Determine the transfer function of Lag-lead compensator

G, (s) = G, *G,., = (@+2S) (1+0.16S)
¢ < T (1+3.98S) (1+0.08049)

Step 10: Transfer function of the System

(1+2S) (1+0.16S) 10
(1+3.98S) (1+0.0804S) S(1+0.25)

G,(s) =G (s)*G(S) =

Step 11: Bode Plot of Compensated System

101+ 2 jw)(1+0.16 jw)

G,(jo) =~ . . .
jo(1+3.98 jw)(1+ 0.0804 jw)(1+ 0.2 jw)

Magnitude Plot

Let @=0.1 rad/sec and or=50 rad/sec

Change in slope

Term Corner Frequency rad/sec  Slope db/dec db/dec
10
2 ) -20
1
i 0.25 -20 -40
L+2]jw) 0.5 20 20
1
wrozia) : > -
1+0.16 jo) 6.25 20 -20
1 12.43 -20 -40

(1+0.0804 o)



Let A=Magnitude in db
At o= A =20log ;—01 = 40db

At ©= ®c1 A=20log 10 32db
0.25

At 0= oc2 A= —40Iog£+32 =20db
0.25

At ©= Oc3 A=-20log % +20=0db

At ©= Oca A=-40log % +0=-3.876db

At 0= ocs A=-20log % —3.876 =-9.8db

At o= on A=-40log 0 9.8 =-33.98db
12.43

10(1+ jw)(1+0.075 jw)

G,(jo) =~ . : .
jo(1+0.4466 jw)(1+0.16785 jw)(1+0.2 jw)

Phase Plot:

¢ = 2/G(jw) =tan™ 2w+ tan ™ 0.16w—90 — tan* 3.98 — tan* 0.0804¢ — tan ™ 0.2

® 0.1 0.5 1

() -101 -112 -109

5

-121

10 50

-136 -168

From the plot new Gain crossover frequency of compensated system ¢, = —121"

Now Phase Margin of uncompensated system y =180+ ¢, =180-121 =159

Hence the design is satisfied for the compensator
transfer function of compensated system is

~ 10(L+ 2S)(1+0.16S)
S(L+3.98S)(1+0.0804S)(1+0.2S)

G, (S)

Gc (S) =

@+2S) (1+0.16S)
(1+3.98S) (1+0.0804S) and the







UNIT-2-STABILITY ANALYSIS ,UNIT-5- COMPENSATOR DESIGN

Stability:
Stability refers to stable working condition of a control system. Stability can be defined as:

)] A system is stable, if its output is bounded (finite) foe any bounded (finite) input.

i) A system is asymptotically stable, if in absence of input, the output goes zero
irrespective of initial condition.

iii) A system is limitedly stable, if for a bounded input signal, output has a constant
amplitude oscillation then system may be stable or unstable under some limited
constraints.

iv) A system is absolutely stable, if a system output is stable for all variations of its
parameter.

V) A system output is stable for a limited range of variation of its parameter, then it is
conditionally stable.

vi) A system is unstable, it for a bounded disturbing input signal, and output is infinite
or oscillatory.

Bounded Input Bounded Output (BIBO):
A LTI system is said to have BIBO stability if:
1. every bounded input results in a bounded output- Influence of input
2. In absence of Input the output must tend to zero, irrespective of the initial conditions.

Location of poles in S plane for stability:
Consider a single input single output system

_C(S) _Db,S"+bS™ +b,S™?+...+b ,S" +b,

" R(S) a,5"+aS5"'+a,5"%+..+a,,S" +a,

M(S) = (S+Z2)S+Z,)(S+Z,)..(S+2,,)
(S+P)S+PR)S+PR)..(S+Py)

The roots of characteristics equation are poles and the roots of numerator polynomial are zeros.

The rots or poles may lie at origin or imaginary axis or right or left half of S-plane.

From equation (1), characteristics equation: a,S" +a,S"*+a,S"*+...+a,,S+a, =0

M (S)

(D)

the root of the characteristics equation determines the stability of the system. the types of roots
and response is given as below

The conclusions are:



1. If the roots of the characteristics equations have negative real parts, then the system is
stable.

2. If any roots of the characteristics equation have a positive real part, then the system is
unstable.

3. If the characteristics equation has repeated roots in the jw axis, the system is unstable.

4. If one or more non repeated roots of the characteristics equation are on the jw axis, the
system is unstable.

5. If condition (1) is satisfied, except for the presence of one or more non-repeated roots on
the jw axis, the system is limitedly stable.

ROUTH-HURWITZ STABILITY CRITERION
This criterion is based on ordering the coefficients of the characteristics equation into an

n n-1 n-2 _
array, called the Routh Array 3,5 +a, ST +3,57" +..+3,,5+a, =0

Routh Array
S" a, a, a, ag
gt a a, as
s b, b, 3
S n-3 C]_ C2
S n—4 dl d 5
S? € a,
h f,
S0 a,

The coefficient by, b,... are calculated as follows:

b, = (a,a, —a,a,)/a

b, = (a,a, —a,a5)/a

¢, = (b1a3 - albz)/bl

Similarly the process is continued till S°, all the elements of any row can be divided ny a positive
constant during the process to simplify the computational work. Also the missing term is
regarded as Zero.



The Routh stability criterion is stated as, “For a system to be stable, it is necessary and
sufficient that each term of the first column of the Routh Array of its characteristics equation
be positive if ap>0. If this condition is not met, the system is unstable and number of sign
changes of the terms of the first column of the Routh Array corresponds to the number of
roots of the characteristics equation in the right half of the S-plane.”

EXAMPLES:
1. Find the stability of the system with characteristics equations

i S*+8S°%+185%2 +16S+5=0

i) 3S* +10S°% +55% +55+2=0

Soln:

1) The Routh Array is given by

s* 1 18 5
0
S3 8 16 (missing
term)
* _1* *E_ 1%
) 8*18 116=16 8*5 10:5
8 8
* Q%
ot 16*16-8*5 _ ..
16
*E _ *
o0 135*5-16*0 _,
135

The elements of the first column are all positive and hence the system is stable.

i) The Routh Array is given by

st 3 5 2
S? 10 5
g3* 2 1
*E__ 2% *9 _ 2%

52 2*5-3*1_,, 2*2-3*0 _,

2 2
. 35*1-2*2 05

35 35
S 2

*In order to simplify the computation S*- Row is divided by 5 throughout.

The elements of the first column has both positive and negative elements, with two sign changes-
representing two poles of the characteristics equation of the right half of the S-plane. and hence
the system is unstable.




2. The Characteristics equation of a system in difference equation form is
= (K +2) x+ (2K +5)x =0

a) Find the values of K for which the system is
1) Stable
i) Limitedly Stable
iii) Unstable

b) For a stable case for what value of K is the system
)] Underdamped
i) Overdamped

Soln:

Given X~ (K+2)x+ (2K +5)x =0 taking lapalce transform by assuming zero initial conditions
the Characteristics equation is given by

S* —(K+2)S'+(2K +5)=0
1) The Routh Array is given by

5?2 1 2K+5
St -(K+2) 0
g0 2K+5 0

a) i) For the system to be stable, the condition is
-(K+2)>0 & (2K+5)>0, ie K<-2 and K>-2.5
Or -2>K>-2.5
ii) For the system to be limitedly stable, K=-2 or K=-2.5
iii) For the system to be unstable, K>-2 and K <-2.5

b) The roots of Characteristics equation is expressed as

S,,S, =%{(K +2) +J[(K +2)? —4(2K +5)]}

For critically damped case (K+2)%-4(2K+5)=0 ie, K= 6.47 or -2.47. K=6.47 makes the system
unstable, hence K=-2.47 is chosen.

)] For underdamped case, -2>K>-2.47

i)  For Overdamped case, -2.47>K>-2.5

Special Cases:



Case 1: When the first term in any row in Routh Array is Zero while rest of the row has at
least one non zero term. Because of this, the term in the next row becomes infinite.
There are two methods to solve this problem

1) Substitute a small positive number | for the zero and proceed to evaluate the rest of
the Routh Array. Then examine the signs of the first column of Routh Array by

lettering las0
i)  Modify the original characteristics equation by replacing S by 1/Z. Apply the Routh’s
test on the modified equation in the term of Z. the number of Z roots with positive
real parts are the same as the number of S roots with positive real parts. This method
works in most but not all cases.
3. Find the Stability of the system with characteristic  equation

S®+S%+2S%+252+35+5=0

Method 1:
The Routh Array is
S°® 1 2 3
s* 1 2 5
*x9_ 1%
S8 1*2-1%2 =0—>e -2
1
52 2e€+2 5
S
_ AN 2
gt 4e-4-5¢ o
2e€+2
S° S
From the Routh array, it is seen that first element in the third row is 0. This is replaced by €, a
small positive number. The first element in the 4™ row is now 2e+2 which has a positive sign
S
. . . . —4e-4-5¢&°
as €—> 0. The first term in the fifth row is s — —2 ase— 0. Therefore by
€+

examining the first column it is noted that there is two sign changes and hence the system
becomes unstable.

Method 2:

When S is replaced by 1/Z, the characteristics equation  becomes

5Z°+32%+22%+27Z%+7z+1=0

The Routh Array is



3 -4/3 -2/3

z
72 ¥ 1
e 2
z° 1

The elements of the first column has both positive and negative elements, with two sign changes,
hence the system is unstable.

Case 2: When all the elements in any row in the Routh Array are zero.

This condition indicates that there are symmetrically located roots (xreal roots,
tconjugate roots or complex conjugate roots). The polynomial whose coefficient are the
elements of the rows just above the row of zero is called the Auxiliary polynomial. Replace the
rows of zeros with the coefficients obtained by differentiating the auxillary polynomial with
respect to S.

4. Find the Stability of the system with characteristic  equation
S® +2S° +8S* +125°% +20S% +16S +16 = 0.
The Routh Array is

Sk 1 8 20 16
S°® 2 12 16

S® 8

(term/2) 16

S* 2 12 16

s* 1 6 8

S3 0 O

It is noted that S3- row has all elements zero, thus considering the row above (S* row) to
be auxiliary polynomial.

A(S)=S* +6S°+8
Differentiating with respect to S

% =45° +12S ; replace the obtained coefficient in S*- row
s® 1 8 20 16
S° 2 12 16
S°® 1 6 8
s* 2 12 16
s* 1 6 8
S?® 4 12
S3 1 3
g2 3 8



St 1/3

s? 8
Since there is no sign change in the first column after considering the auxiliary
polynomial. The system is said to be limitedly stable because of the consideration used.

By solving the auxiliary polynomial A(S)=S*+6S% +8
The roots are S=+j\2 and S=+;j2.

ROOT LOCUS TECHNIQUES

The root locus was introduced by W.R.Evans in 1948 for the analysis of control systems.
The root locus technique is a powerful tool for adjusting the location of closed loop poles to
achieve the desired system performance by varying one or more system parameters. Itis a
graphical representation in s-domain and it is symmetrical about the real axis. Because the open
loop poles and zeros exist in the s-domain having the values either as real or as complex
conjugate pairs.
Consider a feedback system with characteristics equation is 1+G(S)H(S)=0

Rules for Construction of Root Locus

Follow these rules for constructing a root locus.

Rule 1 — Locate the open loop poles and zeros in the ‘s’ plane.

Rule 2 — Find the number of root locus branches.

We know that the root locus branches start at the open loop poles and end at open loop zeros.
So, the number of root locus branches N is equal to the number of finite open loop poles P or
the number of finite open loop zeros Z, whichever is greater.

Mathematically, the number of root locus branches N can be written as,

N=P if P>Z

N=Z if P<Z

Rule 3 — Identify and draw the real axis root locus branches.

If the angle of the open loop transfer function at a point is an odd multiple of 180°, then that
point is on the root locus. If odd number of the open loop poles and zeros exist to the left side of
a point on the real axis, then that point is on the root locus branch. Therefore, the branch of

points which satisfies this condition is the real axis of the root locus branch.



Rule 4 — Find the centroid and the angle of asymptotes.

o |If P=Z then all the root locus branches start at finite open loop poles and end at finite
open loop zeros.

e IfP>Z, then Z number of root locus branches start at finite open loop poles and end at
finite open loop zeros and P—Z number of root locus branches start at finite open loop
poles and end at infinite open loop zeros.

e IfP<Z, then P number of root locus branches start at finite open loop poles and end at
finite open loop zeros and Z—P number of root locus branches start at infinite open loop
poles and end at finite open loop zeros.

So, some of the root locus branches approach infinity, when P£Z. Asymptotes give the direction
of these root locus branches. The intersection point of asymptotes on the real axis is known
as centroid.

we can calculate the centroid a by using this formula, Real part of finite open loop ploes

o = 2. Real partof finite open loop ploes- X Real part of finite open loop zeros
P-Z

The formula for the angle of asymptotes 0 is

_ (2q+1)180°
P-Z

0 , Where ¢=0,1,2...,(P-2)-1

Rule 5 — Find the intersection points of root locus branches with an imaginary axis.
We can calculate the point at which the root locus branch intersects the imaginary axis and the
value of K at that point by using the Routh array method and special case (ii).
e If all elements of any row of the Routh array are zero, then the root locus branch
intersects the imaginary axis and vice-versa.
e Identify the row in such a way that if we make the first element as zero, then the
elements of the entire row are zero. Find the value of K for this combination.
o Substitute this K value in the auxiliary equation. You will get the intersection point of
the root locus branch with an imaginary axis.
Rule 6 — Find Break-away and Break-in points.
o If there exists a real axis root locus branch between two open loop poles, then there will

be a break-away point in between these two open loop poles.



« If there exists a real axis root locus branch between two open loop zeros, then there will
be a break-in point in between these two open loop zeros.
Note — Break-away and break-in points exist only on the real axis root locus branches.
Follow these steps to find break-away and break-in points.
o Write K in terms of ss from the characteristic equation 1+G(s)H(s)=0.
« Differentiate K with respect to s and make it equal to zero. Substitute these values of s in
the above equation.
e The values of s for which the K value is positive are the break points.
Rule 7 — Find the angle of departure and the angle of arrival.
e The Angle of departure and the angle of arrival can be calculated at complex conjugate
open loop poles and complex conjugate open loop zeros respectively.
e The formula for the angle of departure ¢d is

¢, =180°—¢
e The formula for the angle of arrival ¢a is
¢, =180° + ¢

Where ¢ = Z(ép —Z(ﬁz

Example 1

A certain unity negative feedback control system has the following open loop Transfer function

H(s) A

=————  Draw the root locus for 0< K <0
s(s+1(s+3)

Solution:

=

The three root loci start from poles at 0,-1 and -3 where the value of K=0

There is no zero here and so the three loci terminate at infinity where k=infinity.

3. For the given open loop transfer function, P=3 and Z=0. Hence, N=3. There are three
separate loci.

N

4. ) 2n+1 . .
The asymptote of the root loci make 6 = Q angles with real axis. Hence the

(P-2)
angles are n,%and 5?” The loci 1,2 and 3 make these angles respectively.

5. The point of interaction of the asymptotes is given by

9



x = Polesof GH(s)—Y_ Zerosof GH (s) = L;’_O =-1.33

At point A there is no root locus, because two poles are lying to the right side of point
A. For even number of poles and zeros to the right side of the point there cannot be any
root locus on the real axis. On the other had consider the point B. There are three poles
on the right hand side of point B. This is an odd number. Hence, three is root locus.
Hence, on the real axis root loci exist between s=0 and s=-1 and s=-3 and s=-infinity.
The characteristics equation is written as

F(s)=1+G(s)=0

$®+4s*+3s+K =0
Differentiating the above equation with respect to s we get,

332+8s+d—K:0

ds
dK :
Put — =0and solving for s we get

ds
S1=-2.23 and s2=-0.43.
The breakaway point at s;=-2.23 is ruled out since there is no root locus there. Hence
$,=-0.43 is the breakaway point.
The critical value of K and the value of w at the imaginary axis where the root locus
crosses from LHP to RHP is obtained from the following Routh’s array which of
formed from the characteristic equation.

S3 1 3
S2 4 K
S1 12-K 0

4
SO K

The critical value of K=12. The auxiliary equation is obtained from the s row as
4 +K =0

Substituting s=jm and K=12, we get

—40*+12=0 or w=+3

The complete root locus is shown in Fig

10



Kk
s(x+10s+3)

Fig. Root Locus for Gis)=
The three poles are located as shown in Fig.

NYQUIST STABILITY CRITERIA
The Nyquist plot allows us also to predict the stability and performance of a closed-loop system
by observing its open-loop behaviour. The Nyquist criterion can be used for design purposes
regardless of open-loop stability (remember that the Bode design methods assume that the
system is stable in open loop).
Nyquist suggested to select a single valued function F(s) as 1+G(s)H(s) where G(s)H(s) is open
loop transfer function of the system
F(s)= 1+G(s)H(s)
Poles of 1+G(s)H(s)=Poles of G(s)H(s)=open loop poles
These are known to us as G(S)H(s)
But zeros of 1+G(s)H(s)=Closed loop poles of the system.
For stability, all the zeros of 1+G(s)H(s) must be in the left half of s-plane, none of the zeros
should be in the right half of s-plane. Now the location of zero of 1+G(s)H(s) are unknown to us.

Now the Nyquist stability criterion can be stated as follows:

11



“If the G(s)H(s) contour in the G(s)H(s) plane corresponding to Nyquist contour in the s-plane
encircles the point -1+j0 in the anticlockwise direction as many times as the number of right half

s-plane poles of G(s)H(s), then the closed loop system is stable.

1. No encirclement of—1+ jO point: This implies that the system is stable if there are no
poles of G(s)H(s) in the right half s-plane. If there are poles on right half s-plane then the
system is unstable.

2. Anticlockwise encirclements of —1 + JO point: In this case the system is stable if the
number of anticlockwise encirclements is same as the number of poles of G(s)H(s) in the
right half s-plane. If the number of anticlockwise encirclements is not equal to number of
poles on right half s-plane then the system is unstable.

3. Clockwise encirclements of the —1 + jO point: In this case the system is always
unstable. Also in this case, if no poles of G(s)H(s) in right half s-planes then the number
of clockwise encirclement is equal to number of poles of closed loop system on right half

s-plane.

Example 1
Draw the Nyquist plot for the system whose open loop transfer function is
G(O)H(S) = o

s(s+2)(s+10)

Determine the range of K for which closed loop system is stable.

Solution:

C1-nyquist

C3 —inv of nyquist

C2

R=w0 & 0=n/2 t0 - n/2
C4

R=0 & 0 =-n/2 to n/2

12



K 0.05K

G(s)H(s) = =
s(s+2)(s+10) s(1+0.5s)(1+0.1s)
S=jw
0.05K
—0.60° + jow(1-0.050%)
o iImag =0, o(1-0.050%*) =0

w,, =4.472 rad / sec

G(s)H(s) =

At w=w

0.05K  0.05K
—0.60° —0.6(4.472)°
~-0.00417K

G(s)H(s) =

Mapping of section C1

13



> 2

/ ®=0C »u
—-0.00417K
®=0
Mapping of section C2
0 T T
s=1Lt Re d=— to ——
R 2 2
0.05K 0.05K
G(s)H(s) = ~
s(1+0.5s5)(1+0.1s)  s(0.55)(0.1s)
_ £ — L — Oe‘jsg

s Lt(rRe”)

FiL
-

\

G(s)H(s) Plane

Mapping of C3 (Inverse of Nyquist)



=0

-0.00417 K

™~

o 11

M =0C

Mapping of section C4

s=Lt Re” 6=-

R—0

NN

T
to —
2

0.05K 005K
s(L+05s)(1+0.1s)  s()(1)
05K K
s L(re")

R—0

=OO(—9 = z to —z)
2 2

G(s)H(s) =

=ooe )

15



— &0

»u

Complete Nyquist Plot

The entire Nyquist plot in G(s)H(s) plane can be obtained by combining the mapping of the

individual section.

Va

G(s)H(s) Plane

G(s)H(s)-contour

-0.00417K

16
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Stability Analysis

When -0.00417K=-1, the contour passes through (-1+j0) point and corresponding value of K is
the limiting value of K for stability.

1

Limiting value of K = =240
0.00417

When K<240

When K is less than 240, the contour crosses real axis at a point between 0 and -1+j0. On
travelling through Nyquist plot along the indicated direction it is found that the point -1+j0 is not
encircled. Also the open loop transfer function has no poles on the right half of s-plane.
Therefore the closed loop system is stable.

When K>240 greater than 240, the contour crosses real axis at a point between -1+j0 and -c0. On
travelling through Nyquist plot along the indicated direction it is found that the point -1+j0 is
encircled in clockwise direction two times.( Since there are two clockwise encirclement and no
right half open loop poles, the closed loop system has two poles on right half of s-plane).
Therefore the closed loop system is unstable.

Result

The value for stability is 0<K<240

Example 2

By Nyquist stability criterion determine the stability of the closed loop system, whose open loop

transfer function is give by G(s)H(s) = % Comment on the stability of open loop and closed
loop system.
Mapping of C1
G(s)H (s) = s+2 2(1+0.5s)

(s+1)(s—1) (1+s)(-1+s)
Let s=jw

. 2 -1

G(jo)H (jo) = 21+05jw) 2\/14+0.250° Z tan(0.5w)

1+ jo)(-1+ jo) 1+ @? Ztan™(w) 1+a)24(180°—tan‘1(a)))

\J1+0.250°

G(j@)H (jo) =2 =
+@
/G(jw)H (jo) = -180+tan(0.50)

By calculating the magnitude of and phase of G(jw)H(jw) for various values of w

17



o rad/sec 0 0.4 1 2 10

G(jo)H (jo)| 2 1.76 1.12 0.57 0.1
Z|G(jo)H (jo)| -180 -168 -153 -135 -101
deg
A jV
G(s) H(s)-plane
-2

Mapping of Section C2
The mapping of section C2 from s plane to G(s)H(s) plane is obtained by letting

S= Lim Re' in G(s)H(s) and varying 0 from +7/2 to —m/2.

 20+05s) _2x05s 1
SO = ) (caes) ™ sxs s

Let s=limRe"
R—w©

1 r
G(S)H(S) s:F!im Rel? = ||m Rej@ =Oe 10

R—w

18
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when @ = % G(s)H(s) =0 2

when @ = —%, G(s)H (s) = 0e’2

v
G(s)H(s)-plane
R—(0 —p u>

Mapping of Section C3

In section C3, o varies from -oo to 0. The mapping of section C3, is given by the locus of
G(jo)H(jo) as w is varied from -oo to 0.This locus is the inverse polar plot of G(jo)H(jo).

L%

My
G(H(splage,

=0

[
b
w

The complete Nyquist Plot is given by
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G(s)H(s)-plane

Stability Analysis

On Travelling through Nyquist contour it is observed that -1+j0 point is encircled in
anticlockwise direction one time. Also the open loop transfer function has one pole at right half
s-plane. Since the number of anticlockwise encirclement is equal to number of open loop poles
on right half s-plane, the closed loop system is stable.

Result

1. Open loop system is unstable
2. Closed loop system is stable.
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Unit IV - STATE VARIABLE ANALYSIS

Statespace modelling of Mechanical systems
Statespace modelling of Electrical systems
Statespace into transfer function

Transfer function into Statespace model
Controllability and Oservability

EXAMPLE | J)
1

RAEE A e

Construct the state model of mechanical system M,
shown in fig4.3.1. :

T ﬁl T
SOLUTION K, I_I_J 2
Free body diagram of M, is shown in fig 4.3.2. ﬁ '
—> f{t) &, | M,
—>y, =M w2 29 1 B
£ K, % l ’
M, £ fy1 = B ‘gt"()’l ~¥2) -
b fi =Ki(y1 ~y2) Fig 4.3.1
Fig 4.3.2,

By Newton’s second law, the force balance equation at node M, is,

f(t) = f + fbl + fkl

d2
) =M, dtyl+Bl"‘“()1 Y2)+K1(Y1“Yz)
d’y dy dy ‘ |
fty=M 1B, ~2L_B. 222  x
0 122 1 Bt T -Ky, . “4.3.1)

Free body diagram of M, is shown in fig 4.3.3.

d? d
fm =M, d); ) fb2=]?’2"‘y—2

for = Bl'&;(h -y 5 fio =Ky,

fa =Ky, —y1)

Fig 4.3.3.
By Newton’s second law, the force balance equation at node M, is,

f.mZ-ini':bi._fbl +fk2 +fk1 =0



- Mz d Y2 Bz dYZ

d
dt? dt +Blg{(y2—y1)+sz2 +Ki(y,-y;) =0

v 9y dy, dy, dy
M, 2 +B, my +81?—B1 d‘ +Kyy, +K;y, —Kyy; =0 ....(4.32)

Let us choose four state variable X , X, x, and x,. Also, let the input f{f) =u. The state
variables are related to physical variables as follows

o dy; dy, d? 42
Xlxyl 9X2:DY2;X3:“5{— ’ X4:“E;X3= YI ;X =__y2

(SN S 1 )

m 33 g N4 th—=x3 and f(t) =u

On substltutmg V=X 5 Y, TX

in equation (4.3.1) we get,

U= I\/EIX3 ~+ BEX?’ - B1X4 + le‘l - Kixz
M1X3 _-—-’ "‘BIX3 + BIX4 - lel + lez +u

K .
LKy = K X) +—LxX, — B, X5 + B, X4 + 1 u n(4.3.3)

dy; dy,
——= Y : e o Y
dt 3 4 and

On substituting y, =x, ; ¥, =X, ;
equation (4.3.2) we get,

M2X4 + B2X4 + B1X4 - B1X3 + K1X2 +K2X2 - KIX] =0
V. M2X4 = “B2X4 - B1X4 + B1X3 = K2X2 - KIXZ + le'i
=—(B; +By) x4 +Bix; — (K, +K)x, +Kjx,
+
kg = K, X; _ K Kz)X2 N B, X _(B1+B2)x4
M, M, M,

M,

The state variable x, =y,. ,
dax, _ dy,

dt  dt
Let % =%, and %y;l— =X; ; SX =X .. (4.3.3)

On differentiating x, =y, with respect to t we get,

The state variable, x, = y.,.
dX2 ’dﬁ

On differentiating x, =y, with respect to t we get, m &



Let dx = X, and 4y,

g 2Ty T

; .'.X2=X4.

The equations (4.3.3) to (4.3.6) are state equations of the mechanical system. Hence
the state equations of the mechanical system are,

Xl = X3
XZ = X4
. K K, B, B, 1
X3 e X‘I + X‘Z - XB +- ““"X,; e =11,
M, M, M; © M M,
%, = K lﬂ_(KﬂLKz) X2+Bix _(BI+B2)X4
M, M, M, M,
On arranging the state equations in the matrix form, we get, !
] [ o 0 I o 1[x1 [o ]
X 0 0 0 1 X, 0
: K K B B 1
SE ow w0 e |
M, ! 1 M, M,
K K;+K B, -(B;+B
%, (K +Ky) 1 (B, +By) X4 0
1L M, M, M, M, )

Let the displacements y, and y, be the outputs of the system.
LY TX

The output equation in matrix form is given by,

[YI
Ya

and

{1000
o100

Y, T X,

_Xl ~
X9

The state equation [equ (4.3.7)] and the output equation [equ (4.3.8)] together called
state model of the system.



EXAMPLE

Obtain the state model of the mechanical system shown in fig 4.4.1 by choosing a

minimum of three state variables. N
Fysv, Y

K K, =
rm]r M = T I—!— B
i
Fig 4.4.1.
Zero friction

SOLUTION

Let the three state variables be X, X, and x, and they are related to physical variables
as shown below.

Ly, P
X =Y5 %TY, BEE TV £
f
Free body diagram of mass M is shown in fig 4.4.2. Ml
P
' dzyi | X
fn = Maz_ s fa=Kyr 5 fio =Ky —y2) Fig 4.4.2.
By Newton’s second law, the force balance equation at node M is,
d’y,
M _d:z“ +Ky + Ky (y1 - y2) =0
dzy | |
M“_d‘“{i“l“"‘ Klyl + szl - K2y2 : 0 ..... (4.4.1)
42
Put gd—’;l—x %55 Y1=X1. Yo =%, inequ(4.4.1)
1
MX3 + Kixl + Kgxl - K2X2 ={
Mx; + (K +K;y) ) - Kpx3 =0
X3 = - KI ;;[Kz X1 +—I§/I-2—X3 ‘(442)

_ The freebody diagram of node 2 (meeting point of K, and B) is shown in fig
(4.4.3).



: d
f, = “ig“; fio =Ky (y, -y

Ahah <

Writing force balance equation at the meeting point of K, and B

we get, - Fig 4.4.3.
£4+£,=0 |

d _
B%%+Kaw;—m)m0

..dY2=K2y _Kz
"¢ B B

Put %m&z, yi=%; andy, ﬁxz,

Y2

The state variable, x, =y,. On differentiating this expression with respect to t we get.

dx, _dy,
dt dt |
Codxy . dy
Let —L=%, and —L=x- X =X, e 4.4.4
dt 1 dt 3 1 3 ( )

The state equations are given by equations (4.4.4), (4.4.3) and (4.4.2).

— T — M - —
X X
‘ 0 o 1|
)'(2 = & _E.z_ 0 . XZ
B B Ny (4.4.5)
: _Ki+Ky 0 _Ky
%3] | M M | L%3.

Ifthe desired outputsare y andy,,then y =x, and y,=x,



EXAMPLE-

Obtain the state model of the electrical network
shown in fig4.1.1 by choosing minimal number of state
variables.

SOLUTION

Let us choose the current through the inductances
i,, i, and voltage across the capacitor v_as state variables.
The assumed directions of currents and polarity of the
voltage are shown in fig4.1.2.

[Note : The best choice of state variables in electrical
network are currents and volfages in energy storage elements).

Let the three state variablesx , x, and x, be related
to physical quantities as shown below.

X, =1, = Current through L,

X, =1,=Current through L,

X, =V_= Voltage across capacitor.

SR,

"

Atnode A, by Kirchoff’s current law (refer fig 4.1.3.),

dv, _0
dt

On substituting the state variables for physical

variables inequ (4.1.1) we get,

dv,

dt

ij+1,+C

(e, i=x, i,=x,and

1? =X3)

1 1

X':';’ = —EXI —'EXZ O eeees (412)

By Kirchoff’s voltage law in the closed path shown

infig4.1.4 we get,
e " di, '
e(t) +1,R, +L1‘5;=Vc ..... (4.1.3)

On substituting the state variables for physical
variables in equ (4.173) we get,

.. di .
(ie.,i,=x, —di—=x1 and v =x,)

e +xR+L x,=x,

Fig 4.1.2.

L ¢~ :
g, ol
dve J |

dt 1+
C T- Vc
Fig 4.1.3.
A
I TiYa
-+
+ di
iR, bt N
_ A Lt
e(t)
Fig 4.14.




Also, let u(t) =e(t) = input to the system

U+X]_Rl +L1X] =X3

Ll)'(l - X3 —XIR] i |

. Ry 1 1
=X +—X3—— (414
K> lel le3 1“ (4.14) |

By Kirchoff’s voltage law inthe closed path shown 12_>
infig4.1.5 we get, o

& di;}_ +
1 . 271, :
v, =L, E"HQRZ R @18 s dt _lsz
& i

On substituting the state variables for physical "

variables in equ (4.1.5) we get, .
Fig 4.1.5.

i
1 1 = ————2 = ¥ =
(ie.,1,=X, ™ =X, andv_=X,)

X3 = L2X2.+ X2R2
L2X2 = —Xsz +X3
R 1

2
X = ——%X +___X
2 2 g T e e
L i
2 2 .

The equations (4.1.2), (4.1.4) and (4.1 6.) are the state equations of the system. Hence
the state equations of the system are,

1
X, =——X;+—X;——1U
1 1 3
L T L
A
XZ =_—]:_{—X2 +‘3—X3
2 2
1 " 1
Kq 2 ==Xy ==X

%] Ry 0 1 %, ] -_V_}_-]
Ll Ll L]
R
ol-| 0 2 Ll o |
L, L, tate equation .....(4.1.7)
1 1
-2 = ollx| | 0
\_XJ_ ! o i _L,X.v_ L 2



Let us choose the voltage across the resistances as output variables and the output
variables are denoted by y,andy.,.

Y= 1R, TR (4.1.8)
apd -y, =LR,- -t Eiiea L L e (4.1.9)
On substituting the state variables in equations (4.1.8) and (4.1.9) we get,
(e,i =x and i,=Xx,)
TRy =R,
On arranging the above equations in the matrix form we get

Y _ Rl 0 % : |
vl7lo ®||x, outputequaton (4.1.10)

The state equation [equ (4.1.7)] and output equation [equ (4.1.10)] together constitute
the state model of the system.

EXAMPLE | V() v,(t)

Obtain the state model of the electrical 7 R TR
network shown in fig4.2.1. by choosing v (t) v(t) =C —c Fig421.
and v,(t) as state variables. - T

SOLUTION

Connect a voltage source at the

input as shown in fig4.2.2. V(o)

Convert the voltage source to
current source as shown infig 4.2.3.

At node 1, by Kirchoff’s current law o v,(t) IRACH
we can write (refer fig 4.2.4) . M'\—I- |
. v j- 8 Fig 4.2.3.
ViTVy R~y (421 R R TC £
R +C =0 i L |
Atnode 2, by Kirchoff’s current law, we can =~ = V=V,
write (Refer fig 4.2.5) R '
. . Vz(t) m V] (t)
V2oV Vo odv VO (4.2.2) R 1
R R dt R
Let the state variables be x, and X, and they , oL c
are related to physical variable as shown below. - dt |
v, =X, and v, =X,
Also, Let v(t) =u=input. Fig 4.2.4



On substituting the state variables in v, —Vy
equations (4.2.1)and (4.2.2) we get, -

v,(H)

CBTX o
dt

..... (423) Y

xz?-x; Xy dx, u ) gt
P N o Bl
N oo e (424)
From equation (4.2.3) we get, —"—“‘Cxl 0 Fig 4.2.5
C-k;—'—'ﬂ‘l"x—z
' R R
1 1
X =——X +—=X ' (42,5
I="Rc' T RC? (4.2.3)
From equation (4.2.4) we get 22 A 2240k = =
C,-(2=il,._i2__32+£
R R R R
X2=—1—X1 —2—X2+—L v (4.2.6)

The equation (4.2.5) and (4.2.6) are state equations of the system. Hence the state
equations of the system are |

. 1 1

= _E-C"xl +“'IEX2
RNV
RC RC-° RC

On arranging the state equations in the matrix form,

}.(2=

. 1 1

_| RC RC A1 '
‘ 1 =2 — e 4.2.7)
The output, y=Vv,() =X,
- The output equationis Yy = -El O] Ll } LT e (4.2.8)
2

The state equahon [equ (4.2.7)] and output equation [equ (4.2.8)] together constitute
the state model of the system.



EXAMPLE

Construct a state model for a system characterized by the differential equation,

3 2
O ol
dt dt

£ 1L 4 6y o= 0,
dt

Give the block diagram representation of the state model.

SOLUTION

Let us choose y and their derivatives as state variables. The system is governed by
third order differential equation and so the number of stafe variables are three.

The state variables x , X, and x, are related to phase variables as follows

X=y
dy ;
X_Z = -HE-: 1
dz-y .
Pra T
d d? Dy .
Puty=x, é’— =X, and —2X =X3 and o X3 in the given equation,

SoXg+6x3+11x, 46X, +u=0
or X3 =-6x;—-11%, —6x;—u.
The state equations are
Xl =%Xs
).(2 =X3
X3 =—6x; —11x, —6x53 —u
On arranging the state equations in the matrix form we get,
Xy 0 1 0 ||x 0
%,1=10 0 1 Xy [+] 0 |[u]
X3 -6 =11 —6|]|x; -1
Here, y = output
But, y=x,

X
.. The output eciuatio_n is, y= [1 0 0] X,

X3

The state equation and output equation, constitutes the state model of the system

10



EXAMPLE 4.10.

Obtain the state model of the system whose transfer function is given as,

Y(s) 10
UB) s +4s* +2s+1

SOLUTION

Y(s) 10 .
Ue)  Sraf s2ssl e (4.10.1)

Given that

On cross multiplying the equ (4.10.1) we get,
Y()[s* + 48" + 25 + 1] = 10 U(s)
sY(s) + 45°Y(s) + 25 Y(s) + Y(s) = 10 U(s)
On taking inverse laplace transform of equ (4.10.2) \;ve get,
ye4y+2y4y =100 .. (4.103)

Let us define state variables as follows,

..... (4.10.2)

X\=Y 3 X =Y 5 X3=¥
Puty=x;"; y=%X; 5 ¥=Xx, andy = X, inthe equatipﬁ(4.10.3)

. )'(3 +4X3 +2X2 :E-Xl = 1011
Or X3 = —X; —2X, — 4% +10u.

The state equations are
-

X=X, 5 X2a=X ’;//)é=—x1—2x2~4x3+10u.

-

The output equation isy = Xl

The state model in the matrix form is,

X, 0 1 0][x 0] [u]
Xy (=] 0 0 1]{xy(+] 0
X3 -1 -2 -4|{x;| |10
y=[1 0 0][x |

X, |

X3

11



Statespace model into transfer function model

1. The state space representation of a system is given below:

X\ /-2 1 0\ /*1\ [0 X
X, =<0 -3 1><xz>+<0>u;y=(010) X
X3 -3 —4 -5/ \X3 1 X3

Obtain the transfer function.

Solution

-2 1 0 0
A=<O -3 1);B=<0);C=(010)
-3 -4 -5 1

Y(s)
U(s)

s 0 O -2 1 0 s+ 2 -1 0
SI-4)=10 s o|-{0 -3 1 ]= 0 s+ 3 -1
0 0 s -3 —4 -5 3 4 s+5

Transfer function = =C(SI-A)'B+D

Adj (sI — A)
[—A)1= Z———=
S ) det(sl — A)

s+2 -1 0
det(sI—A)=| 0 s+3 -1

3 4 s+5

=(+2){(s+3)(s+5) —(—4)}—1{0(s+5)—(-3)}+0{0 —3(s +3)
=(s+2)(s?+8s+19)—3)
=53+ 10s? + 355 + 41

Adj (sl — A) = (cofactor (sI — A))T
T

(s+3) -1 0 (s+3
/+| (s+5) |3 (s+5) +|3 4 | \
| | |(s+2) | _|(s+2) —1| |
| 4 (s+5 (s+5) 41|
0 (s+2) 0 (s+2) -1
\ |(s+3) —1| _| 0 —1| +| 0 (s+3)/
(s? + 8s + 19) 3 Bs+9) \"
= (s + 5) (s?+7s+10) —(4s+11)
(s+2) (s> +5s+6)
(52 +85+19) (s+5) 1
= (s?+7s+10) (s+2)
(35+9) —(4s+11) (s?+5s+6)

12



Adj (sl — A)

—A)-1 =
(S1=4) det(sl — A)
1 (s? +8s+19) (s+5) 1
= 3 (s> +7s+10) (s+2)
3+ 10s%2+ 35 41
ST 0T A 355 (3s+9) —(4s+11) (s?+5s5+6)
Cc(SI—A)1
1 (s> +8s+19) (s +5) 1
=0 1 0) = 3 (s?+ 7s+10) (s+2)
10s2 + 35 41
ST 0T A Sos (3s +9) —(4s+11) (s2+55+6)
= ! & 247 10 2))
53 +10s2 + 355 + 41 (s"+7s+10) (s+2)
1 0
C(SI—A)B = 11052 £ 355 1 41 ((s+5) (s?+7s+10) —(4s+11)) |0
1
Y(s) (s+2)

U(s) s3+10s2+ 355+ 41

2. Determine the controllability and observability of the following system.

; 0 1 0\ /M 0 :
(X;>= 0 0 1])(x|+({0]u; y=Q1 o 0)<x;>
X3 0 -2 -3/ \x3 10 *3

Solution
0o 1 0 0
A:<0 0 1);B=<O>;C=(100)
0 -2 -3 10
. _ Y(S) _ -1
Transfer function = e = C(SI-—A)B+D
s 0 0 0 1 0 s —1 0
SI-A)=|0 s 0|]—-10 O 1 |=({0 s -1
0 0 s 0 -2 -3 0 2 s+3
Adj (sI — A)
SI—A) 1= ——
( ) det(sl — A)
s -1 0
det(sl —A)=|0 s -1
0 2 s+3

= s{s(s +3) — (—2)} + 1{0} + 0{0}
=s(s?+ 6s+4)

=53+ 652 +4s
13



_ -1 T
_|_|s 1 _’0 +|0 s|
2 s+3 0 (s+3) 0 2
L ol -1 o s 0 | s -1y
Adj (sI — A) = (cofactor (sl — A)) | |2 (s+3)’ +’0 (s+3)’ |0 2|)
-1 0 s 0 s -1
N P LT
(s2 +3s +2) 0 0\
= (s+3) (s> +3s) —2s
1 S s?
(s2+3s+2) (s+3) 1
0 (s>+3s) s
0 —-2s s?
. Adj (sl - A) 1 (s?+3s+2) (s+3) 1
— -1 — — 2
(1 —4) det(sl — A) s34+ 652 +4s 0 (s"+3s) s
—2s s?
1 (s2+3s+2) (s+3) 1
CSI-A1'=01 1 O)m 0 (s2+3s) s
—2s s?
1 2 2
=m((s +3s+2) (s?+4s+3) (s+1))
1 0
C(SI—A)_lB==m((SZ+3S+2) (52+4S+3) (S+1)) 0
10

Y(s)  10(s+1)
U(s) s34 6s2+4s

Controllability and Observability

Kalman’s method of testing controllability and obsevability
Controllability

A system is said to be completely controllable if it is possible to transfer the system state from any
initial state X(t,) at any other desired state X(t), in specified finite time by a control vector U(t)

Q. =[B AB A?B]
If rank and order of Q. are equal then, the system is controllable
Observability

A system is said to be completely observable if every state X(t) can be completely identified by
measurements of the output Y(t) over a finite time interval.

QO — [CT ATCT (AT)ZCT]

14



If rank and order of Q. are equal then, the system is obsevable

Problems

1. Determine the controllability and observability of the following system.

X, 0 1 0\ /% 0 x4
x,|=(0 0 1])(x])+|o0]u; y=100)(x,
X, 0 -2 -3/ \x3 10 X3

Solution

0 1 0 0
A=<O 0 1);B=<0);C=(100)
0 —2 -3 10

Controllability

Q.=(B AB A?B)

0
B=1|o0
10
0 1 0\/0 0
A.B:(o 0 1)()()
0 —2 -3/\10 —30
0 1 0\/0 1 0 0 0 1
A2=A.A=(o 0 1)(0 0 1)=(o 5 _3)
0 -2 -3/ \0 -2 -3 0 6 7
0 0 1 0 10
AZB=<O -2 —3><0>=<—30>
0 6 7 10 70
0 0 10
Q.=[B 4B A?Bl=|0 10 =30

10 —=30 70
Q.| = 10(—=100) = —1000 # 0

Rank = Order = 3 .. System is controllable

Obsevability

C
Qo = (AC) = (CT ATCT (AT)2CT)
A%C

0 0 O 1
AT=(1 0 -2;¢c"=|{o0
0 1 -3 0

15



0 0 O
ATCT =1 0 -2
0 1 -3

0 0 00 0 0 0 0
AT2=ATAT=<1 0 )(1 0 —2>=<0 -2 6)
0 1 0 1 -3 1 -3 7
0 0 0\/0 0
AT?CT = (o —2 6) (1) = (o)
1 =3 7/\0 1

1 0 O
QO = [CT ATCT (AT)ZCT] — (0 1 0)

0 0 1
1 0 0
Qo] = 1 0ol=1(1D)=1%0
0 0 1

Order = Rank = 3; .. system is observable

2. Determine the controllability and observability of the following system.
X, 1 2 1\ /%1 0 X4
X, |=10 1 0f(X2[+|0ju; y=(1 1 0)|x,
X3 1 —4 3/ \X3 1 X3

Q.=[B AB A2%B]

-0

Controllability

( : é) (é DR
eo-(o 3, 8))- ()

Q.=[B AB A?B (

_ o O
w o
=

o © B
N——

Q.| = —1(0) + 4(0) =

Rank # 3 . System is uncontrollable

16



Obsevability

C
Qo = (AC) = (CT ATCT (AT)%cT)
A%C

10 1 1
AT=<2 1 —4);cT=(1
10 3 0
10 1\ /1 1
ATCT=<2 1 —4])(1]=|(3
10 3/\0 1
10 1\ /1 0
AT2=ATAT=<2 1 —4])(2 1
10 3/\1 0
2 0 4\ /1 2
ATZCT=<O 1 -14|[1]=(1
4 0 10/\0 4

1 1 2
Q= [T 4TCT (AT)ZcT]=<1 3 1)

01 4

1 1 2
Qo = 3 1|=1(12-1)-14)+2(1)=9+#0

0 1 4

Order = Rank = 3; .. system is observable
EXAMPLE 3 UGs) 2 1%,06) 77 )
. . s+3 s(s+1) -
Write the state equations for the

system shown in fig 5.6.1 in which 2
X, and x, constitute the state vector.
Determine whether the system is
completely controllable and observable.

SOLUTION

Fig 5.6.1

To find state model

The state equations are obtained by writing equations for the output of each block and
then taking inverse Laplace transform.

With reference to fig 5.6.2 we can write,

5 Xz(s)—X3(s) 5 |X,(8)
X](S)=[X2(S)—X3(é)] ’:s(s+l)] __> s(s+1) >
s(s+1) X;(s) = 2X,(s) —2X,5(s) Fig 5.6.2

17



$° X1(9)+5 X,(5) = 2X,(9) ~ 2X5(s)

On taking inverse laplace transform,

&) +%; = 2%, — 2%,

With reference to fig 5.6.3, we can write,
X3(s) =sX,(s)

On taking inverse laplace transform
X3 =X | ‘

With reference to fi g5.6.4 we can write

X (9) = [UE) - X,(9)] [—2;]

S+
X, (5) (s+3) =2U(s)=2X,(s)
5X,(8) +3X, () =2U(s) - 2X, ()

On taking inverse Laplace transform
Xz + 3X2 =2u-— 2X1

Xy =~2X; - 3x, +2u

Fromequ(5.6.2)weget, X, =x3 ; .. X, =%,

~

Put x; =x5 and X;=%X3 inequation(5.6.1)

X3 + X3 = 2X2 “"2X3

X3 = 2X2 —2X3 — X3

X3 =2X, —3X3

UO-X,6 [,
o3

X

X, (s

5 Fig 5.6.3

| X,(8)
s

Fig 5.6.4

The state equation are given by equations (5.6.2), (5.6.3) and (5.6.4)

X) = X3
Xz = "'2X1 - 3X2 + 2u

Xy = 2X, —3%5

The output equationisy =X,

The state model in the matrix form is

x| {0 0 1]Ix O_l
1% |=1-2 -3 0}]ix, +2Ju
X3 0 2 _3 X3 O

18
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KALMAN'S TEST FOR CONTROLLABILITY

o o 170 o 1 0 2 -3
A2=AA=|-2 -3 0|2 -3 ol=|.6 9 -2}
0 2 -3]{0 2 -3] |4-12 9

0 0 1 0 0
AB=|-2 -3 0 2}_- -6
0 2-3] |0} 4]
C 0 2 =310 4
A’B=| 6 9 -2 |2]|=| 18
-4 -12- 9] |0] |24

| o 2
The composite matrix for controllability, Q. = [B AB A B]

0 0 4
=12 -6 18
0 4 24
0 0 4
Determinantof Q,=|2 -6 18/=4x8=32 ; Since IQC|¢O, the rank of Q_=3.
0 4 -24

‘Hence the system is completely state controllable

KALMAN'S TEST FOR OBSERVABILITY

0 0 I 0 -2 0
0 2 -3 1 0 -3

0 -2 0] Jo =2 o 0 6 -4
AT ={o 3 2| |0 =3 2|2 o -1z
I 0 =3/ [1 o0 -3 -3 =2 9

0 -2 0 1 0

ATct =lo0 -3 2 0| =10

1 0 -3 0 1

19



0 6 -4]|1 0

2

(AT) c'=! 2: 9 —12llo| =1 2

-3 =2 9 {10 -3
The e _ 10-0

€ composite matrix 2
g Qo=[CT ATcT (AT) cT}z 00 2
for observability R : 01 3
‘ 1 =

[ 4

10 0

Determinant of Q, =[0 0 2| =1x-—2=-2 ; Since |Q,|#0, th'”flfll“’fQo?3
01-3

Hence the system is completely observable. (or all the state variables of the system
are observable).
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