

UNIT-I :NUMBER SYSTEMS ANDDIGITAL LOGIC FAMILIES

A digital system can understand positional number system only where there arc a few symbols called digits and these

.symbols represent different values depending on the position they occupy in the number

A value of each digit in a number can be determined using

The digit •

The position of the digit in the number •

.)The base of the number system (where base is defined as the total number of digits available in the number system •

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10

as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point

.represents units, tens, hundreds, thousands and so on

Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4

in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value can

be written as

)1x1000) + (2x 100) + (3x 10) + (4x1(

)x 103) + (2 x 102) + (3 x 10 1) + (4x 10° 1 (

1 +30 + 200 + 1000

1234

As a computer programmer or an IT professional, you should understand the following number systems which arc

.frequently used in computers

S.N. Number System & Description

Binary’ Number System

‘1

Base 2. Digits used: 0, 1

Octal Number System

2

Base 8. Digits used: 0 to 7

'Hexa Decimal Number System 3

Base 16. Digits used: 0 to 9, Letters used: A- F

Binary Number System

Characteristics

 Uses two digits, 0 and 1.

 Also called base 2 number system

 Each position in a binary number represents a 0 power of the base (2). Example: 20

 Last position in a binary number represents an x power of the base (2). Example: 2x

where x represents the last position - 1.

Example

Binary Number: 101012

Calculating Decimal Equivalent −

Step Binary Number Decimal Number

Step 1 101012 ((1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2 101012 (16 + 0 + 4 + 0 + 1)10

Step 3 101012 2110

Note: 101012 is normally written as 10101.

Octal Number System

Characteristics

 Uses eight digits, 0,1,2,3,4,5,6,7.

 Also called base 8 number system

 Each position in an octal number represents a 0 power of the base (8). Example: 80

 Last position in an octal number represents an x power of the base (8). Example: 8x

where x represents the last position - 1.

Example

Octal Number − 125708

Calculating Decimal Equivalent −

Step Octal Number Decimal Number

Step 1 125708 ((1 × 84) + (2 × 83) + (5 × 82) + (7 × 81) + (0 × 80))10

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10

Step 3 125708 549610

Note: 125708 is normally written as 12570.

Hexadecimal Number System

Characteristics

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F =

15.

 Also called base 16 number system.
 Each position in a hexadecimal number represents a 0 power of the base (16). Example

160.

 Last position in a hexadecimal number represents an x power of the base (16). Example

16x where x represents the last position - 1.

Example −

Hexadecimal Number: 19FDE16

Calculating Decimal Equivalent −

Step Hexadecimal Number Decimal Number

Step 1 19FDE16 ((1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 160))10

Step 2 19FDE16 ((1 × 164) + (9 × 163) + (15 × 162) + (13 × 161) + (14 × 160))10

Step 3 19FDE16 (65536 + 36864 + 3840 + 208 + 14)10

Step 4 19FDE16 10646210

There are many methods or techniques which can be used to convert numbers from one base to

another. We'll demonstrate here the following −

 Decimal to Other Base System

 Other Base System to Decimal

 Other Base System to Non-Decimal

 Shortcut method − Binary to Octal

 Shortcut method − Octal to Binary

 Shortcut method − Binary to Hexadecimal

 Shortcut method − Hexadecimal to Binary

Decimal to Other Base System

Steps

 Step 1 − Divide the decimal number to be converted by the value of the new base.

 Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit) of

new base number.

 Step 3 − Divide the quotient of the previous divide by the new base.

 Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new base

number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in

Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base

number.

Example −

Decimal Number: 2910

Calculating Binary Equivalent −

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that

the first remainder becomes the Least Significant Digit (LSD) and the last remainder becomes

the Most Significant Digit (MSD).

Decimal Number − 2910 = Binary Number − 111012.

Other Base System to Decimal System

Steps

 Step 1 − Determine the column (positional) value of each digit (this depends on the

position of the digit and the base of the number system).

 Step 2 − Multiply the obtained column values (in Step 1) by the digits in the

corresponding columns.

 Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in

decimal.

Example

Binary Number − 111012

Calculating Decimal Equivalent −

Step Binary Number Decimal Number

Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number − 111012 = Decimal Number − 2910

Other Base System to Non-Decimal System

Steps

 Step 1 − Convert the original number to a decimal number (base 10).

 Step 2 − Convert the decimal number so obtained to the new base number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step 1 − Convert to Decimal

Step Octal Number Decimal Number

Step 1 258 ((2 × 81) + (5 × 80))10

Step 2 258 (16 + 5)10

Step 3 258 2110

Octal Number − 258 = Decimal Number − 2110

Step 2 − Convert Decimal to Binary

Step Operation Result Remainder

Step 1 21 / 2 10 1

Step 2 10 / 2 5 0

Step 3 5 / 2 2 1

Step 4 2 / 2 1 0

Step 5 1 / 2 0 1

Decimal Number − 2110 = Binary Number − 101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Octal

Steps

 Step 1 − Divide the binary digits into groups of three (starting from the right).

 Step 2 − Convert each group of three binary digits to one octal digit.

Example

Binary Number − 101012

Calculating Octal Equivalent −

Step Binary Number Octal Number

Step 1 101012 010 101

Step 2 101012 28 58

Step 3 101012 258

Binary Number − 101012 = Octal Number − 258

Shortcut method - Octal to Binary

Steps

 Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may be

treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single binary

number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step Octal Number Binary Number

Step 1 258 210 510

Step 2 258 0102 1012

Step 3 258 0101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Hexadecimal

Steps

 Step 1 − Divide the binary digits into groups of four (starting from the right).

 Step 2 − Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number − 101012

Calculating hexadecimal Equivalent −

Step Binary Number Hexadecimal Number

Step 1 101012 0001 0101

Step 2 101012 110 510

Step 3 101012 1516

Binary Number − 101012 = Hexadecimal Number − 1516

Hexadecimal to Binary

Steps

 Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal

digits may be treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single binary

number.

Example

Hexadecimal Number − 1516

Calculating Binary Equivalent −

Step Hexadecimal Number Binary Number

Step 1 1516 110 510

Step 2 1516 00012 01012

Step 3 1516 000101012

In the coding, when numbers, letters or words are represented by a specific group of

symbols, it is said that the number, letter or word is being encoded. The group of symbols is

called as a code. The digital data is represented, stored and transmitted as group of binary bits.

This group is also called as binary code. The binary code is represented by the number as well

as alphanumeric letter.

Advantages of Binary Code

Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.

 Binary codes are suitable for the digital communications.

 Binary codes make the analysis and designing of digital circuits if we use the binary

codes.

 Since only 0 & 1 are being used, implementation becomes easy.

Classification of binary codes

The codes are broadly categorized into following four categories.

 Weighted Codes

 Non-Weighted Codes

 Binary Coded Decimal Code

 Alphanumeric Codes

 Error Detecting Codes

 Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle. Each

position of the number represents a specific weight. Several systems of the codes are used to

express the decimal digits 0 through 9. In these codes each decimal digit is represented by a

group of four bits.

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-

weighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal

numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2

or (3)10 to each code word in 8421. The excess-3 codes are obtained as follows −

Example

Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no specific

weights assigned to the bit position. It has a very special feature that, only one bit will change

each time the decimal number is incremented as shown in fig. As only one bit changes at a time,

the gray code is called as a unit distance code. The gray code is a cyclic code. Gray code cannot

be used for arithmetic operation.

Application of Gray code

 Gray code is popularly used in the shaft position encoders.

 A shaft position encoder produces a code word which represents the angular position of

the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to express

each of the decimal digits with a binary code. In the BCD, with four bits we can represent sixteen

numbers (0000 to 1111). But in BCD code only first ten of these are used (0000 to 1001). The

remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Advantages of BCD Codes

 It is very similar to decimal system.

 We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the decimal number. So BCD is

less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But this is

not enough for communication between two computers because there we need many more

symbols for communication. These symbols are required to represent 26 alphabets with capital

and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic characters. Mostly

such codes also represent other characters such as symbol and various instructions necessary for

conveying information. An alphanumeric code should at least represent 10 digits and 26 letters

of alphabet i.e. total 36 items. The following three alphanumeric codes are very commonly used

for the data representation.

 American Standard Code for Information Interchange (ASCII).

 Extended Binary Coded Decimal Interchange Code (EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly

used worldwide while EBCDIC is used primarily in large IBM computers.

Error Codes

There are binary code techniques available to detect and correct data during data transmission.

Error Code Description

Error Detection and Correction Error detection and correction code techniques

TTL:

The most commonly used logic family called the transistor –transistor logic, has the faster

switching speed when compared to other logic families that utilize saturated transistors.

TTL NAND gate:

+VCC
R3

Rb
R1

Q3

A

B Q2
 Q1

C

D1 y=(ABC)'

R2 Q4

0 0

Circuit operation:

The output is taken from the collector of Q4.Each emitter of Q1 act as a diode When either

of Q1 act as a Diode. When either or all inputs (A,B,C) are at 0 V, (logic 0), the corresponding

emitter-base junction of Q1 is forward biased. The value of Rb is selected so as to ensure that Q1

is turn ON. However the value of current ib2 flowing through the base of Q2 reduces the potential

at the base of Q2. and hence transistor Q2 and Q3 are cut-off so that the output voltage is at

Vcc(logic 1). If all the inputs are high (logic 1), the E-B junction of Q1 is reverse biased.hence Q1

is switched off. And Q2 is turned ON and the drop across R2 is sufficient to forward bias the EB

junction of Q4. Thereby turning Q4 ON. Hence the output at its collector is low(logic 0). The

function of Diode D is to prevent both Q3 and Q4 from being ON simultaneously.

ECL (Emitter Couple Logic) :

2

1

Emitter couple logic (ECL) is a current mode logic (CML) or non-saturated digital logic

family, which eliminates the turn off delay of saturated transistor by operating in the active mode.

At present, the ECL logic family has the fastest switching speed among the commercially available

digital IC‟s.The propagation delay time of a typical ECL gate is 1 ns.

ECL - OR/NOR gate:

0

0 +VCC

Q3
Vout= (A+B)'

A B
Q1

Q2

Q -1.3 v

-2v

0

VEE

Q4

Vout= (A+B)

-2v

The basic circuit of ECL is a different amplifier as shown if fig. The VEE supply produces a fixed

current IE, which remains around 3 mA during normal operation. This current is allowed to flow

through Q1 or Q2, depending on the voltage level at Vin. In other words, these current switches

between the collectors of Q1 and Q2 as Vine witches between its two logic levels of -

1.7 V. If both inputs A and B are low, then both transistors Q& Q1 off. While Q2 is the active

region and its collector is in a LOW state.

If either A or B is HIGH, then according either Q or Q1 conducts and the transistor Q2 is switched

off, resulting in high state at its collector.

CMOS (Complementary metal oxide semiconductor Logic)

CMOS inverter:

+Vdd

Q1

Vin

Y=(Vin)'

Q2

0

Operation:

When VIN is low, Q2 is cut off

Q1 is ON , output is high

When VIN is high Q2 is ON

Q1 is turn OFF, output is Low

CMOS NAND Gate:

A

Operation:

+Vdd

Q4

Q1
Y=(A.B)

Q2

Q3

If both input is High, both P channel transistor turned off and boths „n‟ channel transistors turned

ON. The output has a low impedance to ground and produces a low state.

If any input is low, the associated n-channel transisitor is turned off. And the associated p-

channel transisitor is turned ON.The output is coupled to VDD and goes to the HIGH state.

To produce the positive AND function the output of the CMOS NAND gate can be connected to

a CMOS inverter.

UNIT II

BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS

Boolean Algebra:

Properties of Boolean algebra:

commutative property:

A+B=B+A

A.B=B.A

Associative property:

A+(B+C) = (A+B)+C

A.(B.C) =(A.B)C

Distributive property:

A+BC=(A+B)(A+C)

A.(B+C) = A.B+A.C

Absorption laws:

A+AB = A

A.(A+B)

A+A‟B = A+B

A.(A‟+B) = AB

Consensus Laws:

AB + A‟C + BC = AB + A‟C

(A+B)(A‟+C)(B+C) = (A+B)(A‟+C)

other laws of Boolean algebra:

A+0 =A A.1= A

A+1=1 A.0=0

A+A=A A.A=A

A+A‟=1 A.A‟=0

A‟‟=A A‟‟=A

Principle of duality:

From the above properties and laws of Boolean algebra, it is evident that they are grouped

in pairs. One expression can be obtained from the other in each pair by replacing every 0 with 1,

every 1 with 0, every + with . every . with +. Any pair of expression satisfying this property is

called dual expression. This characteristics of Boolean algebra is called the principles of duality.

De-Morgan’s theorem:

(AB)‟=A‟+B‟

The complement of a product is equal to the sum of the compliments.

(A+B)‟= A‟.B‟

The complement of a sum is equal to the product of the complements.

A B A‟ B‟ A+B A.B (A+B)‟ (A.B)‟ A‟.B‟ A‟+B‟

0 0 1 1 0 0 1 1 1 1

0 1 1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1 0 1

1 1 0 0 1 1 0 0 0 0

Truth table:

SWITCHING FUNCTIONS AND SIMPLIFICATION USING K-MAP:

SUM OF PRODUCT FORM:

The word sum and product are derived from the symbolic representation of the OR and

AND function by + and .(addition and multiplication), respectively. The SOP is a group of product

terms OR ed together.

Ex.

F(A,B,C) =ABC + AB‟C

F(P,Q,R,S)= PQ+QR

PRODUCT OF SUM FORM:

The product of sum is any group of sum terms AND ed together.

Ex.

1.F(A,B,C) = (A+B).(B+C)

MINTERMS AND MAXTERMS:

VARIABLES MINTERMS MAXTERMS

A B C mi Mi

0 0 0 A‟B‟C‟=m0 A+B+C

0 0 1 A‟B‟C=m1 A+B+C‟

0 1 0 A‟BC‟=m2 A+B‟+C

0 1 1 A‟BC=m3 A+B‟+C‟

1 0 0 AB‟C‟=m4 A‟+B+C

1 0 1 AB‟C=m5 A‟+B+C‟

1 1 0 ABC‟=m6 A‟+B‟+C

1 1 1 ABC=m7 A‟+B‟+C‟

Examples:

F(A,B,C)= A‟B‟C‟+A‟B‟C+A‟BC‟

= mo + m1+m2

=∑m(0,1,2)

F(A,B,C)= (A‟+B‟+C‟.(A+B+C).(A+B+C‟)

= M7.M0.M1

=ΠM(0,1,7)

∑ --- Denotes sum of product while

Π --- Denotes product of sum

Conversion between canonical forms:

Convert the following sop expression to an equalent POS expression.

A‟B‟C‟+A‟BC‟+A‟BC+AB‟C+ABC

Solution:

The given expression as follows

F(A,B,C)= ∑(0,2,3,5,7)

F‟=∑(1,4,6)=m1+m4+m6

F= (m1+m4+m6)‟

F= m1‟+m4‟+m6‟

F= M1.M4.M6

= Πm(1,4,6).

STRUCTURE OF K MAP:

TWO VARIABLE K MAP

A

THREE VARIABLE K
MAP

AB

0 1 00
B

0

01 11 10

1

AB
00 01 11 10

00

01

11

10

FOUR VARIABLE K
MAP

EXAMPLE 1

Simplify the following function using K map for 4 variables a,b,c,d.

AB
00 01 11 10

00

01

11

10

0

1

2 3

0

2

6

4

1 3 7 5

0

4

12

8

1

5

13

9

3

7

15

11

2

6

14

10

0

0

 1 1

1

1

 1 1

1

1

0

0

0 0

0

0

Y=AC‟+A‟D

EX:2

Simplify the expression using Y= ∑m (7,9,10,11,12,13,14,15) using k map method

AB
00 01 11 10

00

01

11

10

Y= AB+AD+AC+BCD

EXAMPLE:

Y = Π(0,1,4,5,6,8,9,12,13,14) Using the k map method.

Y = C (B‟+D)

EXAMPLE:

Simplify the following using k map method

0 0

0 1

0 0

 1 1

0

1

1 1

0 0

1

1

Y = ∑m (3,6,7,8,10,12,14,17,19,20,21,24,25,27,28)

DE

Y= BDE‟+AC‟E+A‟BE‟+AB‟CD‟+A‟B‟CD+A‟B‟DE

Don’t care combination:

Ex. Simplify the Boolean function F(A,B,C,D)= = ∑m(1,3,7,11,15) + ∑d(0,2,4)

AB

CD 00 01 11 10

00

01

11

10

0

0

0 d

1

d

0

0

 1 1 1 1

 d

0 0 0

Y= A‟B‟ + CD

Example:

Using the K-map method, simplify the following Boolean function and obtain (i) minimal sum of

products (SOP) (ii) minimal POS expression

CD 00 01 11 10

00 1 0 0 d

01

0

0

0

0

11 1 1 d d

10
1

1

0

d

SOP expression: Y = A‟C + B‟D‟

POS expression Y = A‟(C+D‟) (B‟ + C)

QUINE–McCLUSKEY OR TABULATION METHOD OF MINIMIZATION OF LOGIC

FUNCTION

EXAMPLE:

Find the minimal sum of products for the Boolean expression, f = (1, 2, 3, 7, 8, 9, 10, 11,

14, 15), using Quine McCluskey method.

Solution:

Binary representation of minterms:

Minterms

Variables

A B C D

1 0000

2 0010

3 0011

7 0111

8 1000

9 1001

10 1010

11 1011

14 1110

15 1111

Group of minterms for different number of 1‟s:

Number of 1‟s minterms Variables

A B C D

1 1 0000
 2 0010

 8 0111

2 3 0011
 9 1001
 10 1010

3 7 0111
 11 1011
 14 1110

4 15 1111

2 CELL COMBINATION:

COMBINATION A B C D

1,3 00-1

1,9 -001

2,3 001-

2,10 -010

8,9 100-

8,10 10-0

3,7 0-11

3,11 -011

9,11 10-1

10,11 101-

10,14 1-10

7,15 -111

11,15 1-11

14,15 111-

4 cell combination

COMBINATION A B C D

1,3,9,11 -0-1

2,3,10,11 -01-

8,9,10,11 10--

3,7,11,15 --11

10,11,14,15 1-1-

PRIME IMPLICANT CHART:

PRIME

IMPLICANTS

MINTERMS

1 2 3 7 8 9 10 11 14 15

(1,3,9,11)* X X X X

(2,3,10,11)*

X X

X X

(8,9,10,11)*

X X X X

(3,7,11,15)*

X X

X

X

(10,11,14,15)*

X X X X

F = B‟.D + B‟ .C + A.B‟ +C.D + A.C

Combinational logic:

Digital computers and calculators consists of arithmetic and logic circuits, which contains logic

gates and flip flops that add, subtract, multiply and divide binary numbers.

In Combinational logic circuit, the output at any time depends only on present input values at

that time.

Half adder:

Truth table:

A B sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Sum= A‟B+AB‟

Carry= A.B

Logic diagram:

SUM

B

7408

CARRY

FULL ADDER:

Truth table:

A B CIN SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

SUM= A xor B xor CIN

CARRY = AB+BC+CA

Logic diagram:

Full adder circuit using half adder:

A U1A

B

C

7432

 U3A

2 1 sum

7486

7486

U4A
U2A

3 2

7408
7408 U5A

 carry

Half subtractor :

Truth table

A B Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Differece = A xor B

Borrow = A‟B

Logic diagram:

A U1A

1

B 2

3

7486

difference

U6A

7404

U2A

1

2

3

7408

Borrow

Full subtractor:

Truth table:

A B Bin difference Borrow

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Difference = A xor B xor Bin

Borrow = A‟B + BC + CA‟

2

1

1

Logic diagram of full adder using half subtractor:

A U1A

1
3

U3A

B

Bin

U6A

2

U2A

7486

U6A

7404

1

2

U4A

1

7486

3 Difference

7404
1

3
2

7408

3
2

7408

U5A

1

2

7432

Borrow
3

Multiplexer:

The multiplexer has several data input lines and a single output line. The selection of a particular

input lines is controlled by a set of selection lines.

4:1 Multiplexer:

Block diagram:

selection lines

data
inputs

 o/p

S1 so

2

1

2

Truth table:

Data select inputs Out put

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Logic diagram:

s1 s0

U2A

7404

U2A

7404

U3A

1
3

U4A

1

7408

3

U7A

7408

U5A

1
3

1
3

2

7432

U6A

1

2

7408

3

7408

Demultiplexer (Data distributors):

A demultiplxer is a logic circuit that receives information on a single line and transmits

the same information over several out lines.

1:4 demultiplexer:

2

2

2

D3

D2

D1

D0

2

1

2

1

y

3

Truth table:

Data input Select input outputs

D S0 S1 Y3 Y2 Y1 Y0

D 0 0 X X X D

D 0 1 X X D X

D 1 0 X D X X

D 1 1 D X X X

Logic diagram:

D s1 s0

U2A

7404

U2A

7404

U3A

1 y0

U4A

1

7408

3 y1

U5A

1

7408

3 y2

U6A

1

2

7408

3 y3

7408

2

2

2

2

1

2

1

Decoder:

A decoder is similar to demultiplexer but without any data input. In a decoder, the

number of outputs is greater than the number of inputs.

3:8 decoder:

A 3:8 decoder has three inputs and eight outputs . the truth table and logic diagram are

follows.

Truth table:

Inputs outputs

A B C D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Logic diagram:

ENCODER:

An encoder is a digital circuit that perform the inverse operation of a decoder. Hence, the

opposite of the decoding process is called encoding.

An encoder is a combinational circuit that converts an active low signal into a coded

output signal.

OCTAL TO BINARY ENCODER:

Outputs Inputs

A B C D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

U2A

7404

U2A

7404

U2A

7404 U3A

 D0

U4A 7408

 D1

2

U5A 7408

 D2

U6A 7408

 D3

2

U3A 7408
 D4

U3A 7408

 D5
2

U3A 7408

 D6

U3A 7408

 D7

2

7408

2

1

2

1

2

1

A = D1 + D3 + D5 + D7

B = D2 + D3 + D6 + D7

C = D4 + D5 + D6 + D7

LOGIC DIAGARM:

D0

D1

D2

D3

D4

D5

D6

D7

C B A

COMPARATORS:

A magnitude comparator is a combinational circuit that compares the magnitude of two

numbers (A and B) and generates one of the following output: A=B,A>B,A<B.

Single bit comparator:

Truth table:

A B condition

0 0 A=B

0 1 A<B

1 0 A>B

1 1 A=B

LOGICAL EXPRESSION:

(A=B) = A‟B‟+AB

2

3

1

2

3

1

2

3

1

(A<B) = A‟B

(A>B) = AB‟

Logic diagram:

U3A

A

B

7408

Code converters:

Code converter is a logic circuit that changes data presented in one type of binary code to

another type of binary code.

4 bit Binary to gray code converter:

TRUTH TABLE:

 A<B

 A=B

 A>B

4

b
i
t

b
i
n
a
r
y

i
n
p
u
t

2

1

1

2

4

b
i
t

b
i
n
a
r
y

g
r
a
y

o
/
p

BINARY INPUTS GRAY CODE OUTPUTS

B3 B2 B1 B0 G3 G2 G1 G0

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000

From the k map,

G3 = B3

G2 = B3 XOR B2

G1 = B2 XOR B1

G0 = B1 XOR B0

Logic diagram:

G0

G1

G2

G3

B0

B1

B2

B3

Gray to binary code converter:

BINARY OUTPUTS GRAY CODE INPUTS

B3 B2 B1 B0 G3 G2 G1 G0

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111
0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000

From the k map

B3 = G3

B2 = B3 XOR G2

B1 = B2 XOR G1

B0 = G0 XOR B1

Logic diagram:

G0

G1

G2

G3

 B0

 B1

 B2

B3

UNIT III

SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential circuits:

Combinational logic refers to circuits whose output is strictly depended on the present

value of the inputs. As soon as inputs are changed, the information about the previous inputs

is lost, that is, combinational logics circuits have no memory. In many applications, information

regarding input values at a certain instant of time is required at some future time. Although every

digital system is likely to have combinational circuits, most systems encountered in practice also

include memory elements, which require that the system be described in terms of sequential logic.

Circuits whose outputs depends not only on the present input value but also the past input value

are known as sequential logic circuits. The mathematical model of a sequential circuit is usually

referred to as a sequential machine.

A general block diagram of a sequential circuit is shown below.

The diagram consists of combinational circuit to which memory elements are connected to form

a feedback path. The memory elements are devices capable of storing binary information within

them. The combinational part of the circuit receives two sets of input signals: one is primary

(coming from the circuit environment) and secondary (coming from memory elements). The

particular combination of secondary y input variables at a given time is called the present state

of the circuit. The secondary input variables are also know as the state variables The block diagram

shows that the external outputs in a sequential circuit are a function not only of external inputs but

also of the present state of the memory y elements. The next state of the memory elements is also

a function of external inputs and the present state. Thus a sequential circuit is specified by a time

sequence of inputs, outputs, and internal states.

FLIP FLOPS:

All the flip flops can be divided into SR, JK, D, T

SR FLIP FLOP:

Logic diagram:

S U11A

1

c

3

7400

U12A

1

2

3 Q

7400

3

7400

U13A

1

2

Q'
3

7400

Truth table:

clk S R Qn Qn+1

X 0 0 No change

1 0 1 0 1

1 1 0 1 0

1 1 1 Forbidden state

2

lock

U14A

R 1

2

Characteristics equation:

Qn+1=S+R‟Q

State diagram:

D FLIP FLOP:

The d flip flop has only one input called delay and two outputs Q,Q‟

Logic diagram:

D

clock

U11A

1
3

2

7400
U15A

7404

U12A

1

2

3 Q

7400

U14A

1

2

3

7400

U13A

1

2

Q'
3

7400

Characteristics equation:

Q(n+1) = D

Truth table:

CLK Input D Output Qn+1

1 0 0

1 1 1

0 X No change

2

1

State diagram:

JKFLIP FLOP:

Logic diagram:

Characteristics equation:

Q(n+1) = JQ' + K'Q

Truth table:

clk J K Qn+1 Action

X 0 0 Qn No change

1 0 1 0 1

1 1 0 1 0

1 1 1 Qn‟ Toggle

clock

 Q'

State diagram:

TFLIP FLOP:

Logic diagram:

Characteristics equation:

Q(n+1) = TQ' + T'Q

Truth table:

CLK T Qn+1

1 0 (No change) Qn

1 1 (Toggle) Qn‟

0 x (No change) Qn

clock

 Q'

State diagram:

DESIGN OF COUNTERS:

Example:

Design a mod 7 synchronous counter USING JK FLIP FLOP

Solution:

state diagram

State table:

Present state

Q2 Q1Q0

Next state

q2q1q0

000 001

001 010

010 011

011 100

100 101

101 110

110 111

111 000

Excitation table :

PS

Q2 Q1 Q0

NS

Q2 q1 q0

J2 K2 J1 K1 J0 K0

000 001 0 X 0 X 1 X

001 010 0 X 1 X X 1

010 011 0 X X 0 1 X

011 100 1 X X 1 X 1

100 101 X 0 0 X 1 X

101 110 X 0 1 X X 1

110 111 X 0 X 0 1 X

111 000 X 1 X 1 X 1

KARNAUGH MAP:

From the k map

J0=k0=1

J1=K1=Q0

J2=2=Q1Q0

Logic diagram:

Analysis of synchronous sequential circuits:

Example: Derive the state table and state diagram of the following diagram.

Solution:

Step 1: Derive the Boolean expression for the given circuit.

D0= Cnt *Q0+Cnt *Q0‟

D1 = Cnt'*Q1 + Cnt*Q1'*Q0 + Cnt*Q1*Q0'

Step 2:Converting the equation into next state expression according to the flip flop used. ere we

are using D flip flop so Qn+1=D,

Q0(next)= Cnt *Q0+Cnt *Q0‟

Q1(next)= Cnt'*Q1 + Cnt*Q1'*Q0 + Cnt*Q1*Q0'

Step 3:Formulate present state next state table

PS

Q1Q0

NS

Cnt=0 Cnt=1

00 00 01

01 01 10

10 10 11

11 11 00

State diagram.

STATE REDUCTION:

Example:Reduce the following state table:

Present state Next

X=0

state

X=1

output

X=0 X=1

A B C 10

B F D 00

C D E 11

D F E 01

E A D 00

F B C 10

Solution:

It can be seen from the table that the present state A and F both have the same next states,B

(when x=0) and C (when x=1). They also produce the same output 1 (when x=0) and 0 (when

x=1). Therefore states A and F are equivalent. Thus one of the states, A or F can be removed from

the state table. For example, if we remove row F from the table and replace all F's by A's in

the columns, the state table is modified as shown in Table.

Present state Next

X=0

state

X=1

output

X=0 X=1

A B C 10

B A D 00

C D E 11

D A E 01

E A D 00

It is apparent that states B and E are equivalent. Removing E and replacing E‟s by B‟s. Results in

the reduce table follows.

Reduced state table:

Present state Next

X=0

state

X=1

output

X=0 X=1

A B C 10

B A D 00

C D B 11

D A B 01

ASYNCHRONOYUS (RIPPLE OR SERIAL)COUNTER:

The asynchronous counter is the simplest in terms of logical operation, and is therefore the easiest

to design. The clock pulse is applied to the first flip flop is triggered by the output of the previous

flip-flop and thus the counter has a cumulative settling time.

LOGIC DIAGRAM OF 4 BIT RIPPLE COUNTER:

TRUTH TABLE

STATE QD QC QB QA

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

0 0000

+VCC

clk

QA QD
QB QC

Mod-number or modulus:

The above counter has 16 different states. Thus, it is a MOD-16 ripple counter. The MOD-

number of a counter is the total number of states it sequences through in each complete cycle.

SYNCHRONOUS COUNTERS:

The clock pulses are applied to all flip flop simultaneously.The speed of operation in a

synchronous counter is limited by the propagation delay of control gating and a flip flop.

4 bit synchronous up-counter:

clk D
C

clk B A

J
Q

J
Q

J
Q

J
Q

clk

K K
 K K

clk

+VCC

K

 clk D

Q
J

clk

K

C

Q
J

K

B
clk

Q
J

K

A

Q
J

QA QC
QB QD

Total delay = propagation delay of one flip flop + propagation delay of AND gate

UNIT IV

ASYNCHRONOUS SEQUENTIAL CIRCUITS

Block diagram of an asynchronous circuits:

ANALYSIS OF ASYNCRONOUS CIRCUITS:

Analysis of fundamental mode sequential circuits:

Consider the fundamental mode sequential circuit shown in fig. The circuit has two input

variables I0 and I1 and one output variable Z. The circuit has two feedback paths which provide

inputs to the gates, creating latching operation necessary to provide a sequential circuit. The feed

back path also generates the state variables X0 and X1 the next state for the circuit is determined

by the both the state of input variable and the state variables.

x1

x2

xn

Z1

Z2

 Zn

 DELAY

 DELAY

 DELAY

combinational
circuit

From the given sequential circuit we can have next secondary state and output equation as

follows,

X1 = x0 I1‟+ x0 x1 I0

X0 = x0 I0 I1 + X1 I0‟

Z = X0 X1 I0

From these next secondary state and output equation we can construct the state table

indicating present state and next state and the output.The next secondary state values are found

by assigning present state values to the Boolean variables in the next secondary state equation to

determine X1 and X0.For the given input and secondary state if next secondary state does not

change then the state is said to be stable.

Transition table:

I1

X1

I0

X0

input state

I1I0

secondary state x1x0 00 01 11 10

00

01

11

10

Sate table:

Present state Next state Stable state Output

X1 X0 I1 I0 X1 X0 Yes/No Z

0000 00 Yes 0

0001 00 Yes 0

0010 00 Yes 0

0011 00 Yes 0

0100 10 No 0

0101 10 No 0

0110 00 No 0

0111 01 Yes 0

1000 01 No 0

1001 00 No 0

1010 01 No 0

1011 00 No 0

1100 11 Yes 0

00 00 00 00

10

10

01

00

11

10

11

01

01

00

00

01

B

1101 10 No 0

1110 01 No 1

1111 11 yes 1

Design of asynchronous sequential circuits:

Design steps:

construction of a primitive flow table from the statement. And intermediate step may include the

development of a state diagram.Primitive flow table is reduced by eliminating redundants states

by using state reduction techniques.state assignment is made the primitive flow table is realized

using appropriate logic elements.

DESIGN PROBLEMS:

Example:

Design a asynchronous sequential circuit with two inputs X andY and with one output Z.

Whenever Y is one, input X is transferred to Z. When Y is zero, the output does not change for

any change in X.

Solution:

Primitive flow table:

Present state

Next state, output Z

For XY inputs

00 01 11 10

A ,
A

, 0

B,- -,- C,-

B A,- D,- -,-

 ,0

C A,- -,- D,-

C
,0

D -,- B,-
,
D
1

E,1

E F,- -,- D,-
E

,1

F

F
,1

B,- -,- E,-

Merger graph for problem:

A

E

F

D

C

B

A,B,C S0

D,E,F S1

Reduced flow table:

Present state

Next state, output Z

For XY inputs

00 01 11 10

S0

S0

, 0

S0
,0

S1,-

S0
,0

S1
S1

,1

S0,-

S1

,1

S1

,1

Transition table:

Present state

Next state, output Z

For XY inputs

00 01 11 10

0

0
, 0

0
,0

1,-

0
,0

1
1

,1

0,-

1

,1

1

,1

K-map simplification:

0 0 1 0

1 0 1 1

F+=FY‟+XY

`

0 0 X 0

1 0 1 1

Z=FY‟+XY

Logic diagram:

F

0

1

0

1

XY

XY

00 01 11 10

F
00

01 11 10

X Y
F

U1A

1 2

7404
U2A

1

2

U3A

3

7408

U4A

1
3

2

F+=Z

1
3

2

7408

7432

Example:

Design a circuit with inputs A and B to give an output x=1 when AB=11 but only if A becomes 1

before B, by drawing total state diagram, Primitive flow table and output map in which transient

state is included.

Solution:

Primitive flow table:

Present state

Next state, output Z

For XY inputs

00 01 11 10

A ,
A

, 0

B,- -,- C,-

B A,-
B

,0

D,- -,-

C A,- -,- E,-

C
,0

D -,- B,-

,0

D

C,-

E -,- B,-
E

,1

C,0

State assignment:

A,B,D --- S0

C,E ---- S1

Reduced flow table:

Present state

Next state, output Z

For XY inputs

00 01 11 10

S0

S0
, 0

S0
,0

S0
,0

S1,-

S1

S0,-

S0,-

S1

,1

S1

,0

Transition table:

Present state

Next state, output Z

For XY inputs

00 01 11 10

0

0
, 0

0
,0

0

,0

1,-

1

0,-

0,1

1

,1

1

,0

K-map:

F

F+ = F + AB‟

 0

F

00 01

11 10

0

1

Z= FB

Example:

An asynchronous sequential circuit is described by the following excitation and output function

Y=X1X2 +(X1+X2)Y

Z=Y

Draw the logic diagram of the circuit

Derive the transition table and output map

Describe the behavior of the circuit

Solution:

(i)

U7A

1
3

2

X2
7408

U6A

1

2

3

7432

Y=Z

U5A

 1

2

3

7432

U8A

1
3

2

 7408

X1

0

0

0

X

X

0

1 1

(ii) PRESENT STATE , NEXTSTATE, OUTPUT TABLE:

Present state Next state Stable total state

Output Z X1X2Y X1X2Y YES/NO

000 000 Y 0

001 000 N 0

010 010 Y 0

011 011 Y 1

100 100 Y 0

101 101 Y 1

110 111 N 1

111 111 Y 1

Transition table:

`

0 0
1 0

0

0
1 1 1

Output map:

`

0

1

X1X2

X1X2

Y
00

01 11 10

Y
00

01 11 10

0 0 - 0

- 1 1 1

(iii) The circuit gives carry output of the full adder circuit.

PROGRAMMABLE LOGICDEVICES, MEMORY ANDLOGIC FAMILIES

INTRODUCTION:

Memories are made up of registers. Each registers in the memory is one storage location.

Each location is identified by an adder. Generally the total number of bits that a memory can store

is its capacity.Each register consists of storage elements, each of which stores one-bit information.

A storage element is called a cell.The data stored in a memory by a process called and are retrieved

from the memory by a process called reading.

Classification of memories:

ROM -----  MASKED ROM.PROM, EPROM, EEPROM

RAM ----  STATIC RAM DYNAMIC RAM

ROM ORGANIZATION:

It is a read only memory. We can read data from the memory we cannot write the data in

the memory. Ie.. it can hold data even if power is turned off. Genally ROM is used to store the

binary codes for the sequence of instruction you want the computer carry out and data as look up

tables. The block diagram of ROM memory is shown in fig. It consists of n address lines and m

output lines. Each bit combination of the address variable is called an address. Each bit

combination that comes out of the output lines is called a data word. Hence, the number of bits per

word is equal to the number of output lines, m; an address is essentially a binary number that

denotes one of the 2n memory location. An output word can be selected by a unique address; since

there is 2n distinct address in a ROM; there are 2n distinct words that are said to be stored in the

unit.

0

1

tristate
logic

2n

m bit words

read

m out put
lines

Masked ROM:

Mask programming is done by the manufacturing during last fabrication process of the unit. Once

the memory is programmed, it cannot be changed. Most Ic ROM‟s utilize the absence or absence

of a transistor connection at a ROW/COLOUMN junction to represent 0„s and 1‟s.

ROM cells:

row

storing a 0

storing a 1

coloumn

n

a
d
d
r
e
s
s

l
i
n
e
s

d
e
c
o
d
e
r

PROM (programmable ROM)

The PROM can be programmed electrically by the users but cannot be reprogrammed. In

a PROM chip, the manufacturer includes a connection at every intersection of the grid of address

and data lines. PROM‟s are widely used in the control of electrical equipment such as washing

machines and electric ovens.

Fuse technology used in PROM:

Metal links - Nichrom material sufficient amount of current through it

silicon links- narrow strips pf polycrystalline silicon-20 to 30 mA current.

P-N junction.

EPROM (ERASABLE PROGRAMMABLE READ ONLY MEMORY)

Erasable programmable ROM‟s use MOS circutary.They store 1‟s and 0‟s as a packet of

charge in a buried layer of the Ic chip. EPROM‟s can be programmed by the user with a special

EPROM programmer.

The important point is that we can erase the stored data in the EPROM‟s by exposing the chip to

ultraviolet light through it‟s quartz window for 15 to 20 minutes. It is not possible to erase the

selected data when erased the entire information is lost. The chip can be reprogrammed.

EPROM programming:

When erased each cell in the EPROM contains 1 data is introduced by selectively

programming 0‟s will be programmed, both 1‟s and 0‟s can be presented in the data.

EEPROM (Electrically erasable programmable read only memory)

OR

EAPROM (Electrically Alterable programmable read only memory)

EEPROM also use the MOS circuitry very similar to that of EPROM. Data is stored as charge

or no charge on an insulated layer or insulated floating gate in the device. The insulating layer is

made very thin (<200 A). Therefore a voltage as low as 20 to 25 V can be used to move charges

across the thin barrier in either direction for programming or erasing. EEPROM allows selective

erasing at the register levels rather than erasing all data.

PROGRAMMABLE LOGIC DEVICES:

Various combinational and sequential circuits are designed using logic gates and flip flops.

To implement such combinational and sequential circuits , the designer has to interconnect several

SSI and MSI chips by making connections to the IC packages.

Logic circuit can also be designed using Programmable logic device (PLD) that have all the gates

necessary for a logic circuit design in a single package. In such devices, there are provisions to

perform the interconnections of the gates internally so that the desired logic can be implemented.

There are two types of PLD

Programmable Array logic (PAL) (fixed AND , programmable OR)

Programmable Logic Array (PLA) (fixed OR , programmable AND)

Programmable Logic Array (PLA):

PLA is a type of fixed architecture logic devices with programmable AND gates followed by

programmable OR gates. The PLA is used to implement a complex combinational circuit.

A PLA is similar to a ROM in concept except that it does not provide full decoding of the variables

and does not generate all the minterms as in the ROM. Thus, in a PLA, the decoder is replaced by

a group of AND gates, each of which can be programmed to produce a product (AND) terms of

the input variables. The AND and OR gates inside the PLA are initially fabricated with fuses

among them. The specific Boolean functions are implemented in SOP form by blowing appropriate

fuses and leaving the desired connection. It is similar to reprogramming of ROM‟s.For this reason

logic array is called a programmable logic array.

Problems:

EX.1

A combinational circuit is defined by the function

F1= m(3,5,7)

F2= m(4,5,7) implement the circuit with a PLA having 3 inputs 3 products terms and two

outputs.

Solution:

K map simplification

A

F1 = AC+BC

A

F2= AB‟+AC

Implementation:

A

FIELD PROGRAMMABLE GATE ARRAY(FPGA):

FPGA is a flexible architecture programmable logic devices. It is a very large scale

integrated circuit constructed on a single piece of silicon. It consists of identical individually

programmable rectangular modules. The modules are separated in both horizontal and vertical

metallic conductors called channels. In addition, each module has vertical and horizontal

conductors at its input and output that cross one or more of the channels. Each intersection between

the horizontal and vertical conductors marked as a +, is a programmable link. These programmable

links are used to interconnect the modules and also to program the individual modules.

B C

7404 U12A

2

1

2

1

2

1

2

3

1

2

3

1

UNIT V

VHDL

INTRODUCTION:

VHDL

V - VHSIC (Very High Speed Integrated Circuit)

H - Hardware

D - Description

L - Language

• Language to describe the structure and/or behaviour of digital hardware designs

• VHDL designs can be simulated and/or synthesized

• Two versions of VHDL have been standardized by the IEEE

– VHDL87) IEEE-1076-1987

– VHDL93) IEEE-1076-1993

Features:

Design may be decomposed hierarchically.Each design element has both a well defined

interface and a precise functional specification.Concurrency, timing, and clocking can all be

modeled.The logical operation and timing behavior of a design can be simulated.

Program structure:

Entity:

A VHDL entity is simplify a declaration of a modules input and outputs.

Architecture :

VHDL architecture is a detailed description of the module‟s internal behavior or structure.

Wrapper concept:

entity

Hierarchical use:

entity
A

VHDL program file structure:

Syntax of a VHDL entity declaration:

Entity entity-name is

Port (signal name: mode signal type;

…………..

………….);

End entity-name

Syntax of a VHDL architecture declaration:

Architecture architecture-name of entity-name is

Type declaration

Signal declaration

Constant declaration

Function definition

Procedure definition

Component declaration

entity declaration

Begin

Concurrent statement

End architecture-name;

TYPES, CONSTANTS, ARRAYS:

Vhdl predefined types:

bit character Severity level

bit_vector integer string

boolean real time

Predefined operators for VHDL‟s integer and Boolean types:]

Integer operators:

Boolean operators:

and AND

or OR

nand NAND

nor NOR

xor EXCLUSIVE OR

xnor EXCLUSIVENOR

not COMPLEMENTATION

Syntax of VHDL types and constant declaration:

type type_name is (value list):

subtype subtype_name is type_name start to end;

subtype subtype_name is type_name start down to end;

constant constant_name: type name := value;

syntax of VHDL array declaration:

type type-name is array (start to end) of element-type;

Addition

Subtraction

Multiplication

Division

Modulo division

Modulo remainder

Absolute value

exponential

+

*

/
mod

rem

abs

**

type type-name is array (start down to end) of element-type;

type type-name is array (range type) of element-type;

type type-name is array (range-type start to end) of element-type;

type type-name is array (range-type start down to end) of element-type;

example:

type monthly_count is array (1 to 12) of integer;

type byte is array (7 down to 0) of std _logic;

constant WORD_LEN: integer := 32;

type word is array (WORD _LEN-1 downto 0) of STD_LOGIC;

constant NUM_REGS: integer := 8

type reg_file is array (1 to NUM_REGS) of word;

type statecount is array (traffic_light_state) of integer;

syntax of a VHDL function definition:

function function-name(

signal-names : signal-type;

signal-names : signal type;

) return return-type is

Type declaration

Constant declaration

Variable declaration

Function declaration

Procedure definition

Begin

Swquential-statement

End function-name;

Example:

Architecture inhibit_archf of inhibit is

function ButNot(A,B: bit) return bit is

begin

If B =‟0‟;

else return „0‟;

end if;

end ButNot;

begin

Z<= ButNot(X,Y);

End Inhibit_archf;

LIBRARIES AND PACKAGES;

A VHDL library is a place where the vhdl compiler stores information about a particular

design project, including intermediate files used in the analysis, simulation, and synthesis of the

design.

A vhdl package is a file containing definition of objects that can be used in other programs. The

kinds of objects that can be put into a package include signal, type, constant, and procedure and

components declaration.

Structural design elements:

Syntax of a vhdl component declaration:

Component component-name

Port (signal-names : mode signal-type;

)

end component;

syntax of a vhdl for-generate loop:

label: for identifier in range generate

concurrent statement

end generate;

example:

vhdl entity and architecture for an 8-bit inverter:

library IEEE;

use IEEE.std_logic_1164.all;

entity inv8 is

port(X : in STD_LOGIC_VECTOR(1 to 8);

Y : out STD_LOGIC_VECTOR (1 to 8);

end inv8;

architecture inv8_arch of inv8 is

component INV port (I : in STD_LOGIC; 0: out STD_LOGIC); end component;

begin

g1: for b in 1 to 8generate

U1 : INV port map(X(b), Y(b));

end generate;

end inv8_arch;

subprograms:

procedures:

syntax:

procedure identifier(parameter_interface_list) is

……………….

Begin

…………

end

return statement in procedure:

syntax:

return_statement (label:) return;

procedure parameters:

interface list

syntax

constant / variable/signal

identifier {}: [mode] subtype_indication [:= static_expression]

mode > in /out/inout.

Call statements:

Ex.

Callprocess:p(s1,s2,val1);

Callprocess:process is

Begin

P(s1,s2,val);

Wait on s1,s2;

End process call_process.

Functions:

Syntax:‟

Function identifier

[..................] return type_mark is

……………..

Begin

……………

End

Data flow design elements:

Several additional concurrent statements allow vhdl to describe a circuit in terms of the flow of

data and operations on it within the circuit. This style is called a data flow description or dataflow

design.

Syntax :

Signal-name <= expression;

Signal-name <= expression when Boolean-expression else

………………………………………………..

expression;

behavioral design elements:

Behavioral design or behavioral description is one of the key benefits of hardware description

language in general and VHDL in particular.

Syntax of a VHDL if statement:

If Boolean expression then sequential-statements

end if;

if Boolean-expression then sequential statement

else sequential-statements

end if;

………………..

………………..

end if;

Syntax of a VHDL loop statement:

Loop

Sequential-statement

……………..

……….

End loop;

Syntax of a VHDL for loop statement:

for identifier in range loop

Sequential-statement

…………………….

End loop;

SEQUENTIAL CIRCUIT DESIGN WITH VHDL

Clocked circuits:

Ex.

Behavioural modeling for a positive edge triggered d flip flop:

Library ieee;

Use ieee.std_logic_1164.all;

Entity vposdff is

Port(clk,clr,d : in STD_Logic;

Q : out std_logic);

End vposdff;

Architecture vposdff_arch of vpodff is

Begin

Process (clk,clr)

Begin

If clr =‟1‟ then q <= „1‟ then q <= d;

End if;

End process;

End vposdff_arch.

TEST BENCHES:

A test bench specifies a sequence of inputs to be applied by the simulator to an HDL- based

design, such as a VHDL entity. The entity being tested is often called the unit under test (UUT).

VHDL programs:

8 bit adder:

Library IEEE;

Use IEEE.std_logic_1164.all;

Use IEEE.std_logic_arith.all;

Entity vadd is

port(

A,B : in UNSIGNED (7 down to 0);

C : in SIGNED (7 down to 0);

D : in STD_LOGIC_VECTOR (7 down to 0);

S :out UNSIGNED (8 down to 0);

T : out SIGNED (8 down to 0);

U : out SIGNED (7 down to 0);

V : out STD_LOGIC_VECTOR (8 down to 0)

);

End vadd;

Architecture vadd_arch of vadd is

Begin

S<= („0‟& A) + („0‟ & B);

T <= A+C;

U <= C + SIGNED (D);

V <= C – UNSIGNED (D);

End vadd_arch;

Full adder:

Library IEEE;

Use ieee.std_logic_1164.all;

Entity fulladder is

Port (A,B,Cin : in std_logic ;

Sum,carry : out std_logic);

End fulladder;

Architecture adder_arch of full adder is

Begin

Sum<= A xor B xor Cin;

Carry <= (A and B) or (B and Cin) or (Cin and A);

End;

4:1 multiplexer:

Library ieee;

Use ieee.std_logic_1164.all;

Entity mux is

Port(s1,s0,d0,d1,d2,d3: in std _logic;

Y : out std_logic);

End mux;

Architecture arch_mux of mux is

Begin

Y <= ((not S1) and (not s0) and d0) or ((not s1) and s0 and d1) or (s1 and (not s0)and d2 or (s1

and s0 and d3);

End arch_mux;

1:4 demultiplexer:

Library ieee;

Use ieee.std_logic_1164.all;

Entity demux is

Port(d,s1,s0: in std_logic;

Y0,y1,y2,y3: out std_logic);

End demux;

Architecture demux_arch of demux is

Begin

y0 <= d and (not s1) and (not s0);

y1 <= d and (not s1) and (s0);

y2 <= d and (s1) and (not s0);

y3 <= d and (s1) and (s0);

end;

SR flip flop:

Library ieee;

Use ieee.std_logic_1164.all;

Entity srff1 is

Port(s,r : in std_logic; q,nq : inout std_logic);

end srff1;

architecture srff_arch of arff1 is begin

q <= r nor nq;

nq <= s nor q;

end;

clocked SR flip flop:

library ieee;

use ieee.std_logic_1164.all;

entity clksr is

port(s,r,clk : in std_logic;

m,n : inout std_logic;

q,nq: inout std_logic);

ends clksr;

architecture clksr_arch of clksr is

component srff1 is

port(s,r : in std_logic;

q,nq : inout std_logic);

end component;

begin

m<= s and clk;

n <= r and clk;

a1 : srff1 port map(m,n,q,nq);

end;

d flip flop:

library ieee;

use ieee.std_logic_1164 all;

entity dfff1 is

port(d,clk,reset: in std_logic;

q: out std_logic);

end dfff1;

architecture arch_dflipflop of dfff1 is

begin

process (clk)

begin

if (clk‟event and clk =‟1‟) then

if reset =‟0‟ then

q<= „0‟;

else

q<=d;

end if;

end if;

end process;

end;

4-bit asynchronous/ripple counter:

Library ieee;

Use ieee.std_logic_1164.all;

Entity ripple_counter is

Port(vcc,clk,reset : in std_logic;

q,nq: inout std_logic_vector (0 to 3));

end ripple_counter;

architecture arch_ripple_counter of ripple_counter is

component jkff1 is

port(j,k,clk,reset: in std_logic;

q,nq: inout std_logic);

end component;

begin

a:jkff1 port map (vcc,vcc, clk,reset, q(0),nq(0));

b: jkff1 port map (vcc,vcc, q(1),reset, q(1),nq(1));

c:jkff1 port map (vcc,vcc, q(2),reset, q(2),nq(2));

d: jkff1 port map (vcc , vcc , q(3),reset, q(3),nq(3));

end;

	Decimal Number System
	S.N. Number System & Description Binary’ Number System
	'Hexa Decimal Number System 3
	Binary Number System
	Example
	Octal Number System
	Example (1)
	Hexadecimal Number System
	Example −
	Decimal to Other Base System
	Example − (1)
	Step Operation Result Remainder
	Other Base System to Decimal System
	Example (2)
	Other Base System to Non-Decimal System
	Example (3)
	Step 1 − Convert to Decimal
	Step 2 − Convert Decimal to Binary
	Example (4)
	Shortcut method - Octal to Binary
	Example (5)
	Example (6)
	Step Binary Number Hexadecimal Number
	Hexadecimal to Binary
	Example (7)
	Advantages of Binary Code
	Classification of binary codes
	Weighted Codes
	Non-Weighted Codes
	Excess-3 code
	Example (8)
	Application of Gray code
	Binary Coded Decimal (BCD) code
	Advantages of BCD Codes
	Disadvantages of BCD Codes
	Alphanumeric codes
	Error Codes
	Error Code Description
	TTL:
	TTL NAND gate:
	Circuit operation:
	ECL (Emitter Couple Logic) :
	ECL - OR/NOR gate:
	CMOS (Complementary metal oxide semiconductor Logic)
	Boolean Algebra:
	Associative property:
	Distributive property:
	Absorption laws:
	Consensus Laws:
	Principle of duality:
	De-Morgan’s theorem:
	Truth table:
	PRODUCT OF SUM FORM:
	MINTERMS AND MAXTERMS:
	STRUCTURE OF K MAP:
	EXAMPLE 1
	EX:2
	EXAMPLE:
	EXAMPLE: (1)
	Don’t care combination:
	Example:
	QUINE–McCLUSKEY OR TABULATION METHOD OF MINIMIZATION OF LOGIC FUNCTION
	Solution:
	PRIME IMPLICANT CHART:
	Half adder:
	SUM
	CARRY
	FULL ADDER:

	B C
	Half subtractor :

	difference
	Borrow
	Full subtractor:
	Borrow
	Multiplexer:

	selection lines
	o/p
	s1 s0
	Demultiplexer (Data distributors):

	D s1 s0
	Decoder:
	3:8 decoder:
	ENCODER:
	OCTAL TO BINARY ENCODER:
	COMPARATORS:

	A B
	Code converters:

	G0
	G2 G3
	G0 (1)
	G2 G3 (1)
	UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS
	FLIP FLOPS:
	SR FLIP FLOP:

	c
	D FLIP FLOP:

	D
	JKFLIP FLOP:
	TFLIP FLOP:
	DESIGN OF COUNTERS:
	KARNAUGH MAP:
	Solution:
	STATE REDUCTION:
	ASYNCHRONOYUS (RIPPLE OR SERIAL)COUNTER:
	LOGIC DIAGRAM OF 4 BIT RIPPLE COUNTER:
	Mod-number or modulus:
	SYNCHRONOUS COUNTERS:
	UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS
	ANALYSIS OF ASYNCRONOUS CIRCUITS:
	Design of asynchronous sequential circuits:
	DESIGN PROBLEMS:
	PROGRAMMABLE LOGICDEVICES, MEMORY ANDLOGIC FAMILIES INTRODUCTION:
	ROM ORGANIZATION:
	Masked ROM:
	ROM cells:
	PROM (programmable ROM)
	Fuse technology used in PROM:
	EPROM (ERASABLE PROGRAMMABLE READ ONLY MEMORY)
	EPROM programming:
	PROGRAMMABLE LOGIC DEVICES:
	FIELD PROGRAMMABLE GATE ARRAY(FPGA):
	UNIT V VHDL
	Features:
	Program structure: Entity:
	Architecture :
	Wrapper concept:
	Hierarchical use:
	TYPES, CONSTANTS, ARRAYS:
	Syntax of VHDL types and constant declaration:
	LIBRARIES AND PACKAGES;
	Structural design elements:
	syntax of a vhdl for-generate loop:
	subprograms:
	syntax:
	Functions:
	Data flow design elements:
	behavioral design elements:
	Syntax of a VHDL if statement:
	Syntax of a VHDL loop statement:
	SEQUENTIAL CIRCUIT DESIGN WITH VHDL
	TEST BENCHES:
	8 bit adder:
	Full adder:
	4:1 multiplexer:
	1:4 demultiplexer:
	SR flip flop:
	clocked SR flip flop:
	d flip flop:
	4-bit asynchronous/ripple counter:

