UNIT-1 :NUMBER SYSTEMS ANDDIGITAL LOGIC FAMILIES

A digital system can understand positional number system only where there arc a few symbols called digits and these
.symbols represent different values depending on the position they occupy in the number

A value of each digit in a number can be determined using

The digit *

The position of the digit in the number «

.)The base of the number system (where base is defined as the total number of digits available in the number system o
Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10
as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point
.represents units, tens, hundreds, thousands and so on

Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4
in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value can
be written as

)1x1000) + (2x 100) + (3x 10) + (4x1(

)x 103) + (2 x 102) + (3 x 10 1) + (4x 10° 1 (

1 +30 + 200 + 1000

1234

As a computer programmer or an IT professional, you should understand the following number systems which arc
.frequently used in computers

S.N. Number System & Description

Binary’ Number System

‘1

Base 2. Digits used: 0, 1

Octal Number System

2

Base 8. Digits used: 0 to 7

'Hexa Decimal Number System 3

Base 16. Digits used: 0 to 9, Letters used: A- F

Binary Number System

Characteristics

Uses two digits, 0 and 1.

Also called base 2 number system

Each position in a binary number represents a 0 power of the base (2). Example: 2°
Last position in a binary number represents an x power of the base (2). Example: 2%
where X represents the last position - 1.

Example
Binary Number: 10101>

Calculating Decimal Equivalent —

Step Binary Number Decimal Number
Step1 10101, ((Ax29+(0x23)+(1x22)+(0x2Y)+ (1 x2%)0
Step2 10101; (16+0+4+0+ 1o
Step 3 10101; 2110

Note: 10101, is normally written as 10101.
Octal Number System
Characteristics
o Useseight digits, 0,1,2,3,4,5,6,7.
e Also called base 8 number system
» Each position in an octal number represents a 0 power of the base (8). Example: 8°
e Last position in an octal number represents an x power of the base (8). Example: 8%
where x represents the last position - 1.
Example

Octal Number — 12570g

Calculating Decimal Equivalent —

Step Octal Number Decimal Number
Step1 12570s (1 x8%+(2x8%+(5x8?%)+(7x8Y)+(0x8%)p
Step2 12570g (4096 + 1024 + 320 + 56 + 0)10
Step 3 12570g 549610

Note: 12570g is normally written as 12570.

Hexadecimal Number System

Characteristics

Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Letters represents numbers starting from10. A=10,B=11,C=12,D=13,E=14,F=
15.

Also called base 16 number system.

Each position in a hexadecimal number represents a 0 power of the base (16). Example
16°.

Last position in a hexadecimal number represents an x power of the base (16). Example
16* where x represents the last position - 1.

Example —

Hexadecimal Number: 19FDE

Calculating Decimal Equivalent —

Step
Step 1
Step 2
Step 3
Step 4

Hexadecimal Number Decimal Number

19FDE s (1 x 16%) + (9 x 16%) + (F x 162) + (D x 16%) + (E x 16%)10
19FDE16 (1 x 16%) + (9 x 16%) + (15 x 162) + (13 x 16%) + (14 x 16%)10
19FDE s (65536 + 36864 + 3840 + 208 + 14)19

19FDE s 10646219

There are many methods or techniques which can be used to convert numbers from one base to
another. We'll demonstrate here the following —

Decimal to Other Base System

Other Base System to Decimal

Other Base System to Non-Decimal
Shortcut method — Binary to Octal
Shortcut method — Octal to Binary
Shortcut method — Binary to Hexadecimal
Shortcut method — Hexadecimal to Binary

Decimal to Other Base System

Steps

Step 1 — Divide the decimal number to be converted by the value of the new base.

Step 2 — Get the remainder from Step 1 as the rightmost digit (least significant digit) of
new base number.

Step 3 — Divide the quotient of the previous divide by the new base.

e Step 4 — Record the remainder from Step 3 as the next digit (to the left) of the new base
number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in
Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base
number.

Example —
Decimal Number: 291

Calculating Binary Equivalent —

Step Operation Result Remainder
Stepl 29/2 14 1

Step2 14/2 7
Step3 7/2 3
Step4 3/2 1
Step5 1/2 0

=)

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that
the first remainder becomes the Least Significant Digit (LSD) and the last remainder becomes
the Most Significant Digit (MSD).

Decimal Number — 2919 = Binary Number — 111015.
Other Base System to Decimal System
Steps
e Step 1 — Determine the column (positional) value of each digit (this depends on the
position of the digit and the base of the number system).
e Step 2 — Multiply the obtained column values (in Step 1) by the digits in the
corresponding columns.
e Step 3 — Sumthe products calculated in Step 2. The total is the equivalent value in
decimal.
Example

Binary Number — 11101

Calculating Decimal Equivalent —

Step Binary Number Decimal Number

Step1 11101, ((Ax29+ (1 x2%)+(1x22)+(0x2Y) + (1 x2%)10
Step2 11101, (16+8+4+0+ 1)
Step3 11101, 2910

Binary Number — 111012 = Decimal Number — 291
Other Base System to Non-Decimal System
Steps

e Step 1 — Convert the original number to a decimal number (base 10).
e Step 2 — Convert the decimal number so obtained to the new base number.

Example
Octal Number — 25g
Calculating Binary Equivalent —

Step 1 — Convert to Decimal

Step Octal Number Decimal Number
Step 1 25g ((2 x84 + (5 x 8%)10
Step 2 25s (16 +5)10
Step 3 253 2110

Octal Number — 25g = Decimal Number — 2119

Step 2 — Convert Decimal to Binary

Step Operation Result Remainder
Stepl121/2 10 1
Step210/2 5 0
Step35/2 2 1
Step42/2 1 0
Step51/2 0 1

Decimal Number — 2110 = Binary Number — 10101>
Octal Number — 25g = Binary Number — 10101>

Shortcut method - Binary to Octal

Steps

o Step 1 — Divide the binary digits into groups of three (starting from the right).
e Step 2 — Convert each group of three binary digits to one octal digit.

Example
Binary Number — 10101>

Calculating Octal Equivalent —

Step Binary Number Octal Number
Step 1 10101, 010 101

Step 2 10101, 28 58

Step 310101, 253

Binary Number — 10101, = Octal Number — 25g
Shortcut method - Octal to Binary
Steps
o Step 1 — Convert each octal digit to a 3 digit binary number (the octal digits may be
treated as decimal for this conversion).
e Step 2 — Combine all the resulting binary groups (of 3 digits each) into a single binary
number.
Example

Octal Number — 253

Calculating Binary Equivalent —

Step Octal Number Binary Number
Step 1 25s 210 B10

Step 2 25s 0102 101>

Step 3 25s 010101;

Octal Number — 25g = Binary Number — 10101,
Shortcut method - Binary to Hexadecimal

Steps

o Step 1 — Divide the binary digits into groups of four (starting from the right).
e Step 2 — Convert each group of four binary digits to one hexadecimal symbol.

Example
Binary Number — 10101,

Calculating hexadecimal Equivalent —

Step Binary Number Hexadecimal Number
Step 1 10101, 0001 0101

Step 2 10101, 110 510

Step 310101, 1516

Binary Number — 10101, = Hexadecimal Number — 1535
Hexadecimal to Binary
Steps
o Step 1 — Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal
digits may be treated as decimal for this conversion).
e Step 2 — Combine all the resulting binary groups (of 4 digits each) into a single binary
number.
Example

Hexadecimal Number — 1515

Calculating Binary Equivalent —

Step Hexadecimal Number Binary Number
Step 1 1516 110 510
Step 2 1516 0001, 0101,

Step 3 1516 00010101:

In the coding, when numbers, letters or words are represented by a specific group of
symbols, it is said that the number, letter or word is being encoded. The group of symbols is
called as a code. The digital data is represented, stored and transmitted as group of binary bits.
This group is also called as binary code. The binary code is represented by the number as well
as alphanumeric letter.

Advantages of Binary Code
Following is the list of advantages that binary code offers.

e Binary codes are suitable for the computer applications.

o Binary codes are suitable for the digital communications.

o Binary codes make the analysis and designing of digital circuits if we use the binary
codes.

e Sinceonly 0 & 1 are being used, implementation becomes easy.

Classification of binary codes
The codes are broadly categorized into following four categories.

e Weighted Codes

e Non-Weighted Codes

e Binary Coded Decimal Code
e Alphanumeric Codes

o Error Detecting Codes

e Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle. Each
position of the number represents a specific weight. Several systems of the codes are used to
express the decimal digits 0 through 9. In these codes each decimal digit is represented by a
group of four bits.

Decimal >[7’T]
) [l e

Positional ¢ ¢
weights —3 8:+4+2+1 8+4+2+1

cOde—ﬁoou)J 0100

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-
weighted codes are Excess-3 code and Gray code.

Excess-3 code
The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal

numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2
or (3)10 to each code word in 8421. The excess-3 codes are obtained as follows —

Add
Decimal Number = 8421 BCD —— Excess-3
0011
Example
Decimal BCD Excess-3
8 4 2 1 BCD +0011
0 c 0O 0 0 0 0 1 1
1 00 0 1 0 1 0 0
2 0 0 10 0 10 %
3 c 0 1 1 01 1 0
4 01 0 0 0 =1 4 %
5 01 0 1 10 0 0
6 0: % ‘h: O Y & o o s
7 G 1 1 ¥ 10 10
8 10 00 001 A
9 I O R) Fi & 1100
Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no specific
weights assigned to the bit position. It has a very special feature that, only one bit will change
each time the decimal number is incremented as shown in fig. As only one bit changes at a time,
the gray code is called as a unit distance code. The gray code is a cyclic code. Gray code cannot
be used for arithmetic operation.

Decimal BCD Gray
0 00 0 0O 0 0 0 0
1 0 0 0 1 0 06 0 1
2 00 10 00 A 1
3 & 011 3 0 0 10
4 0100 0 1 10
5 01 0 1 O = Ay
6 01 1 0 0 1 0 1
7 6 S5 G T 1 0 0
8 10 00 T 100
9 1001 40 4

Application of Gray code

e Gray code is popularly used in the shaft position encoders.
o Ashaft position encoder produces a code word which represents the angular position of
the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to express
each of the decimal digits with a binary code. In the BCD, with four bits we can represent sixteen
numbers (0000 to 1111). But in BCD code only first ten of these are used (0000 to 1001). The
remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Decimal 0 1 2 3 4 5 6 7 8 9

BCD 0000 | 0001 | 0010 | 0011 | 0200 | 0101 | 0110 | 0211 | 1000 | 1001

Advantages of BCD Codes

e Itisvery similar to decimal system.
o We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

e The addition and subtraction of BCD have different rules.
e The BCD arithmetic is little more complicated.

e BCD needs more number of bits than binary to represent the decimal number. So BCD is
less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states ‘0" or '1". But this is
not enough for communication between two computers because there we need many more
symbols for communication. These symbols are required to represent 26 alphabets with capital
and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic characters. Mostly
such codes also represent other characters such as symbol and various instructions necessary for
conveying information. An alphanumeric code should at least represent 10 digits and 26 letters
of alphabet i.e. total 36 items. The following three alphanumeric codes are very commonly used
for the data representation.

e American Standard Code for Information Interchange (ASCII).
o Extended Binary Coded Decimal Interchange Code (EBCDIC).
o Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly
used worldwide while EBCDIC is used primarily in large IBM computers.

Error Codes

There are binary code techniques available to detect and correct data during data transmission.

Error Code Description
Error Detection and Correction Error detection and correction code techniques

TTL:

The most commonly used logic family called the transistor —transistor logic, has the faster

switching speed when compared to other logic families that utilize saturated transistors.

TTL NAND gate:

é +VCC
R3

. L(J{_
— o
V b1 y=(ABC) '

i L

"0

Circuit operation:

The output is taken from the collector of Q4.Each emitter of Q1 act as a diode When either
of Q1 act as a Diode. When either or all inputs (A,B,C) are at 0 V, (logic 0), the corresponding
emitter-base junction of Q1 is forward biased. The value of Rb is selected so as to ensure that Q1
is turn ON. However the value of current ib2 flowing through the base of Q2 reduces the potential
at the base of Q2. and hence transistor Q2 and Q3 are cut-off so that the output voltage is at
Vcce(logic 1). If all the inputs are high (logic 1), the E-B junction of Q1 is reverse biased.hence Q1
is switched off. And Q2 is turned ON and the drop across R2 is sufficient to forward bias the EB
junction of Q4. Thereby turning Q4 ON. Hence the output at itscollector is low(logic 0). The
function of Diode D is to prevent both Q3 and Q4 from being ON simultaneously.

ECL (Emitter Couple Logic) :

Emitter couple logic (ECL) is a current mode logic (CML) or non-saturated digital logic
family, which eliminates the turn off delay of saturated transistor by operating in the active mode.
At present, the ECL logic family has the fastest switching speed among the commercially available

digital IC*s.The propagation delay time of a typical ECL gate is 1 ns.

ECL - OR/NOR gate:

-1.3 v { QZ _dzv

Q4
VEE Vout= (A+B)

-2v

The basic circuit of ECL is a different amplifier as shown if fig. The VEE supply produces a fixed
current 1E, which remains around 3 mA during normal operation. This current is allowed toflow
through Q1 or Q2, depending on the voltage level at Vin. In other words, these current switches
between the collectors of Q1 and Q2 as Vine witches between its two logic levels of -

1.7 V. If both inputs A and B are low, then both transistors Q& Q1 off. While Q2 is the active

region and its collector is ina LOW state.

If either A or B is HIGH, then according either Q or Q1 conducts and the transistor Q2 is switched

off, resulting in high state at its collector.

CMOS (Complementary metal oxide semiconductor Logic)

CMOS inverter:

+vdd

,_I

["hj 01

Y=(Vin) '
—
__| >

Operation:

When VIN is low, Q2 is cut off

Q1 isON , outputis high
When VIN is high Q2 is ON

Qlisturn OFF, outputisLow

CMOS NAND Gate:

Operation:

If both input is High, both P channel transistor turned off and boths ,,n* channel transistors turned

ON. The output has a low impedance to ground and produces a low state.

If any input is low, the associated n-channel transisitor is turned off. And the associated p-

channel transisitor is turned ON.The output is coupled to VDD and goes to the HIGH state.

To produce the positive AND function the output of the CMOS NAND gate can be connected to
a CMOS inverter.

BOOILEAN ALCEBRA AND COMBINATIONAL CIRCUITO

Boolean Algebra:
Properties of Boolean algebra:

commutative property:
A+B=B+A
A.B=B.A

Associative property:

A+(B+C) = (A+B)+C
A.(B.C) =(A.B)C

Distributive property:

A+BC=(A+B)(A+C)
A.(B+C)= AB+A.C

Absorption laws:

A+AB = A
A.(A+B)
A+A“B = A+B

A(A"+B)= AB

Consensus Laws:
AB+ A“C+BC=AB+ A“C

(A+B)(A*“+C)(B+C) = (A+B)(A"+C)

other laws of Boolean algebra:

A+0 =A Al= A
A+l1=1 A.0=0

A+A=A AA=A
A+A"=1 A.A"=0
A=A A=A

Principle of duality:

From the above properties and laws of Boolean algebra, it is evident that they are grouped
in pairs. One expression can be obtained from the other in each pair by replacing every0 with 1,
every 1 with 0, every + with . every . with +. Any pair of expression satisfying this property is

called dual expression. This characteristics of Boolean algebra is called the principlesof duality.

De-Morgan’s theorem:

(AB)(‘Q:A(Q_"_B(Q
The complement of a product is equal to the sum of the compliments.
(A_"_B)Qf: AQE.BH

The complement of a sum is equal to the product of the complements.

A B A” B | A+B | AB |(A+B)"|(AB)" | A“B* | AtB"
0 0 1 1 0 0 1 1 1 1
0 1 1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1 0 1
1 1 0 0 1 1 0 0 0 0

Truth table:

SWITCHING FUNCTIONS AND SIMPLIFICATION USING K-MAP:

SUM OF PRODUCT FORM:

The word sum and product are derived from the symbolic representation of the OR and

AND function by + and .(addition and multiplication), respectively. The SOP isa group of product

terms OR ed together.

Ex.

F(A,B,C) =ABC + AB“C

F(P,Q,R,S)= PQ+QR

PRODUCT OF SUM FORM:

The product of sum is any group of sum terms AND ed together.

Ex.

1.F(AB,C) = (A+B).(B+C)

MINTERMS AND MAXTERMS:

VARIABLES MINTERMS MAXTERMS
A B C mi Mi
0 0 0 A“B“C*“=m0 A+B+C
0 0 1 A“B“C=ml A+B+C™
0 1 0 A“BC“=m2 A+B“+C
0 1 1 A“BC=m3 A+B“+C*
1 0 0 AB“C*“=m4 A“+B+C
1 0 1 AB“C=m5 A“+B+C*
1 1 0 ABC*“=m6 A“+B“+C
1 1 1 ABC=m7 A“+B“+C*

Examples:

F(A,B,C)= A“B“C*+A“B“C+A“BC*
=mo + ml+m2
=y'm(0,1,2)
F(A,B,C)= (A“+B“+C*.(A+B+C).(A+B+C")
= M7.M0.M1
=I1M(0,1,7)
> ---—> Denotes sum of product while
IT ----> Denotes product of sum
Conversion between canonical forms:
Convert the following sop expression to an equalent POS expression.
A“B“C*+A“BC*“+A“BC+AB“C+ABC
Solution:
The given expression as follows
F(A,B,C)=>1(0,2,3,5,7)
F*=Y(1,4,6)=m1+m4+m6
F= (m1+m4+m6)*“
F= ml“+m4“+mé6"
F= M1.M4.M6

= ITm(1,4,6).

STRUCTURE OF K MAP:

TWO VARIABLE K MAP

THREE VARIABLE K

MAP
\A \AB
C
0 1 00 01 11 10
B
0
0 1 0 2 6 4
2 3 1 3 7 5
1
AB
00 01 11 10
CD

00 0 4 12 8

01 1 5 13 9

11 3 7 15 11

10

10 2 6 14
FOUR VARIABLE K
MAP
EXAMPLE 1

Simplify the following function using K map for 4 variables a,b,c,d.

AB
00 01 11 10
cD
0
00 0 1 1
o1l [1 o 1 1
11| | 1 0 0
0 0
10 0 0

Y=AC"+A“D
EX:2

Simplify the expression using Y=Y m (7,9,10,11,12,13,14,15) using k map method

AB
00 01 11 10
CD
0 0
00 1 0
0 0
01 1 1
11 0 1 1 I
0 0 1 1
10 s

Y=AB+AD+AC+BCD
EXAMPLE:

Y =11(0,1,4,5,6,8,9,12,13,14) Using the k map method.

AB
00 01 11 10
CD
0 0 0 0
00
0 0 0 0
01
11
10 0 0
Y = C (B“+D)
EXAMPLE:

Simplify the following using k map method

Y =Ym(3,6,7,8,10,12,14,17,19,20,21,24,25,27,28)

ABC
DE
000 001 (011 01 110 111 101 100
00 1 1 1 1 1
01 1 1 1
1 1
11 1 1 I S
10 1 1 1

Y=BDE“+tAC“E+A“BE“+AB“CD“+A“B“CD+A“B“DE
Don’t care combination:

Ex. Simplify the Boolean function F(A,B,C,D)= =Y m(1,3,7,11,15) + >.d(0,2,4)

AB
CD 00 01 11 10
00 d 0 0 0
01
1 d 0 0
11 | 1 1 1 1
10 d 0 0 0

Y=A"B“+CD
Example:

Using the K-map method, simplify the following Boolean function and obtain (i) minimal sum of
products (SOP) (ii) minimal POS expression

AB

CD\ oo| 01 11 10
00 1 0 0 d
01 0 0 0
11 1 1 d d
10

1 1 d

SOP expression: Y = A“C + B“D*
POS expression Y = A“(C+D”) (B* + C)

QUINE-McCLUSKEY OR TABULATION METHOD OF MINIMIZATION OF LOGIC
FUNCTION

EXAMPLE:

Find the minimal sum of products for the Boolean expression, f=(1, 2, 3, 7, 8,9, 10, 11,
14, 15), using Quine McCluskey method.

Solution:

Binary representation of minterms:

Variables
ABCD

Minterms

1 0000

2 0010

3 0011

7 0111

8 1000

9 1001

10 1010

11 1011

14 1110

15 1111

Group of minterms for different number of 1°s:

Number of 1*s minterms Variables

ABCD

1 1 0000
2 0010
8 0111

2 3 0011
9 1001
10 1010

3 7 0111
11 1011
14 1110

4 15 1111

2 CELL COMBINATION:

COMBINATION ABCD
1,3 00-1
1,9 -001
2,3 001-
2,10 -010
8,9 100-
8,10 10-0
3,7 0-11
3,11 -011
9,11 10-1
10,11 101-
10,14 1-10
7,15 -111
11,15 1-11
14,15 111-
4 cell combination
COMBINATION ABCD
1,3,9,11 -0-1
2,3,10,11 -01-
8,9,10,11 10--
3,7,11,15 --11
10,11,14,15 1-1-
PRIME IMPLICANT CHART:
PRIME
IMPLICANTS MINTERMS
1 2 3 7 8 10 11 14 15
(1,3,9,11)* X X X
(2,3,10,11)* X X X X
(8,9,10,11)* X X X
(3,7,11,15)* X X X X
(10,11,14,15)* X X X X

F=B“D+B“.C+AB“+C.D+AC

Combinational logic:

Digital computers and calculators consists of arithmetic and logic circuits, which contains logic

gates and flip flops that add, subtract, multiply and divide binary numbers.

In Combinational logic circuit, the output at any time depends only on present input values at

that time.
Half adder:
Truth table:
A B sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
Sum= A“B+AB*
Carry= A.B
Logic diagram:
A e
2 j))) SUM

B 7486
U2A

2 ~——— CARRY

7408

FULL ADDER:

Truth table:

A B CIN SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
SUM= A xor B xor CIN
CARRY = AB+BC+CA
Logic diagram:
Full adder circuit using half adder:
A uia —

1
3 U3A
5 = sum
2 o
|
7486
U4A
U2A _____________L_
1 3
3 2_
2 |
7 7408 USA
1y — carry
>
|

7432

Half subtractor :

Truth table
A B Difference Borrow
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0
Differece = A xor B
Borrow = A“B
Logic diagram:
A oo difference
e R
B /4
7486
Hl U2A
; VA 1 Borrow
7204 3
2
“ 7408
Full subtractor:
Truth table:
A B Bin difference Borrow
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Difference = A xor B xor Bin

Borrow = A“B+ BC+ CA™

Logic diagram of full adder using half subtractor:

A U1A
e 1 _\ ,) ™
oy

B 2 — N ‘7 /i Difference

2
. UsA
Bin Y 7486
H| L U4A
UBA A ~ 1
- |
3
2

o r 1:\

o~ 7408

|
7408 T Rorrow

3

2

7432

Multiplexer:

The multiplexer has several data input lines and a single output line. The selection of a particular

input lines is controlled by a set of selection lines.

4:1 Multiplexer:

Block diagram:

selection lines

SO S1

DO

C,iata - 4 to 1 mux —o/p
lnputs

D2

D3

Truth table:

Data select inputs Out put
S1 SO Y
0 0 DO
0 1 D1
1 0 D2
1 1 D3

Logic diagram:

sl

DO

U2A
7404

2.0

s0

U2A
7404

C
[
>

W

D1

|
\

~
S
o
o5}

U4A

U7A

D2

W

~
N
o
©

|
A\

D3

Demultiplexer (Data distributors):

7408

A demultiplxer is a logic circuit that receives information on a single line and transmits

the same information over several out lines.

1:4 demultiplexer:

Truth table:

Data input Select input outputs
D SO S1 Y3 Y2 Y1l YO
D 0 0 X X X D
D 0 1 X X D X
D 1 0 X D X X
D 1 1 D X X X
Logic diagram:
D sl sO
— / u2A U2A
7404 K 7404
g U3A
. z \ 3 y0
=
U4A
: > 3 vyl
7408
USA
- \ o }72
A/
UGA 8
1_ 3 y3

Decoder:

A decoder is similar to demultiplexer but without any data input. In a decoder, the

number of outputs is greater than the number of inputs.

3:8 decoder:

A 3:8 decoder has three inputs and eight outputs . the truth table and logic diagram are

follows.
Truth table:
Inputs outputs

A B C DO D1 D2 D3 D4 D5 D6 D7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

4
w2
V 74p4 e e
U2A U2A
h :; 7404 :; 7404 UsA
1

N\ Do
|&%
L D1
eI}
YSA—7208
Y N D2
tﬁﬂ:%
Y N\, D3
2.
g, D4
4,
:aa:%
L 5 D5
)
Y3A—7708
4) D6
Wy
H s D7
2.
j

Logic diagram:
ENCODER:

An encoder is a digital circuit that perform the inverse operation of a decoder. Hence, the

opposite of the decoding process is called encoding.

An encoder is a combinational circuit that converts an active low signal into a coded

output signal.

OCTAL TO BINARY ENCODER:

Outputs Inputs

B

O
o
v
[y
O
N
O
w
o
I
)
(S}
)
(o]
)
\‘

ROl oolo>

RO O OO0

PP OO R KFOoOOo

[elleliel) Jlelle]le]fe)

[ellell Jiellelie]lle]]

[l Jiellelleliello]]
R OO OO oo o

o000 0|Ooo(-
OO0 0|0O|O|—|Oo
[ellelleliellell Jdielle)
OO0 |0O|O0O|r|O|lo|o

A=D1+D3+D5+D7

B=D2+ D3+ D6 + D7

C=D4 +D5 + D6 + D7

LOGIC DIAGARM:

DO

D1

D2
D3
D4
D5
D6
D7
|N\L LL| 3\/|
g mB ? A
COMPARATORS:

A magnitude comparator is a combinational circuit that compares the magnitude of two
numbers (A and B) and generates one of the following output: A=B,A>B,A<B.

Single bit comparator:

Truth table:
A B condition
0 0 A=B
0 1 A<B
1 0 A>B
1 1 A=B

LOGICAL EXPRESSION:

(A=B) = A“B"+AB

(A<B)=A“B
(A>B)= AB“
Logic diagram:

U3A

! N, A<B
_/

‘ T 7408
%
U2A
7404 U4A U2A
1 —
7))

B 7486

7404

|
L U3A

U2A
:' ; 7404 ! > 3 A>B
2

N

7408

Code converters:

Code converter is a logic circuit that changes data presented in one type of binary code to

another type of binary code.

4 bit Binary to gray code converter:

e
3 >y
o ©
S Y
e o
> >
H Y
©) ©
5 biary to gray code converter e
- -
< Q
+ D
— et
< Q o
~
< < O

TRUTH TABLE:

BINARY INPUTS

GRAY CODE OUTPUTS

B3 B2 B1 B0 G3G2G1G0
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000
From the k map,
G3=B3
G2 =B3 XOR B2
G1=B2 XOR B1
G0=B1 XOR B0
Logic diagram:
BO —

: j) Y G0

L
B1 —
Jo—
B2 I —
g o

B3

G3

Gray to binary code converter:

BINARY OUTPUTS

GRAY CODE INPUTS

B3 B2 B1 B0 G3 G2 G1 GO
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000
From the k map
B3 =G3
B2 =B3 XOR G2
B1=B2 XOR G1
B0 =G0 XOR B1
Logic diagram:
U3A
— B
G0) ™ °
2
.
Gl ! j>_\ \ B1
|
G2 1 j>_\ , B2
2
L
B3

G3

UNIT 111
SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential circuits:

Combinational logic refers to circuits whose output is strictly depended on the present
value of the inputs. As soon asinputs are changed, the information about the previous inputs
is lost, that is, combinational logics circuits have no memory. In many applications, information
regarding input values at a certain instant of time is required at some future time. Although every
digital system is likely to have combinational circuits, most systems encounteredin practice also
include memory elements, which require that the system be described in terms of sequential logic.
Circuits whose outputs depends not only on the present input value but also the past input value
are known as sequential logic circuits. The mathematical model of a sequential circuit is usually

referred to as a sequential machine.

A general block diagram of a sequential circuit is shown below.

Primary inputs 1 _ Primary outputs
» Combinational >

; 5| Logic Circuit

Secondary| Secondary
iﬂput5§ outputs

Memory
Elements <

The diagram consists of combinational circuit to which memory elements are connected to form
a feedback path. The memory elements are devices capable of storing binary information within
them. The combinational part of the circuit receives two sets of input signals: one is primary
(coming from the circuit environment) and secondary (coming from memory elements). The
particular combination of secondary y input variables at a given time is called the present state
of the circuit. The secondary input variables are also know as the state variables The block diagram
shows that the external outputs in a sequential circuit are a function not only of externalinputs but
also of the present state of the memory y elements. The next state of the memory elements is also
a function of external inputs and the present state. Thus a sequential circuit is specified by a time

sequence of inputs, outputs, and internal states.
FLIP FLOPS:
All the flip flops can be divided into SR, JK, D, T

SR FLIP FLOP:

Logic diagram:

S UL1A
1 U12A

2 }3 Y 3 Q

- 7400 7 _>
clock (7400

R L] —
) _}3 1:U13A) 3 Lo
7400 2 7400
Truth table:
clk S R Qn Qn+l
X 0 0 No change
1 0 1 0 1
1 1 0 1 0
1 1 1 Forbidden state

Characteristics equation:
Qn+1=S+R"Q

State diagram:

D FLIP FLOP:

The d flip flop has only one input called delay and two outputs Q,Q*

Logic diagram:

7400

Characteristics equation:

Q(n+1)=D
Truth table:
CLK Input D Output Qn+1
1 0 0
1 1 1
0 X No change

State diagram:

D=1
M\lll
/
e
JKFLIP FLOP:
Logic diagram:
U16A
1 U1T1A
J 3 1| U12A
2 I) 3 1| >3) O
7408 2
7400
clock { (7490
U17A \ 1A
K 1 U13A Q Y
1 s 2_‘ 3 | | \
2. I 2
7400 I
7408 7400

Characteristics equation:
Q(n+1) =JQ"+ K'Q
Truth table:
clk J K Qn+l Action
X 0 0 Qn No change
1 0 1 0 1
1 1 0 1 0
1 1 1 Qn“ Toggle

State diagram:

JK=01or 11
TFLIP FLOP:

Logic diagram:

U16A
U11A
U12A
3 1]
T 2 3 1 0
| 2 3 .
7408 2
7400
7400
clock
U14A
U17A U13A
LI]
e 3 | Q
3 2| 3
2 2 |
7400
7408 7400

Characteristics equation:

Q1) =TQ'+TQ

Truth table:
CLK T Qn+1
1 0 (No change) Qn
1 1 (Toggle) Qn*

0 X (No change) Qn

State diagram:

DESIGN OF COUNTERS:

Example:
Design a mod 7 synchronous counter USING JK FLIP FLOP
Solution:

001 | — 111

state diagram

State table:

Present state Next state

Q2 Q1Q0 g2q1q0

000 001

001 010

010 011

011 100

100 101

101 110

110 111

111 000

Excitation table :
PS NS J2 K2 J1 K1 JO KO
Q2Q1Q0 Q291 q0

000 001 0X 0X 1X
001 010 0X 1X X1
010 011 0X X0 1X
011 100 1X X1 X1
100 101 X0 0X 1X
101 110 X0 1X X1
110 111 X0 X0 1X
111 000 X1 X1 X1

KARNAUGH MAP:

L0

azaiN_0 1 ozai_ 0 1 crais_ 0 1
oo 0} 0 oo| 0| 1 00 X
01| 0| 1 01| X | X 01| 1 | X
11| X | X 11| X | X 11 | K
m| X | X 10| 0| 1 10f -1 | X
J2 map J1 map JO map
Q0 Q0 Q0
azon 01 gzafn_ 0 1 azatn_ 0 1
oo| X | X oo| X | X oof X | 1
01| X | X 01 0 | 1 01} X {1
11{ 0 | 1 11| 0 | 1 11 % 11
| 0} 0 10 X | X 100 X | 1
K2 map K1 map KO map
From the k map
JO=k0=1
J1=K1=Q0
J2=2=0Q1Q0
Logic diagram:
1 I — I — ""“\‘L i
+ J o —_ L) @
o = o= o
K QF K 'f K @
Clk FFO FF1 FF2
. -

Analysis of synchronous sequential circuits:

Example: Derive the state table and state diagram of the following diagram.

S S—
:---1- ,E FF1
Hk oQ
"f;’ —p = g
.
- FF2
' E
L Do
= L o
™
Y

Solution:

Step 1: Derive the Boolean expression for the given circuit.
D0= Cnt *Q0+Cnt *QO*
D1 =Cnt*Q1 + Cnt*Q1™*QO0 + Cnt*Q1*Q0’

Step 2:Converting the equation into next state expression according to the flip flop used. ere we
are using D flip flop so Qn+1=D,

QO(next)= Cnt *Q0+Cnt *QO0
Q1(next)= Cnt*Q1 + Cnt*Q1™*Q0 + Cnt*Q1*Q0’

Step 3:Formulate present state next state table

PS NS
Q1Q0 Cnt=0 Cnt=1
00 00 01
01 01 10
10 10 11
11 11 00
Cnt=0 Cnt=0
e ™
00 Cnt=1 01 |
"y
A
Cnt=1 -::nt =1
:f N \'I
_ < Cnt=1 10 L J
Cnt=0 Cnt=0
State diagram.
STATE REDUCTION:
Example:Reduce the following state table:
Present state Next state output
X=0 X=1 X=0 X=1
A B C 10
B F D 00
C D E 11
D F E 01
E A D 00
F B C 10

Solution:

It can be seen from the table that the present state A and F both have the same next states,B
(when x=0) and C (when x=1). They also produce the same output 1 (when x=0) and 0 (when
x=1). Therefore states A and F are equivalent. Thus one of the states, A or F can be removed from
the state table. For example, if we remove row F from the table and replace all F's by A's in

the columns, the state table is modified as shown in Table.

Present state Next state output
X=0 X=1 X=0 X=1
A B C 10
B A D 00
C D E 11
D A E 01
E A D 00

It is apparent that states B and E are equivalent. Removing E and replacing E*s by B“s. Results in

the reduce table follows.

Reduced state table:

Present state Next state output
X=0 X=1 X=0 X=1
A B C 10
B A D 00
C D B 11
D A B 01

ASYNCHRONOYUS (RIPPLE OR SERIAL)COUNTER:

The asynchronous counter is the simplest in terms of logical operation, and is therefore the easiest
to design. The clock pulse is applied to the first flip flop is triggered by the output of the previous

flip-flop and thus the counter has a cumulative settling time.

LOGIC DIAGRAM OF 4 BIT RIPPLE COUNTER:

STATE QD QC QB QA
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
TRUTH TABLE
11 1011
12 1100
13 1101
14 1110
15 1111
0 0000

+VCC

OF— +— QO M [OF ST
J J J J
clk C
A B clk clk
clk

I K K

K K —1
QA
OB QC

Mod-number or modulus:

QD

The above counter has 16 different states. Thus, it isa MOD-16 ripple counter. The MOD-

number of a counter is the total number of states it sequences through in each complete cycle.

SYNCHRONOUS COUNTERS:

The clock pulses are applied to all flip flop simultaneously.The speed of operation in a

synchronous counter is limited by the propagation delay of control gating and a flip flop.

4 bit synchronous up-counter:

clk

QA

QB

QC

+VCC

QD

clk

0 1
J J
C
clk F
L| clk
K L | K
SR Y)
Lo+

Total delay = propagation delay of one flip flop + propagation delay of AND gate

UNITIV
ASYNCHRONOUS SEQUENTIAL CIRCUITS

Block diagram of an asynchronous circuits:

71
x1
X2 72
combinational
xn circuit
Zn
[
DELAY |
[
DELAY |
[
DELAY |

ANALYSIS OF ASYNCRONOUS CIRCUITS:
Analysis of fundamental mode sequential circuits:

Consider the fundamental mode sequential circuit shown in fig. The circuit has two input
variables 10 and I1 and one output variable Z. The circuit has two feedback paths which provide
inputs to the gates, creating latching operation necessary to provide a sequential circuit. The feed
back path also generates the state variables X0 and X1 the next state for the circuit is determined

by the both the state of input variable and the state variables.

U1A

11 1 !>Q2 1
3
) _3

U7A
7404 7408 1 \ , X1
—
U2A 2 S
10 1 \ 7432
3
2
7408
U3A
1
-3
2 UBA

2 —/
|wi 3 7432
1 | 2 2

7404

From the given sequential circuit we can have next secondary state and output equation as

follows,

X1 =x011"+x0 x1 10
X0=x01011+ X110
Z= X0 X110

From these next secondary state and output equation we can construct the state table
indicating present state and next state and the output.The next secondary state values are found
by assigning present state values to the Boolean variables in the next secondary state equation to
determine X1 and XO0.For the given input and secondary state if next secondary state does not

change then the state is said to be stable.

Transition table:

input state

I1I0

secondary state xle\OO 01 11 10

00 00 00 00 00

01 10 10 01 00

H 11 10 11 01

10 01 00 00 01

Sate table:
Present state Next state Stable state Output

X1X0I1110 X1 X0 Yes/No Z
0000 00 Yes 0
0001 00 Yes 0
0010 00 Yes 0
0011 00 Yes 0
0100 10 No 0
0101 10 No 0
0110 00 No 0
0111 01 Yes 0
1000 01 No 0
1001 00 No 0
1010 01 No 0
1011 00 No 0
1100 11 Yes 0

1101

1110

1111

10

01

11

No
No

yes

Design of asynchronous sequential circuits:

Design steps:

construction of a primitive flow table from the statement. And intermediate step may include the
development of a state diagram.Primitive flow table is reduced by eliminating redundants states

by using state reduction techniques.state assignment is made the primitive flow table is realized

using appropriate logic elements.

DESIGN PROBLEMS:

Example:

Design a asynchronous sequential circuit with two inputs X andY and with one output Z.
Whenever Y is one, input X is transferred to Z. When Y is zero, the output does not change for

any change in X.

Solution:

Primitive flow table:

Present state

Next state, output Z

For XY inputs

00 01 11 10
A @ ! B.- C.-
;0
B A- D.- .-

—
_/

D B,- : E 1
E F- D.-
1
B,- - E.-

Merger graph for problem:

AB,C — SO

DEF — S1

Reduced flow table:

Present state

Next state, output Z

For XY inputs

00 01 11 10
SO

1 ‘ 1 Sly- L]
S1

&

S0,-

@

Transition table:

Present state

Next state, output Z

For XY inputs

00

01

11

10

©)

()

0

K-map simplification:

XY
00 01 11 10
F
ol 0 0 1 0
1 0 1 1
1
F+=FY"+XY
XY
\ 01 11 10
00
F
ol 0 0 X 0
1 0 1 1
1
Z=FY"+XY

Logic diagram:

U1A
L 2
7404

U2A

Example:

Design a circuit with inputs A and B to give an output x=1 when AB=11 but only if A becomes 1
before B, by drawing total state diagram, Primitive flow table and output map in which transient
state is included.

Solution:

Primitive flow table:

Next state, output Z

Present state For XY inputs

00 01 11 10

A @ ! B,- C.-
O

D B,-
0 C.-
E . B’- @
, C,0
State assignment:
ABD ----> SO
CE --—-->8S1
Reduced flow table:
Next state, output Z
Present state For XY inputs
00 01 11 10
SO
N CORNN €Y
0 , 0 S1,-
Sl

S0,-

S0,-

@

@

Transition table:

Present state

Next state, output Z

For XY inputs

00 01 11 10
0

O O O

; , , 1,-
1

O ©

0,' 011) I

K-map:

01

11

10

F+ =F+ AB"

AB
F
00 01 11 10

Z=FB

Example:

An asynchronous sequential circuit is described by the following excitation and output function
Y=X1X2 +(X1+X2)Y

=Y

Draw the logic diagram of the circuit

Derive the transition table and output map

Describe the behavior of the circuit

Solution:
(i)

X1

UBA

.
e &
-

7408

(i) PRESENT STATE , NEXTSTATE, OUTPUT TABLE:

Present state Next state Stable total state
X1X2Y X1X2Y YES/NO Output Z
000 000 Y 0
001 000 N 0
010 010 Y 0
011 011 Y 1
100 100 Y 0
101 101 Y 1
110 111 N 1
111 111 Y 1
Transition table:
X1X2
\ 01 11 10
00

D

0

Output map:

X1X2

N

01

11

10

(ii)) The circuit gives carry output of the full adder circuit.
PROGRAMMABLE LOGICDEVICES, MEMORY ANDLOGIC FAMILIES
INTRODUCTION:

Memories are made up of registers. Each registers in the memory is one storage location.
Each location is identified by an adder. Generally the total number of bits that a memory can store
is its capacity.Each register consists of storage elements, each of which stores one-bit information.
A storage element is called a cell. The data stored in a memory by a process called and are retrieved

from the memory by a process called reading.

Classification of memories:

ROM ----- -> MASKED ROM.PROM, EPROM, EEPROM
RAM -----> STATIC RAM DYNAMIC RAM

ROM ORGANIZATION:

It is a read only memory. We can read data from the memory we cannot write the data in
the memory. le.. it can hold data even if power is turned off. Genally ROM is used to store the
binary codes for the sequence of instruction you want the computer carry out and data as look up
tables. The block diagram of ROM memory is shown in fig. It consists of n address lines and m
output lines. Each bit combination of the address variable is called an address. Each bit
combination that comes out of the output lines is called a data word. Hence, the number of bits per
word is equal to the number of output lines, m; an address is essentially a binary number that
denotes one of the 2n memory location. An output word can be selected by a unique address; since
there is 2n distinct address in a ROM,; there are 2n distinct words that are said to be stored in the

unit.

0

m m bit words
0}

g 1

-H

H [—

“

[0} [0}

0] o] N

10} o

H O

ke) E—

ke} Ko}

© 2n

s -

read .
tristate
logic
m out put
lines

Masked ROM:

Mask programming is done by the manufacturing during last fabrication process of the unit. Once
the memory is programmed, it cannot be changed. Most Ic ROM®s utilize the absence or absence

of a transistor connection at a ROW/COLOUMN junction to represent 0,,s and 1°s.

ROM cells:
row
. .
1 o1
— =
storing a O (— —
storing a 1

coloumn

PROM (programmable ROM)

The PROM can be programmed electrically by the users but cannot be reprogrammed. In
a PROM chip, the manufacturer includes a connection at every intersection of the grid of address
and data lines. PROM"s are widely used in the control of electrical equipment such as washing
machines and electric ovens.
Fuse technology used in PROM:

Metal links --> Nichrom material > sufficient amount of current through it

silicon links-—> narrow strips pf polycrystalline silicon--20 to 30 mA current.
P-N junction.
EPROM (ERASABLE PROGRAMMABLE READ ONLY MEMORY)

Erasable programmable ROM*s use MOS circutary.They store 1*s and 0*s as a packet of
charge in a buried layer of the Ic chip. EPROM®s can be programmed by the user with a special
EPROM programmer.

The important point is that we can erase the stored data in the EPROM™s by exposing the chip to
ultraviolet light through it"s quartz window for 15 to 20 minutes. It is not possible to erase the

selected data when erased the entire information is lost. The chip can be reprogrammed.

EPROM programming:

When erased each cell in the EPROM contains 1 data is introduced by selectively

programming 0*s will be programmed, both 1*s and 0*‘s can be presented in the data.
EEPROM (Electrically erasable programmable read only memory)
OR

EAPROM (Electrically Alterable programmable read only memory)

EEPROM also use the MOS circuitry very similar to that of EPROM. Data is stored as charge
or no charge on an insulated layer or insulated floating gate in the device. The insulating layer is
made very thin (<200 A). Therefore a voltage as low as 20 to 25 V can be used to move charges
across the thin barrier in either direction for programming or erasing. EEPROM allows selective

erasing at the register levels rather than erasing all data.

PROGRAMMABLE LOGIC DEVICES:

Various combinational and sequential circuits are designed using logic gates and flip flops.
To implement such combinational and sequential circuits , the designer has to interconnectseveral

SSI and MSI chips by making connections to the IC packages.

Logic circuit can also be designed using Programmable logic device (PLD) that have all the gates
necessary for a logic circuit design in a single package. In such devices, there are provisions to

perform the interconnections of the gates internally so that the desired logic can be implemented.
There are two types of PLD

Programmable Array logic (PAL) (fixed AND , programmable OR)

Programmable Logic Array (PLA) (fixed OR , programmable AND)

Programmable Logic Array (PLA):

PLA is a type of fixed architecture logic devices with programmable AND gates followed by

programmable OR gates. The PLA is used to implement a complex combinational circuit.

A PLA issimilar toa ROM in concept except that it does not provide full decoding of the variables
and does not generate all the minterms as in the ROM. Thus, in a PLA, the decoder is replaced by
a group of AND gates, each of which can be programmed to produce a product (AND) terms of
the input variables. The AND and OR gates inside the PLA are initially fabricated with fuses
among them. The specific Boolean functions are implemented in SOP formby blowing appropriate
fuses and leaving the desired connection. It is similar to reprogramming of ROM*s.For this reason

logic array is called a programmable logic array.

Problems:
EX.1

A combinational circuit is defined by the function
F1=m(3,5,7)

F2= m(4,5,7) implement the circuit with a PLA having 3 inputs 3 products terms and two

outputs.
Solution:

K map simplification

BC
A 00 01 11 10

0

1

! =

F1=AC+BC
BC

A 00 01 11 10

0

1 1 Jl 1
F2= AB“+AC

Implementation:

3 3
ut1
VN

U1T1A
7404

|
i
|

U1T1A
7404 U12A

ILC,Z

FIELD PROGRAMMABLE GATE ARRAY(FPGA):

-
j/ U15A

7432

/

\'L}/ U16A

| 7432

\/

FPGA is a flexible architecture programmable logic devices. It is a very large scale

integrated circuit constructed on a single piece of silicon. It consists of identical individually

programmable rectangular modules. The modules are separated in both horizontal and vertical

metallic conductors called channels. In addition, each module has vertical and horizontal

conductors at its input and output that cross one or more of the channels. Each intersection between

the horizontal and vertical conductors marked as a +, is a programmable link. These programmable

links are used to interconnect the modules and also to program the individual modules.

VHDL

INTRODUCTION:
VHDL

V - VHSIC (Very High Speed Integrated Circuit)
H - Hardware
D - Description
L - Language
« Language to describe the structure and/or behaviour of digital hardware designs
* VHDL designs can be simulated and/or synthesized
 Two versions of VHDL have been standardized by the IEEE
—VHDLS87) IEEE-1076-1987
—VHDL93) IEEE-1076-1993

Features:

Design may be decomposed hierarchically.Each design element has both a well defined
interface and a precise functional specification.Concurrency, timing, and clocking can all be

modeled.The logical operation and timing behavior of a design can be simulated.
Program structure:
Entity:

A VHDL entity is simplify a declaration of a modules input and outputs.

Architecture :

VHDL architecture is a detailed description of the module®s internal behavior or structure.

Wrapper concept:

entity

architecture

Hierarchical use:

entity
A

architecture
A

entity

architecture
B

entity
C

entifty

architecture
C

architecture
D

VHDL program file structure:

entity declaration

architecture declaratign

Syntax of a VHDL entity declaration:
Entity entity-name is
Port (signal name: mode signal type;

End entity-name
Syntax of a VHDL architecture declaration:

Architecture architecture-name of entity-name is
Type declaration

Signal declaration

Constant declaration

Function definition

Procedure definition

Component declaration

Begin
Concurrent statement

End architecture-name;

TYPES, CONSTANTS, ARRAYS:

Vhdl predefined types:

bit character Severity level
bit_vector integer string
boolean real time

Predefined operators for VHDL s integer and Boolean types:]

Integer operators:

+ Addition
- Subtraction
* Multiplication
/ Division

mod Modulo division
rem Modulo remainder
abs Absolute value

*x exponential

Boolean operators:

and AND

or OR

nand NAND

nor NOR

xor EXCLUSIVE OR

xnor EXCLUSIVENOR

not COMPLEMENTATION

Syntax of VHDL types and constant declaration:
type type_name is (value list):

subtype subtype_name is type_name start to end,
subtype subtype_name is type_name start down to end,;
constant constant_name: type name := value;

syntax of VHDL array declaration:

type type-name is array (start to end) of element-type;

type type-name is array (start down to end) of element-type;
type type-name is array (range type) of element-type;
type type-name is array (range-type start to end) of element-type;
type type-name is array (range-type start down to end) of element-type;
example:
type monthly_count is array (1 to 12) of integer;
type byte isarray (7 down to 0) of std _logic;
constant WORD_LEN: integer := 32;
type word is array (WORD _LEN-1 downto 0) of STD_LOGIC,;
constant NUM_REGS: integer := 8
type reg_file isarray (1 to NUM_REGS) of word;
type statecount is array (traffic_light_state) of integer;
syntax of a VHDL function definition:
function function-name(
signal-names : signal-type;
signal-names : signal type;
) return return-type is
Type declaration
Constant declaration
Variable declaration
Function declaration
Procedure definition
Begin
Swaquential-statement

End function-name;

Example:
Architecture inhibit_archf of inhibit is
function ButNot(A,B: bit) return bit is
begin
If B="0%
else return ,,0;
end if;
end ButNot;
begin
Z<= ButNot(X,Y);
End Inhibit_archf;
LIBRARIES AND PACKAGES;

A VHDL library is a place where the vhdl compiler stores information about a particular
design project, including intermediate files used in the analysis, simulation, and synthesis of the

design.

A vhdl package is a file containing definition of objects that can be used in other programs. The
kinds of objects that can be put into a package include signal, type, constant, and procedure and
components declaration.

Structural design elements:

Syntax of a vhdl component declaration:

Component component-name

Port (signal-names : mode signal-type;

end component;

syntax of a vhdl for-generate loop:

label: for identifier in range generate
concurrent statement

end generate;

example:

vhdl entity and architecture for an 8-bit inverter:
library |EEE;

use IEEE.std_logic_1164.all;

entity inv8 is
port(X :in STD_LOGIC_VECTOR(1 to 8);

Y :out STD_LOGIC_VECTOR (1 to 8);

end inv8;

architecture inv8_arch of inv8 is

component INV port (1 : in STD_LOGIC; 0: out STD_LOGIC); end component;

begin

gl: for b in 1 to 8generate

UL : INV port map(X(b), Y(b));

end generate;

end inv8_arch;

subprograms:

procedures:

syntax:

procedure identifier(parameter_interface_list) is

Begin

return statement in procedure:

syntax:
return_statement (label:) return;

procedure parameters:

interface list

syntax

constant / variable/signal

identifier { }: [mode] subtype_indication [:= static_expression]
mode> in /out/inout.

Call statements:

EX.
Callprocess:p(s1,s2,vall);
Callprocess:process is
Begin

P(s1,s2,val);

Wait on s1,s2;

End process call_process.
Functions:

Syntax:“

Function identifier

[coiiiiiin,] return type_mark is

Data flow design elements:
Several additional concurrent statements allow vhdl to describe a circuit in terms of the flow of
data and operations on it within the circuit. This style is called a data flow description or dataflow
design.
Syntax :
Signal-name <= expression;
Signal-name <= expression when Boolean-expression else
expression;
behavioral design elements:

Behavioral design or behavioral description is one of the key benefits of hardware description
language in general and VHDL in particular.

Syntax of a VHDL if statement:

If Boolean expression then sequential-statements
end if;

if Boolean-expression then sequential statement
else sequential-statements

end if;

Syntax of a VHDL loop statement:
Loop

Sequential-statement

End loop;

Syntax of a VHDL for loop statement:

for identifier in range loop
Sequential-statement
End loop;
SEQUENTIAL CIRCUIT DESIGN WITH VHDL
Clocked circuits:
Ex.
Behavioural modeling for a positive edge triggered d flip flop:
Library ieee;
Use ieee.std logic_1164.all;
Entity vposdff is
Port(clk,clr,d : in STD_Logic;
Q : out std_logic);
End vposdff;
Architecture vposdff_arch of vpodff is
Begin
Process (clk,clr)
Begin
Ifclr="1"thenq<=,,1"theng<=d;
End if;

End process;

End vposdff_arch.
TEST BENCHES:

A test bench specifies a sequence of inputs to be applied by the simulator to an HDL - based

design, such as a VHDL entity. The entity being tested is often called the unit under test (UUT).

VHDL programs:
8 bit adder:
Library IEEE;
Use IEEE.std_logic_1164.all;
Use IEEE.std_logic_arith.all;
Entity vadd is
port(
A,B : in UNSIGNED (7 down to 0);
C :in SIGNED (7 down to 0);
D:in STD_LOGIC_VECTOR (7 down to 0);
S :out UNSIGNED (8 down to 0);
T : out SIGNED (8 down to 0);
U : out SIGNED (7 down to 0);
V:out STD_LOGIC_VECTOR (8 down to 0)
);
End vadd,;
Architecture vadd_arch of vadd is
Begin
S<=(,,0“& A) + (,0“ & B);

T <= A+C;

U <= C + SIGNED (D);

V <= C — UNSIGNED (D);

End vadd_arch;

Full adder:

Library IEEE;

Use ieee.std logic_1164.all;

Entity fulladder is

Port (A,B,Cin : instd_logic ;
Sum,carry : out std_logic);

End fulladder;

Architecture adder_arch of full adder is

Begin

Sum<= A xor B xor Cin;

Carry <= (Aand B) or (B and Cin) or (Cinand A);

End;

4:1 multiplexer:

Library ieee;

Use ieee.std logic_1164.all;

Entity mux is

Port(s1,s0,d0,d1,d2,d3: in std _logic;
Y :out std_logic);

End mux;

Architecture arch_mux of mux is

Begin

Y <= ((not S1) and (not s0) and d0) or ((not s1) and sO and d1) or (s1 and (not sO)and d2 or (sl
and sO and d3);

End arch_mux;

1:4 demultiplexer:

Library ieee;

Use ieee.std logic_1164.all;

Entity demux is

Port(d,s1,s0: in std_logic;
Y0,yl,y2,y3: out std_logic);

End demux;

Architecture demux_arch of demux is

Begin

y0 <=d and (not s1) and (not s0);

yl <=dand (not s1) and (s0);

y2 <=dand (s1) and (not s0);

y3 <=d and (s1) and (s0);

end;

SR flip flop:

Library ieee;

Use ieee.std logic_1164.all;

Entity srffl is

Port(s,r : instd_logic; g,nq : inout std_logic);

end srffl;

architecture srff_arch of arffl is begin

q <=r nor ng;
ng <=snor q;
end;
clocked SR flip flop:
library ieee;
use ieee.std_logic_1164.all;
entity clksr is
port(s,r,clk : in std_logic;
m,n : inout std_logic;
g,nq: inout std_logic);
ends clksr;
architecture clksr_arch of clksr is
component srffl is
port(s,r : in std_logic;
g,nq : inout std_logic);
end component;
begin
m<=sand clk;
n<=rand clk;
al : srffl port map(m,n,q,nq);
end;
d flip flop:
library ieee;
use ieee.std logic_1164 all;

entity dfffl is

port(d,clk,reset: in std_logic;
g: out std_logic);
end dfffl;
architecture arch_dflipflop of dfffl is
begin
process (clk)
begin
if (clk“event and clk ="1%) then
if reset =0 then
q<=,,0%
else
q<=d;
end if;
end if;
end process;
end;
4-bit asynchronous/ripple counter:
Library ieee;
Use ieee.std_logic_1164.all;
Entity ripple_counter is
Port(vce,clk,reset : in std_logic;
g,nq: inout std_logic_vector (0 to 3));
end ripple_counter;
architecture arch_ripple_counter of ripple_counter is

component jkffl is

port(j,k,clk,reset: in std_logic;
g,nq: inout std_logic);
end component;
begin
a:jkffl port map (vcc,vce, clk,reset, g(0),nq(0));
b: jkffl port map (vcc,vee, q(1),reset, g(1),nq(1));
c:jkffl port map (vcc,vee, q(2),reset, q(2),nq(2));
d: jkffl port map (vcc, vee, q(3),reset, q(3),nq(3));

end;

	Decimal Number System
	S.N. Number System & Description Binary’ Number System
	'Hexa Decimal Number System 3
	Binary Number System
	Example
	Octal Number System
	Example (1)
	Hexadecimal Number System
	Example −
	Decimal to Other Base System
	Example − (1)
	Step Operation Result Remainder
	Other Base System to Decimal System
	Example (2)
	Other Base System to Non-Decimal System
	Example (3)
	Step 1 − Convert to Decimal
	Step 2 − Convert Decimal to Binary
	Example (4)
	Shortcut method - Octal to Binary
	Example (5)
	Example (6)
	Step Binary Number Hexadecimal Number
	Hexadecimal to Binary
	Example (7)
	Advantages of Binary Code
	Classification of binary codes
	Weighted Codes
	Non-Weighted Codes
	Excess-3 code
	Example (8)
	Application of Gray code
	Binary Coded Decimal (BCD) code
	Advantages of BCD Codes
	Disadvantages of BCD Codes
	Alphanumeric codes
	Error Codes
	Error Code Description
	TTL:
	TTL NAND gate:
	Circuit operation:
	ECL (Emitter Couple Logic) :
	ECL - OR/NOR gate:
	CMOS (Complementary metal oxide semiconductor Logic)
	Boolean Algebra:
	Associative property:
	Distributive property:
	Absorption laws:
	Consensus Laws:
	Principle of duality:
	De-Morgan’s theorem:
	Truth table:
	PRODUCT OF SUM FORM:
	MINTERMS AND MAXTERMS:
	STRUCTURE OF K MAP:
	EXAMPLE 1
	EX:2
	EXAMPLE:
	EXAMPLE: (1)
	Don’t care combination:
	Example:
	QUINE–McCLUSKEY OR TABULATION METHOD OF MINIMIZATION OF LOGIC FUNCTION
	Solution:
	PRIME IMPLICANT CHART:
	Half adder:
	SUM
	CARRY
	FULL ADDER:

	B C
	Half subtractor :

	difference
	Borrow
	Full subtractor:
	Borrow
	Multiplexer:

	selection lines
	o/p
	s1 s0
	Demultiplexer (Data distributors):

	D s1 s0
	Decoder:
	3:8 decoder:
	ENCODER:
	OCTAL TO BINARY ENCODER:
	COMPARATORS:

	A B
	Code converters:

	G0
	G2 G3
	G0 (1)
	G2 G3 (1)
	UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS
	FLIP FLOPS:
	SR FLIP FLOP:

	c
	D FLIP FLOP:

	D
	JKFLIP FLOP:
	TFLIP FLOP:
	DESIGN OF COUNTERS:
	KARNAUGH MAP:
	Solution:
	STATE REDUCTION:
	ASYNCHRONOYUS (RIPPLE OR SERIAL)COUNTER:
	LOGIC DIAGRAM OF 4 BIT RIPPLE COUNTER:
	Mod-number or modulus:
	SYNCHRONOUS COUNTERS:
	UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS
	ANALYSIS OF ASYNCRONOUS CIRCUITS:
	Design of asynchronous sequential circuits:
	DESIGN PROBLEMS:
	PROGRAMMABLE LOGICDEVICES, MEMORY ANDLOGIC FAMILIES INTRODUCTION:
	ROM ORGANIZATION:
	Masked ROM:
	ROM cells:
	PROM (programmable ROM)
	Fuse technology used in PROM:
	EPROM (ERASABLE PROGRAMMABLE READ ONLY MEMORY)
	EPROM programming:
	PROGRAMMABLE LOGIC DEVICES:
	FIELD PROGRAMMABLE GATE ARRAY(FPGA):
	UNIT V VHDL
	Features:
	Program structure: Entity:
	Architecture :
	Wrapper concept:
	Hierarchical use:
	TYPES, CONSTANTS, ARRAYS:
	Syntax of VHDL types and constant declaration:
	LIBRARIES AND PACKAGES;
	Structural design elements:
	syntax of a vhdl for-generate loop:
	subprograms:
	syntax:
	Functions:
	Data flow design elements:
	behavioral design elements:
	Syntax of a VHDL if statement:
	Syntax of a VHDL loop statement:
	SEQUENTIAL CIRCUIT DESIGN WITH VHDL
	TEST BENCHES:
	8 bit adder:
	Full adder:
	4:1 multiplexer:
	1:4 demultiplexer:
	SR flip flop:
	clocked SR flip flop:
	d flip flop:
	4-bit asynchronous/ripple counter:

