UNIT -1 Electrostatics - |

Electromagnetic theory is a discipline concerned with the study of charges at rest and in
motion. Electromagnetic principles are fundamental to the study of electrical engineering
and physics. Electromagnetic theory is also indispensable to the understanding, analysis
and design of various electrical, electromechanical and electronic systems. Some of the
branches of study where electromagnetic principles find application are:

RF communication, Microwave Engineering, Antennas, Electrical Machines, Satellite
Communication, Atomic and nuclear research ,Radar Technology, Remote sensing, EMI
EMC, Quantum Electronics, VLSI ,

Electromagnetic theory is a prerequisite for a wide spectrum of studies in the field of
Electrical Sciences and Physics. Electromagnetic theory can be thought of as
generalization of circuit theory. There are certain situations that can be handled
exclusively in terms of field theory. In electromagnetic theory, the quantities involved
can be categorized as source quantities and field quantities. Source of electromagnetic
field is electric charges: either at rest or in motion. However an electromagnetic field may
cause a redistribution of charges that in turn change the field and hence the separation of
cause and effect is not always visible.

Sources of EMF:
e Current carrying conductors.
e Mobile phones.
e Microwave oven.
e Computer and Television screen.
e High voltage Power lines.

Effects of Electromagnetic fields:
e Plants and Animals.
e Humans.
e Electrical components.

Fields are classified as
e Scalar field
e Vector field.

Electric charge is a fundamental property of matter. Charge exist only in positive or
negative integral multiple of electronic charge, -e, e= 1.60 x 10° coulombs. [It may be
noted here that in 1962, Murray Gell-Mann hypothesized Quarks as the basic building
blocks of matters. Quarks were predicted to carry a fraction of electronic charge and the
existence of Quarks have been experimentally verified.] Principle of conservation of
charge states that the total charge (algebraic sum of positive and negative charges) of an
isolated system remains unchanged, though the charges may redistribute under the
influence of electric field. Kirchhoff's Current Law (KCL) is an assertion of the


http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

conservative property of charges under the implicit assumption that there is no
accumulation of charge at the junction.

Electromagnetic theory deals directly with the electric and magnetic field vectors where
as circuit theory deals with the voltages and currents. Voltages and currents are integrated
effects of electric and magnetic fields respectively. Electromagnetic field problems
involve three space variables along with the time variable and hence the solution tends to
become correspondingly complex. Vector analysis is a mathematical tool with which
electromagnetic concepts are more conveniently expressed and best comprehended. Since
use of vector analysis in the study of electromagnetic field theory results in real economy
of time and thought, we first introduce the concept of vector analysis.

Vector Analysis:

The quantities that we deal in electromagnetic theory may be either scalar or vectors
[There are other class of physical quantities called Tensors: where magnitude and
direction vary with co ordinate axes]. Scalars are quantities characterized by magnitude
only and algebraic sign. A quantity that has direction as well as magnitude is called a
vector. Both scalar and vector quantities are function of time and position . A field is a
function that specifies a particular quantity everywhere in a region. Depending upon the
nature of the quantity under consideration, the field may be a vector or a scalar field.
Example of scalar field is the electric potential in a region while electric or magnetic
fields at any point is the example of vector field.

- g=7
| |is the magnitude and |"q| is the

—

A vector +can be written as, 4 =a 4 where,

unit vector which has unit magnitude and same direction as that of 4.

Two vector Aand Z are added together to give another vector & . We have

C=4+38 (L1)

Let us see the animations in the next pages for the addition of two vectors, which has two
rules: 1: Parallelogram law and 2: Head & tail rule
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HEAD TO TAIL RULE FOR VECTOR ADDITION

USE THE PLAY AND STOP BUTTONS TO VIEW HOW THE
VECTORS A AND B ARE ADDED AND THE RESULTANT C IS
PRODUCED

Fig 1.1{b}: Vector Addition {Head & Tail Rule}
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PARALLELOGRAM RULE FOR VECTOR ADDITION

USE THE FLAY AMD S5TOF BUTTONS TO VIEW HOW THE
VECTORS A AND B ARE ADDED AMD THE RESULTANT C I3
PRODUCED

Fig 1.1{a):Vector Addition(Parallelogram Rule)

>
A

HEAD TO TAIL RULE FOR VECTOR ADDITION

USE THE FLAY AND STOP BUTTONS TO VIEW HOW THE
VECTORS A AND B ARE ADDED AND THE RESULTANT C IS
PRODUCED

Fig 1.1{b): Vector Addition (Head & Tail Rule)



VECTOR ADDITION
E
« / Il

HEAD TO TAIL RULE FOR VECTOR ADDITION

USE THE PLAY AND STOP BUTTONS TO VIEW HOW THE
VECTORS A AND B ARE ADDED AND THE RESULTANT C IS
PRODUCED

Fig 1.1(b): Vector Addition (Head & Tail Rule)

Yector Subtraction is similarly carried out; D=A-B=4+ (—E) ...................

VECTOR
SUBTRACTION

STOP

CLICK PLAY AND STOF TO SEE THE VECTOR SUBTRATION
OF A AND B

Fig 1.2: Vector subtraction



vector Subtraction is similarly carried out: D=4-B=4+ (—E) ........................ (1

CLICK FLAY AND STOP TO SEE THE VECTOR SUBTRATION
OF A AND B

Fig 1.2: Vector subtraction

Scaling of a vector is defined as™ = @& where C is scaled version of vector & and isa
scalar.

Some important laws of vector algebra are:

A+BE=F+4

Commutative Law. ........cccvvveevvveeiineecieeene, (1.3)
ﬁ+(§+5)=(ﬁ+§)+5 "
Associative Law. .......ccocvveeviveeiiie e, (1.4)
ald+B) =ad+al DiStribUtiVe LaW..........oeveveeeeeeeeeeeseeeenean (1.5)

—_

The position vector oofa point P is the directed distance from the origin (O) to P, i.e.,
P = ﬁ .

Fig 1.3: Distance Vector
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If "2 = OP and "7 = OQ are the position vectors of the points P and Q then the distance
vector

PO -00-0F-r -1
Product of Vectors

When two vectors Aand £ are multiplied, the result is either a scalar or a vector
depending how the two vectors were multiplied. The two types of vector multiplication
are:

Scalar product (or dot product) AB gives a scalar.
Vector product (or cross product) AxE gives a vector.

The dot product between two vectors |s defined as 45 = |A||B|cosOps................. (1.6)
Vector product AxB = [4[12]sin 8,5 n

% s unit vector perpendicular to Adand &

. BA Fig 1.4: Vector dot product

The dot product is commutative i.e., <4' & = &' 4 and distributive i.e.,

G (5+3) -3 544 C
. Associative law does not apply to scalar product

The vector or cross product of two vectors Aand B is denoted by AxEB A% Fis a vector

perpendicular to the plane containing ﬂand B , the magnitude is given by [4]13sin 6,

and direction is given by right hand rule as explained in Figure 1.5.



Here we will get, Here we will get,
C=Ax B C=8BxA4

A =

A A

Fig 1.5 :lllustrating the left thumb rule for determining the vector ¢cross product

C
Here we will get, Hare we will gat,
C=AxF C=8xd
/ ' '
A ‘ C

Fig 1.5 :lllustrating the left thumb rule for determining the vactor ¢ross product

A

Next
EX§=a:ﬂBs1HEAB (1.7)
~  AxE
n & T ==
Axf
where “» is the unit vector given by, | |
The following relations hold for vector product.
AxB=-Fx4 i.e., cross product is non commutative.......... (1.8)
Ax[B + T\ =A= B+ AxC . o
( ) i.e., cross product is distributive. .................... (1.9

EX(E X 5) #(EXE)XE _ _ .
I.e., cross product is non associative. ........... (1.10)
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Scalar and vector triple product :

Scalar triple product ..........0 A e T (1.11)

Vector triple product ............ b b [ A (1.12)

Co-ordinate Systems

In order to describe the spatial variations of the quantities, we require using appropriate
co-ordinate system. A point or vector can be represented in a curvilinear coordinate
system that may be orthogonal or non-orthogonal .

An orthogonal system is one in which the co-ordinates are mutually perpendicular. Non-
orthogonal co-ordinate systems are also possible, but their usage is very limited in
practice .

Let u = constant, v = constant and w = constant represent surfaces in a coordinate system,
the surfaces may be curved surfaces in general. Furthur, let %x | % and % be the unit
vectors in the three coordinate directions(base vectors). In a general right handed
orthogonal curvilinear systems, the vectors satisfy the following relations :

Eal Eal o

aﬂx ¥ =a"|+'
o s s
a'l'xaw = a.!
Eal o, Eal
By By Ty e (1.13)

These equations are not independent and specification of one will automatically imply the
other two. Furthermore, the following relations hold

oy s Eal oy oy o,
@, ., =da,.c, =d,. a2 =0
oy oy oy oy oy Eal
¢, 2, Sd, . d, =d, . d, =1
vy we S (114)
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A vector can be represented as sum of its orthogonal

components, 2 - %t Aat Aya, (1.15)
In general u, v and w may not represent length. We multiply u, v and w by conversion
factors hy,h, and hs respectively to convert differential changes du, dv and dw to

corresponding changes in length dly, dl2, and dls. Therefore

di =a,di+a,dl,+a,d,

= hdua,+ hdva, +idwa, (1.16)

In the same manner, differential volume dv can be written as & = s dudvdw ;g

differential area ds, normal to % is given by, 9 = a/advdw

o Ll

. In the same manner,
differential areas normal to unit vectors “* and “* can be defined.

In the following sections we discuss three most commonly used orthogonal co-
ordinate systems, viz:

1. Cartesian (or rectangular) co-ordinate system
2. Cylindrical co-ordinate system
3. Spherical polar co-ordinate system
Cartesian Co-ordinate System :
In Cartesian co-ordinate system, we have, (u,v,w) = (x,y,z). A point P(Xo, Yo, Zo) in

Cartesian co-ordinate system is represented as intersection of three planes x = Xo, Y = Yo
and z = zo. The unit vectors satisfies the following relation:

’ A

P{xo,yd.Zo)

AN

>y

o
=

/a\xl

Cartesian Coordinate System
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@," @, =dg

AA .

cz_vxczx= .

Ead s s

axxax=ay

Aon P Aon

@, .x, = = =1

—_— ~ .n. .n.

OF =a, xy +a, y ta,z,

— n

In cartesian co-ordinate system, a vector -4 can be written as A=a, dta,dyta 4
The dot and cross product of two vectors Aand £ can be written as follows:
AB=AB +AB +A45 (1.19)

AxE =ay (4,8, - 4.8,)+ a, (45, - AB) *a (4B, - 4,5,)

a a a,
-4, 4 4
B, B, B,
.................... (1.20)

Since x, y and z all represent lengths, hi= ho= hz=1. The differential length, area and
volume are defined respectively as

di=dra,+dva,+dza,

................ (1.22)
dsy = dydza,
dsy = drdza,
da; = ci’x.::t’yaz,
ﬂfu = dxcfydz (1 22)

Cylindrical Co-ordinate System :

For cylindrical coordinate systems we have &:¥:%) =(".8.2) g noint Flryth. 20l jg
determined as the point of intersection of a cylindrical surface r = ro, half plane
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containing the z-axis and making an angle o= ; with the xz plane and a plane parallel
to xy plane located at z=z¢ as shown in figure 7 on next page.

In cylindrical coordinate system, the unit vectors satisfy the following relations

Avector Acan be written as .5 e Gt Byt A (1.24)

The differential length is defined as,

di =a,dp+pdga,+dzas By=Lliy=ph= (1.25)

N s s
dp¥dy = ds
N n N
gty =
N n n

A (1.23)



=7

X

Fig 1.7 : Cylindrical Coordinate System

Differential areas are:
ds, = pdgdza,
ds,=dpdza, e {1.26)

s, = pdd 0a,

v

Y Differential valume,

du=pdedgdz {1.27)

X

Fig 1.8 : Differential Volume Element in Cylindrical Coordinates

Transformation between Cartesian and Cylindrical coordinates:

. ﬁ=; A +; A +; . . . .
Let us consider p A ey Ayt an A is to be expressed in Cartesian co-ordinate as

Eal Fal Eal Eal

—_
A=Aa, =|a, A ta, 4 +a 4 |a,

d=axdtaydytan d | doing so we note that
and it applies for other components as well.



n

n
z @, @, =cosd
n

©

2

@, a, =sing
- J (1.28)
@y, = cos(aHE) =-—zng
@y, =Cosf
-y Therefore we can write,
Ax=ﬁ.ax =A cosg- A sing
sin @+ Ap,COS(;E} .......... (1.29)

4, -4a,
A=A,

=4
=4

i

Fig 1.9 : Unit Vectors in Cartesian and Cylindrical Coordinates
These relations can be put conveniently in the matrix form as:
A cosg —sng O)[A,

Af=lsing cosg¢g 0Of14,
it I AU | (1.30)

A Ay and A o mselves may be functions of &% a4z 5.

x=pocosgd

y = gsn g

ZTE e, (1.31)
o =Afx =+
-;Ei'—tan'lE

The inverse relationships are: ... 2.5 ...cccccc e i (1.32)
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Spherical Polar Coordinate System

Fig 1.10: Spherical Polar Coordinate System
Thus we see that a vector in one coordinate system is transformed to another coordinate
system through two-step process: Finding the component vectors and then variable
transformation.

Spherical Polar Coordinates:

For spherical polar coordinate system, we have, &:v-¥) = 8.8} A noint Flr &t
represented as the intersection of

(i) Spherical surface r=ro
(ii) Conical surface © =& and

(iii) half plane containing z-axis making angle #= %With the xz plane as shown in the
figure 1.10.

The unit vectors satisfy the following relationships: @7 T

The orientation of the unit vectors are shown in the figure 1.11.

15
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x‘/ Orientation of Unit Vectors

Fig 1.11: Orientation of Unit Vectors

Eal

. . . . . P = . + . +
A vector in spherical polar co-ordinates is written as : 4~ &+ @at Aydy g

di =a,dr +a,rd +a,rsin 6dp
For spherical polar coordinate system we have h1=1, h,=rand hs=#sn &
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Fig 1.12{a) : Differential volume in s-p coordinates
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¥
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é

Fig 1.12(b) : Exploded view

With reference to the Figure 1.12, the elemental areas are:

ds, =r?sin 8dBdga,
ds, = rsin Gdrdga,

d.‘:'-‘P = rdrdé?ap,

and elementary volume is given by

du = r*sin 8drd 8d g (1.35)

Coordinate transformation between rectangular and spherical polar:

With reference to the figure 1.13 ,we can write the following equations:
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OO

o o . )
a,.d, =sanfdsang
ey n

&, ., =cosd

n s

iy, =cosBoosd
o Ll

g @y =cosfsin @

a:.c:t:,=cos(5+g]=—sin5
o Ll ;;IT .
@, = +2)=-
@, @, = cos(g 2} sin g
@,.a, =cosd
s e (1.36)

Fig 1.13: Coordinate transformation

Given a vector Ad=datrdatda, in the spherical polar coordinate system, its
component in the cartesian coordinate system can be found out as follows:

Ax=ﬁ. y = A sin eosgt A cosfoosg— A sin ¢



Similarly,
A = ﬁc;; = A snfangt 4, cosPsin ¢+ A cos g

................................. (1.38a)
ATdg = deosf-fsmE (1.38b)
The above equation can be put in a compact form:
A sindcosd cosfoosgd —ang||d
A |=|sinfsing cosfang cosg ||
4 cos& “en 8 0 A e (1.39)

The components A A and Ay yhomselves will be functions of 7-8and ¢ 7. 8and @5

related to x,y and z as:

x=ranfcoosg

¥y =ran ein g

z=rcosd (1.40)
and conversely,
- 2 2 2
A L (1.41a)
8=rcos™ z —
T (1.41b)

$=tan™ d

K et (1.41c)

Using the variable transformation listed above, the vector components, which are
functions of variables of one coordinate system, can be transformed to functions of
variables of other coordinate system and a total transformation can be done.

Line, surface and volume integrals

In electromagnetic theory, we come across integrals, which contain vector functions.
Some representative integrals are listed below:
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Jfﬁ.;fv J:.;zﬁdf E[Ei.;f? F..;f;f

In the above integrals, & and Qrespectively represent vector and scalar function of space
coordinates. C,S and V represent path, surface and volume of integration. All these
integrals are evaluated using extension of the usual one-dimensional integral as the limit
of a sum, i.e., if a function f(x) is defined over arrange a to b of values of x, then the
integral is given by

& 2

f Fa)dx = lim > £8x,

1 R—*m icl
where the interval (a,b) is subdivided into n continuous interval of lengths

Edi
Line Integral: Line integral l is the dot product of a vector with a specified C; in
other words it is the integral of the tangential component £ along the curve C.

Vector field E

Figure : Line Integral

Fig 1.14: Line Integral

As shown in the figure 1.14, given a vector Earound C, we define the integral

2
J:E..:ﬂ = J‘Ecos Bl
2 as the line integral of E along the curve C.

If the path of integration is a closed path as shown in the figure the line integral becomes

Edi
a closed line integral and is called the circulation of £ around C and denoted as f as
shown in the figure 1.15.



i

Figure: Closed Line Integral

Fig 1.15: Closed Line Integral

Surface Integral :

Given a vector field 4, continuous in a region containing the smooth surface S, we
define the surface integral or the flux of 4 through S as

W= l‘ﬂcosé‘dﬂ’ - JI&.% as = l‘ﬁd:‘?
as surface integral over surface S.

Surface S

Fig 1.16 : Surface Integral

= (f AdS
If the surface integral is carried out over a closed surface, then we write

Volume Integrals:
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JﬁV JﬂﬁV
We define or as the volume integral of the scalar function f(function of
Jﬁﬁv
spatial coordinates) over the volume V. Evaluation of integral of the form can be
carried out as a sum of three scalar volume integrals, where each scalar volume integral is

a component of the vector &

The Del Operator :

The vector differential operator ¥ was introduced by Sir W. R. Hamilton and later on
developed by P. G. Tait.

Mathematically the vector differential operator can be written in the general form as:

10,

1 2.
=——a, +——a,
Oy Ay

Gradient of a Scalar function:

In Cartesian coordinates:

V= @+§@+

In cylindrical coordinates:

v=2

aP+

and in spherical polar coordinates:

g, 12 1 2
V=—dad+-—d, +———d,
& r 38 rsin & dg (1.46)

o A

Let us consider a scalar field V(u,v,w) , a function of space coordinates.

Gradient of the scalar field V is a vector that represents both the magnitude and direction
of the maximum space rate of increase of this scalar field V.
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Fig 1.17 : Gradient of a scalar function
As shown in figure 1.17, let us consider two surfaces Siand Sz where the function V has
constant magnitude and the magnitude differs by a small amount dV. Now as one moves
from Sz to Sy, the magnitude of spatial rate of change of V i.e. dV/dl depends on the
direction of elementary path length dl, the maximum occurs when one traverses from Sito
S»along a path normal to the surfaces as in this case the distance is minimum.

By our definition of gradient we can write:

aradv = 4 —gp
.

since ##which represents the distance along the normal is the shortest distance between
the two surfaces.

For a general curvilinear coordinate system

di=a, dl +a,dl, +a,d, =|kdea, +hdva, +bdwa,

Further we can write

ﬁ =ﬁd—m=ﬁmsa’=vffﬁz
it an ol dn
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AV =TV dl =V thdu a, +hdva, + bdwa,)
Also we can write,

di = g—Vcﬂ +ﬁcﬂ +ﬁcﬂ

u ¥ W

EER TS

W i+ i+ 4 ndua, + v, +hdwi)
}%5'” fy By LR

(BV +BV W 4 J[cﬂﬂ! +dl, &, +di,d,)

By comparison we can write,

ol W, 1w,

klﬁuu ;zzava” by Bw

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the
expressions for gradient can be written as:
In Cartesian coordinates:

R A Y.
iz

Y (1.53)
In cylindrical coordinates:

O LT Y

do £ pog ? &

.................................................................. (1.54)
and in spherical polar coordinates:
L .
T r a8 rendp (1.55)

The following relationships hold for gradient operator.
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VI +) = VIT+VF
VI =PV AUV

oo Fveo=-UuvEy
V(o=
v s
TE =0V TF e (1.56)

where U and V are scalar functions and n is an integer.

W - a7 a)
It may further be noted that since magnitude of &/ i depends on the direction of

dl, it is called the directional derivative. If A=24F, Vis called the scalar potential

function of the vector function .
Divergence of a Vector Field:

In study of vector fields, directed line segments, also called flux lines or streamlines,
represent field variations graphically. The intensity of the field is proportional to the
density of lines. For example, the number of flux lines passing through a unit surface S
normal to the vector measures the vector field strength.

Fig 1.18: Flux Lines

We have already defined flux of a vector field as

Y= l.ﬂcosé‘d& =J‘E'ﬁxds = lEdE

We define the divergence of a vector field 4 at a point P as the net outward flux from a
volume enclosing P, as the volume shrinks to zero.



o A ds
div A=V A = lim L

LI oo (1.59)

Here 4% is the volume that encloses P and S is the corresponding closed surface.

Fig 1.19: Evaluation of divergence in curvilinear coordinate

Let us consider a differential volume centered on point P(u,v,w) in a vector field 4. The
flux through an elementary area normal to u is given by,

i A, | — A | dvich = @@@m

u+EH T

- Tv,w
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Considering the contribution from all six surfaces that enclose the volume, we can write

+ dudvdww + duchvew %

v B9 = g I &
av—=l A }el}s.z}%dudvdw

oo L [00shA) 3lhb4) (kA

- Bhte P e Py

& ds  dudvdw —8 (2}%& )

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the expressions for diverge
written as:

In Cartesian coordinates:

W E e, (1.63)
In cylindrical coordinates:
g ldled) 184 a4
L o (1.64)

and in spherical polar coordinates:

la(rﬂﬂ,h 1 3(sin84,) 1 a4,
2 ap rain & ag rand dg (1.65)

In connection with the divergence of a vector field, the following can be noted
o Divergence of a vector field gives a scalar.

V(A+B) =V A+V B
VA=V A+ ATV (1.66)

Divergence theorem :
Divergence theorem states that the volume integral of the divergence of vector field is
equal to the net outward flux of the vector through the closed surface that bounds the

JV-:Hv - gs:é- ds
volume. Mathematically,
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Proof:

Let us consider a volume V enclosed by a surface S . Let us subdivide the volume in large

number of cells. Let the k" cell has a volume‘ﬂ‘r'rx and the corresponding surface is
denoted by Sk. Interior to the volume, cells have common surfaces. Outward flux through
these common surfaces from one cell becomes the inward flux for the neighboring cells.
Therefore when the total flux from these cells are considered, we actually get the net
outward flux through the surface surrounding the volume. Hence we can write:

(‘fﬂ ds = ?ﬂ da= 7 A
b e (1.67)
In the limit, that is when & — @ and Ly =0 the right hand of the expression can be
E[?.ﬂd'{f
written as

151-21 a5 JV Adl
Hence we get , which is the divergence theorem.

Curl of a vector field:

Al
We have defined the circulation of a vector field A around a closed path as T :

Curl of a vector field is a measure of the vector field's tendency to rotate about a point.

Curl 4, also written as ¥ *4 is defined as a vector whose magnitude is maximum of the
net circulation per unit area when the area tends to zero and its direction is the normal
direction to the area when the area is oriented in such a way so as to make the circulation
maximum.

Therefore, we can write:

Clurd A=Tx A= h‘i_ﬂ dl
550 AT

To derive the expression for curl in generalized curvilinear coordinate system, we first

compute ¥ *4-@«and to do so let us consider the figure 1.20 :
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./"* hav B ¥

dn
Fig 1.20: Curl of a Vector

C1 represents the boundary of &5 | then we can write

iﬁﬁ-df=iﬁ-df+ﬁl‘ﬁ-df+J;:'i-df+£[lﬁ-df
C B BA (1.69)

The integrals on the RHS can be evaluated as follows:

—+

f-d = (A&, + Ad, + AR, ) bvd, = Al by

................................. (1.70)

dLIé- di=- [Av}sgﬁv +ai(ﬂv};2@)m]
TR (1.71)

The negative sign is because of the fact that the direction of traversal reverses. Similarly,
iﬁ- di = [ A bl + % (Awhzﬂwj&v]
.................................................. (1.72)
ILE-Q?E — A B tow
............................................................................ (1.73)

Therefore,
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Eal

. VA, VA, .
In the same manner if we compute for ( ) * and ( ) “¥ \we can write,

G- 1 [30:4) _30u4) ] ,
¢ i

iyl | v ffy

ks [ du

Vrlds——|— — —
Bbh | e Bv Bw
MA L RA A (1.77)
d, d, &
- |3 3 3
Vrd=l— — —
dx & oz
In Cartesian coordinates: ............. A“‘q?‘q" ....................................... (1.78)
4, od, 4
wxa-L|2 2 2
o2lde dg dz
N : A A
In Cylindrical coordinates,.................\.. P“G?’A‘ .................................... (1.79)
d, rd, rsin8d,
— 1 d 3 d
Wrd=s—a——"— — —
Fhein 8ldr 28 dg
A rd rsin&% (1.80)

In Spherical polar coordinates,...........ccocoeen S B
Curl operation exhibits the following properties:

(N Curt of a vector field Js ancfher vector figld.
(M ?K(E+§]=?xﬁ+?x§
(i) Vx(WA)= VW x A+ VT x A
(i) W(Txd)=0
(v)  Fx¥¥=0

(vi) Vx(AxB)= AVE-EVA+(BEV)A-(AVIE (1.81)

dv

(A, ) H%AJ] 1 [ﬂ%&)_ﬂ%&)&
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Stoke's theorem :

It states that the circulation of a vector field -4around a closed path is equal to the

integral of ¥ *4 over the surface bounded by this path. It may be noted that this equality
holds provided 4and * *4 are continuous on the surface.

ie,

Proof:Let us consider an area S that is subdivided into large number of cells as shown in
the figure 1.21.

44— v ——,
» >
) L.
_ '.III _ _ . - _ '.II.I _ _ _ . _ "._l.
» - B
3 E \|
G WD = e o s
|I + ‘ Iblt
Y Y \ |
>
4 .- v |
| 'r -
[y

Fig 1.21: Stokes theorem

Let k"cell has surface area ““*and is bounded path Lk while the total area is bounded by
path L. As seen from the figure that if we evaluate the sum of the line integrals around the

elementary areas, there is cancellation along every interior path and we are left the line
integral along path L. Therefore we can write,

Adl
gﬁﬁ-dh?iﬁ-dh%ﬂ AT,

A5y

As 25—



cjs E-dE=I VxAd ds
I 5 )
which is the stoke's theorem.

ASSIGNMENT PROBLEMS

In the Cartesian coordinate system; verify the following relations for a scalar

—+

function ¥ and a vector function 4
VR(TF) =0

v-(vxﬁ) =0
vx(Vﬁ)=V(‘?xﬁ)+[‘W)xﬁ

-+ 9 -~
BE=—ua,
. An electric field expressed in spherical polar coordinates is given by r
& P15 -
Determine | |and & at a point F-l2-a)
T s1r125‘,\r 5
Evaluate * @ over the surface of a sphere of radius " centered at the

origin.
Find the divergence of the radial vector field given by F(F)=dr :

. A vector function is defined by . Find around the contour shown in the figure
T o ts —ynds el [ A)eds

P1.3. Evaluate over the shaded area and” = @ 4x ~776,$ I( Jrde
Adl = [V x A

verify that(j’j I( :I s

YA

™
Mf’
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Figure P1.3

In the previous chapter we have covered the essential mathematical tools needed to study
EM fields. We have already mentioned in the previous chapter that electric charge is a
fundamental property of matter and charge exist in integral multiple of electronic charge.
Electrostatics can be defined as the study of electric charges at rest. Electric fields have their
sources in electric charges.

( Note: Almost all real electric fields vary to some extent with time. However, for many
problems, the field variation is slow and the field may be considered as static. For some
other cases spatial distribution is nearly same as for the static case even though the actual
field may vary with time. Such cases are termed as quasi-static.)

In this chapter we first study two fundamental laws governing the electrostatic fields, viz, (1)
Coulomb's Law and (2) Gauss's Law. Both these law have experimental basis. Coulomb's
law is applicable in finding electric field due to any charge distribution, Gauss's law is easier
to use when the distribution is symmetrical.

Coulomb's Law

Coulomb's Law states that the force between two point charges Q:and Q.is directly
proportional to the product of the charges and inversely proportional to the square of the
distance between them.

Point charge is a hypothetical charge located at a single point in space. It is an idealised
model of a particle having an electric charge.

7= JgCQIQE
2
Mathematically, R ,where K is the proportionality constant.
In Sl units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

1
4,

k:

Force F is in Newtons (N) and , “0is called the permittivity of free space.

(We are assuming the charges are in free space. If the charges are any other dielectric

& = &k, £,
0Cy

medium, we will use instead where “7is called the relative permittivity or the
dielectric constant of the medium).

1 &,

2
Therefore.......... 4???'3 . R ............................ (2.1)
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As shown in the Figure 2.1 let the position vectors of the point charges Qiand Q> are given

by land "2 . Let 3 represent the force on Q; due to charge Q..

0]
Fig 2.1: Coulomb's Law

RE=ln—-nl=n—-7n

The charges are separated by a distance of | We define the unit vectors

as

- (”"2 N —~ - ”":4)

g T T

R oand .. B e, (2.2)
T Gy, -~ _ (A —n)
. BT g R g g
A o T _”"1’3
12 can be defined as . Similarly the force on Q;due to

— —_—

charge Q. can be calculated and if i represents this force then we can write = ~Fy

When we have a number of point charges, to determine the force on a particular charge due
to all other charges, we apply principle of superposition. If we have N number of charges

- —+

Q1u,Q2,........ Q located respectively at the points represented by the position vectors 1 ,rﬂ

—_

- ¥ | the force experienced by a charge Q located at 7 is given by,

7o 2 00
4jTE|:| iml |Ir'—lr!:’3
Electric Field

The electric field intensity or the electric field strength at a point is defined as the force per
unit charge. That is
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The electric field intensity E at a point r (observation point) due a point charge Q located at
7' (source point) is given by:

5 L0,
ATy |?" SRR (2.5)
For a collection of N point charges Q:,Q:,......... Qu located at 1,72 ......7¥  the electric field
intensity at point ' is obtained as
F-_L e
A, 43 |,»~ —y.f
e (2.6)

The expression (2.6) can be modified suitably to compute the electric filed due to a
continuous distribution of charges.

In figure 2.2 we consider a continuous volume distribution of charge p(t) in the region
denoted as the source region.

For an elementary charge did = olrldv , 1.e. considering this charge as point charge, we
can write the field expression as:

S5 400 -ry _ plrhavir=rY

4e, |r—r"3 47e, |r—r"3

Fig 2.2: Continuous Volume Distribution of Charge

When this expression is integrated over the source region, we get the electric field at the
point P due to this distribution of charges. Thus the expression for the electric field at P can
be written as:
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E0 = o - f“')i.
1[4;?1'&',]?' rr

Similar technigue can be adopted when the charge distribution is in the form of a line charge
density or a surface charge density.

0 - I,o;(r )=

45 - ’“r ........................................ (2.9)
B0 - ;[pj(r (r- r)_,
4;?1E‘,Jr r (2.10)

Electric flux density:
As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field
at a particular point. The electric field depends on the material media in which the field is

being considered. The flux density vector is defined to be independent of the material media
(as we'll see that it relates to the charge that is producing it).For a linear

isotropic medium under consideration; the flux density vector is defined as:

We define the electric flux o as
= lﬁd;—;

Gauss's Law: Gauss's law is one of the fundamental laws of electromagnetism and it states
that the total electric flux through a closed surface is equal to the total charge enclosed by
the surface.
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Fig 2.3: Gauss's Law

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric
constant €. The flux density at a distance r on a surface enclosing the charge is given by

T-c-_F 4

If we consider an elementary area ds, the amount of flux passing through the elementary
area is given by

dw=ﬁ.ds= QE dscos 8
A

..................................... (2.14)
) g
R -dn .
But 7 , is the elementary solid angle subtended by the area 4% at the location of
dur=5 20
Q. Therefore we can write 4

w=?w=%fm=g

For a closed surface enclosing the charge, we can write
which can seen to be same as what we have stated in the definition of Gauss's Law.

Application of Gauss's Law

Gauss's law is particularly useful in computing Eor Dwhere the charge distribution has
some symmetry. We shall illustrate the application of Gauss's Law with some examples.

1.An infinite line charge
As the first example of illustration of use of Gauss's law, let consider the problem of

determination of the electric field produced by an infinite line charge of density p.C/m. Let us
consider a line charge positioned along the z-axis as shown in Fig. 2.4(a) (next slide). Since
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the line charge is assumed to be infinitely long, the electric field will be of the form as shown
in Fig. 2.4(b) (next slide).

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we
can write,

od =C =(fEDE.dE=JEDE.dE+iEDE.dE+JEDE.dE
e (2.15)

Considering the fact that the unit normal vector to areas S; and Ss are perpendicular to the
electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence

we can write, o = §E.2mol

(b)

Y
'

eall

Fig 2.4: Infinite Line Charge




2. Infinite Sheet of Charge

As a second example of application of Gauss's theorem, we consider an infinite charged
sheet covering the x-z plane as shown in figure 2.5.

Assuming a surface charge density of #s for the infinite surface charge, if we consider a
cylindrical volume having sides As placed symmetrically as shown in figure 5, we can write:

§0ds=2Dbs = o A5

=

F=_25z

X
Fig 2.5: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the
infinite plane of charge; electric lines of force on either side of the charge will be
perpendicular to the sheet and extend to infinity as parallel lines. As number of lines of force
per unit area gives the strength of the field, the field becomes independent of distance. For a
finite charge sheet, the field will be a function of distance.

3. Uniformly Charged Sphere

Let us consider a sphere of radius ro having a uniform volume charge density of o, C/m3. To

determine £ everywhere, inside and outside the sphere, we construct Gaussian surfaces of
radius r < rp and r > rg as shown in Fig. 2.6 (a) and Fig. 2.6(b).



: i .
For the region F = ; the total enclosed charge will be

(a)

Fig 2.6: Uniformly Charged Sphere

By applying Gauss's theorem,

21’ F-3
CPD-.::ES = I I Do sin 8d8d ¢ = 4m D), = 0
; ple=0 (2.19)
Therefore
— ¥ -
D=—pnda, D<rip
o T (2.20)

By applying Gauss's theorem,

3
=g It
=_0 5
Fill ?p‘,ﬂr .?"2.?';]

R R R R R R R R R R R R R R R e e R R R R R R R R R R R R R R R R R R R R R R R R R R R R R e e e e e S S S S S S R R R e e e
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Unit Il Electrostatics-Il

In this chapter we will discuss on the followings:

+ Electrostatic Potential, Equipotential Surfaces
» Boundary Conditions for Static Electric Fields
» Capacitance and Capacitors
* Electrostatic Energy
» Laplace's and Poisson's Equations
» Uniqueness of Electrostatic Solutions
* Method of Images

« Solution of Boundary Value Problems in Different Coordinate Systems

Electrostatic Potential and Equipotential Surfaces

In the previous sections we have seen how the electric field intensity due to a charge or a charge
distribution can be found using Coulomb's law or Gauss's law. Since a charge placed in the vicinity of
another charge (or in other words in the field of other charge) experiences a force, the movement of
the charge represents energy exchange. Electrostatic potential is related to the work done in carrying
a charge from one point to the other in the presence of an electric field.
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Let us suppose that we wish to move a positive test charge Lg from a point P to another
point Q as shown in the Fig. 2.8.

The force at any point along its path would cause the particle to accelerate and move it out of
the region if unconstrained. Since we are dealing with an electrostatic case, a force equal to
the negative of that acting on the charge is to be applied while Ly moves from P to Q. The
work done by this external agent in moving the charge by a distance dl s given by:

AW = -LgEd] (223

0
Fig 2.8: Movement of Test Charge in Electric Field

The negative sign accounts for the fact that work is done on the system by the external
agent.

The potential difference between two points P and Q , Ve, is defined as the work done per
unit charge, i.e.

It may be noted that in moving a charge from the initial point to the final point if the potential
difference is positive, there is a gain in potential energy in the movement, external agent
performs the work against the field. If the sign of the potential difference is negative, work is
done by the field.
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We will see that the electrostatic system is conservative in that no net energy is exchanged if
the test charge is moved about a closed path, i.e. returning to its initial position. Further, the
potential difference between two points in an electrostatic field is a point function; it is
independent of the path taken. The potential difference is measured in Joules/Coulomb
which is referred to as Volts.

Let us consider a point charge Q as shown in the Fig. 2.9.

A .
\
'H-H__H_ } ,-*"f(
- Yy :
- Kff -\\HHHK
/
- / \

Y

ull

L

|
|
I
|
-
|

Fig 2.9: Electrostatic Potential calculation for a point charge

Further consider the two points A and B as shown in the Fig. 2.9. Considering the movement
of a unit positive test charge from B to A, we can write an expression for the potential
difference as:

It is customary to choose the potential to be zero at infinity. Thus potential at any point ( ra =
r) due to a point charge Q can be written as the amount of work done in bringing a unit
positive charge from infinity to that point (i.e. rg = 0).

Or, in other words,
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Let us now consider a situation where the point charge Q is not located at the origin as
shown in Fig. 2.10.

Fig 2.10: Electrostatic Potential due a Displaced Charge

The potential at a point P becomes

iy =2 1

4??5',:, |,r' —-r'

So far we have considered the potential due to point charges only. As any other type of
charge distribution can be considered to be consisting of point charges, the same basic
ideas now can be extended to other types of charge distribution also.

Let us first consider N point charges Q1, Q2,. Qn located at points with position vectors 1
2 LF The potential at a point having position vector #can be written as:

Vi) = Ll &, &, Gr
475, |r -n lr -5 |r ~ (2:308)
- 1 X Qﬁ
V{.?"]I = Ezr—_..
7 rF—r
e SO e, (2.30b)

For continuous charge distribution, we replace point charges Qn by corresponding charge

elements ol or Pydis or Pydy depending on whether the charge distribution is linear,
surface or a volume charge distribution and the summation is replaced by an integral. With
these modifications we can write:
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V{ :I - J‘.'GI, I:,?" I:Idj
47E,
For line charge,.......ccovevvnee i Sl (2.31)

-] fs(r').:fs'

|—o- —

For surface charge, .........cocooee e (2.32)

For volume Charge, ........ccocveverernscdn.l S (2.33)

It may be noted here that the primed coordinates represent the source coordinates and the
unprimed coordinates represent field point.

Further, in our discussion so far we have used the reference or zero potential at infinity. If
any other point is chosen as reference, we can write:

where C is a constant. In the same manner when potential is computed from a known electric
field we can write:

We have mentioned that electrostatic field is a conservative field; the work done in moving a
charge from one point to the other is independent of the path. Let us consider moving a
charge from point P; to P, in one path and then from point P2 back to P; over a different path.
If the work done on the two paths were different, a net positive or negative amount of work
would have been done when the body returns to its original position P;. In a conservative
field there is no mechanism for dissipating energy corresponding to any positive work neither
any source is present from which energy could be absorbed in the case of negative work.
Hence the question of different works in two paths is untenable, the work must have to be
independent of path and depends on the initial and final positions.

Since the potential difference is independent of the paths taken, Vag = - Vsa , and over a
closed path,
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Applying Stokes's theorem, we can write:

—

qPE di = J‘(‘FXE) 5=0

S s (2.38)

from which it follows that for electrostatic field,

Any vector field < that satisfies W %A =0js called an irrotational field.

From our definition of potential, we can write

dV=ﬁdx+ﬁd - Fogi
dx dv ax

BVﬂ +ﬁay+ﬁa (dxcz +.:1!’yc:; +.:i'za') ~E-di
i dv iz

GV di=-E-dl (2.40)

from which we obtain,

From the foregoing discussions we observe that the electric field strength at any point is the
negative of the potential gradient at any point, negative sign shows that £is directed from

higher to lower values of V. This gives us another method of computing the electric field, i.
e. if we know the potential function, the electric field may be computed. We may note here

that that one scalar function ¥ contain all the information that three components of E carry,
the same is possible because of the fact that three components of E are interrelated by the

relation ¥ * &
Example: Electric Dipole

An electric dipole consists of two point charges of equal magnitude but of opposite sign and
separated by a small distance.

As shown in figure 2.11, the dipole is formed by the two point charges Q and -Q separated by
a distance d, the charges being placed symmetrically about the origin. Let us consider a
point P at a distance r, where we are interested to find the field.
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Fig 2.11 : Electric Dipole

The potential at P due to the dipole can be written as:

s e 2] 0 [r-1
dmE, |7 A 478, | Afs

.......................... (2.42)
o
mon=2r—cos@=dcosd P
When r1 and r>>>d, we can write 2 and 't T @ T 7
Therefore,
- i dcosd
3
L2 T (2.43)
We can write,
Qdcosd =Qdaz @, (2.44)

The quantity P=Qd is called the dipole moment of the electric dipole.

Hence the expression for the electric potential can now be written as:

It may be noted that while potential of an isolated charge varies with distance as 1/r that of
an electric dipole varies as 1/r? with distance.
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If the dipole is not centered at the origin, but the dipole center lies at * ', the expression for
the potential can be written as:

Be(r—r

e

The electric field for the dipole centered at the origin can be computed as

E=-Nl=-|—d& +——i
dr rdg

_d cos;? i+ Chf 511135&}i
2ITE 47, r

= i 13 ]
a

= 43%1;3 (2cos 83, +5in 83, )
0

T =

1 - [2cosﬂﬁr+sin5ﬁﬂ)
TE

F=Qd is the magnitude of the dipole moment. Once again we note that the electric field of
electric dipole varies as 1/r® where as that of a point charge varies as 1/r2.

Equipotential Surfaces

An equipotential surface refers to a surface where the potential is constant. The intersection
of an equipotential surface with an plane surface results into a path called an equipotential
line. No work is done in moving a charge from one point to the other along an equipotential
line or surface.

In figure 2.12, the dashes lines show the equipotential lines for a positive point charge. By
symmetry, the equipotential surfaces are spherical surfaces and the equipotential lines are
circles. The solid lines show the flux lines or electric lines of force.
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Fig 2.12: Equipotential Lines for a Positive Point Charge

Michael Faraday as a way of visualizing electric fields introduced flux lines. It may be seen
that the electric flux lines and the equipotential lines are normal to each other.

In order to plot the equipotential lines for an electric dipole, we observe that for a given Q and d, a
cos &

2 = . f
constant V requires that # is a constant. From this we can write r=cyeosd to be the
equation for an equipotential surface and a family of surfaces can be generated for various
values of ¢yv.When plotted in 2-D this would give equipotential lines.

To determine the equation for the electric field lines, we note that field lines represent the
direction of £ in space. Therefore,

A= EE IS @ CONSIANT covvveooeeeveeeeeeeeee e ssenens (2.48)

G,dr +rd8d, +arsn8 =k(4,B, +4,E, +4,8) = di

For the dipole under consideration ~#=0, and therefore we can write,

dr _rdd

E, B,

dr _Zcos8dd _ 2disin &)

Foosng NG (2.50)

_ -2
Integrating the above expression we get r=csn & , Which gives the equations for electric

flux lines. The representative plot ( Cy = C assumed) of equipotential lines and flux lines for a
dipole is shown in fig 2.13. Blue lines represent equipotential, red lines represent field lines.
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FIGURE MISSING
Fig 2.13: Equipotential Lines and Flux Lines for a Dipole
Boundary conditions for Electrostatic fields

In our discussions so far we have considered the existence of electric field in the homogeneous
medium. Practical electromagnetic problems often involve media with different physical properties.
Determination of electric field for such problems requires the knowledge of the relations of field
quantities at an interface between two media. The conditions that the fields must satisfy at the
interface of two different media are referred to as boundary conditions .

In order to discuss the boundary conditions, we first consider the field behavior in some
common material media.

In general, based on the electric properties, materials can be classified into three categories:
conductors, semiconductors and insulators (dielectrics). In conductor , electrons in the
outermost shells of the atoms are very loosely held and they migrate easily from one atom to
the other. Most metals belong to this group. The electrons in the atoms of insulators or
dielectrics remain confined to their orbits and under normal circumstances they are not
liberated under the influence of an externally applied field. The electrical properties of
semiconductors fall between those of conductors and insulators since semiconductors have
very few numbers of free charges.

The parameter conductivity is used characterizes the macroscopic electrical property of a
material medium. The notion of conductivity is more important in dealing with the current flow
and hence the same will be considered in detail later on.

If some free charge is introduced inside a conductor, the charges will experience a force due
to mutual repulsion and owing to the fact that they are free to move, the charges will appear
on the surface. The charges will redistribute themselves in such a manner that the field

within the conductor is zero. Therefore, under steady condition, inside a conductor & =0

From Gauss's theorem it follows that

The surface charge distribution on a conductor depends on the shape of the conductor. The
charges on the surface of the conductor will not be in equilibrium if there is a tangential
component of the electric field is present, which would produce movement of the charges.
Hence under static field conditions, tangential component of the electric field on the
conductor surface is zero. The electric field on the surface of the conductor is normal
everywhere to the surface . Since the tangential component of electric field is zero, the

conductor surface is an equipotential surface. As £ = 0 inside the conductor, the conductor
as a whole has the same potential. We may further note that charges require a finite time to

-19
redistribute in a conductor. However, this time is very small ~ 107 sec for good conductor
like copper.
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Fig 2.14: Boundary Conditions for at the surface of a Conductor
Let us now consider an interface between a conductor and free space as shown in the figure
2.14.

Let us consider the closed path pgrsp for which we can write,

In order to determine the normal component En, the normal component of & at the surface
of the conductor, we consider a small cylindrical Gaussian surface as shown in the Fig.12.

Let &5 represent the area of the top and bottom faces and ke represents the height of the

cylinder. Once again, as Ak =0 , we approach the surface of the conductor. Since E=0
inside the conductor is zero,

encﬁ- ds=gEhs = o
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Behavior of dielectrics in static electric field: Polarization of dielectric

Here we briefly describe the behavior of dielectrics or insulators when placed in static electric
field. Ideal dielectrics do not contain free charges. As we know, all material media are
composed of atoms where a positively charged nucleus (diameter ~ 10-1°m) is surrounded by
negatively charged electrons (electron cloud has radius ~ 10-®’m) moving around the
nucleus. Molecules of dielectrics are neutral macroscopically; an externally applied field
causes small displacement of the charge particles creating small electric dipoles.These
induced dipole moments modify electric fields both inside and outside dielectric material.

Molecules of some dielectric materials posses permanent dipole moments even in the
absence of an external applied field. Usually such molecules consist of two or more
dissimilar atoms and are called polar molecules. A common example of such molecule is
water molecule H20. In polar molecules the atoms do not arrange themselves to make the
net dipole moment zero. However, in the absence of an external field, the molecules arrange
themselves in a random manner so that net dipole moment over a volume becomes zero.
Under the influence of an applied electric field, these dipoles tend to align themselves along
the field as shown in figure 2.15. There are some materials that can exhibit net permanent
dipole moment even in the absence of applied field. These materials are called electrets that
made by heating certain waxes or plastics in the presence of electric field. The applied field
aligns the polarized molecules when the material is in the heated state and they are frozen to
their new position when after the temperature is brought down to its normal temperatures.
Permanent polarization remains without an externally applied field.

As a measure of intensity of polarization, polarization vector F (in C/m?) is defined as:

HAV

. 2A
P =lim &=L —
=l Ay (2.59)

FIGURE MISSING

Fig 2.15: Polarised Dielectric Medium

n being the number of molecules per unit volume i.e. Fis the dipole moment per unit
volume. Let us now consider a dielectric material having polarization £ and compute the

potential at an external point O due to an elementary dipole v,
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N

Fig 2.16: Potential at an External Point due to an Elementary Dipole £ dv'.

J = Fv 'aiﬂ
With reference to the figure 2.16, we can write: ............ 4 REUR ......................................... (2.60)
Therefore,
Ir = ﬂdv' R [[ Vo Yo )2]55
2 =i(x—x" +{y-yV +z-2'
A (2.61) 7
........ (2.62)

where X,y,z represent the coordinates of the external point O and x',y',z' are the coordinates of the
source point.

From the expression of R, we can verify that

Using the vector identity, VIS =AY ANV ,where f is a scalar quantity , we have,

7 E]d '— Eaﬁ' ']
:[ g[" ‘[R oo (2.65)

Converting the first volume integral of the above expression to surface integral, we can write

1
4518,

Ir =
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rr

“dm d R Amm 4 R

where % #is the outward normal from the surface element ds' of the dielectric. From the
above expression we find that the electric potential of a polarized dielectric may be found
from the contribution of volume and surface charge distributions having densities

These are referred to as polarisation or bound charge densities. Therefore we may replace a
polarized dielectric by an equivalent polarization surface charge density and a polarization
volume charge density. We recall that bound charges are those charges that are not free to
move within the dielectric material, such charges are result of displacement that occurs on a
molecular scale during polarization. The total bound charge on the surface is

The charge that remains inside the surface is

Il‘pprdv - J—v-ﬁdv

The total charge in the dielectric material is zero as

ffpwds+tl‘pﬂ=15§-d§+‘l‘—?-§dv=tlv-ﬁ—tl\v-ﬁ=0 o

If we now consider that the dielectric region containing charge density ¥ the total volume
charge density becomes

w7 E - ("G" M "GF")
C0 o, (2.73)
Using the definition of Epr we have
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Therefore the electric flux density

When the dielectric properties of the medium are linear and isotropic, polarisation is directly
proportional to the applied field strength and

Pt & oo (2.75)
is the electric susceptibility of the dielectric. Therefore,
D-g(l+z)E-a5E-c& (2.76)

=]+ . . - . . . .
& =1*+% is called relative permeability or the dielectric constant of the medium. f0f i

called the absolute permittivity.

A dielectric medium is said to be linear when ¢ is independent of £ and the medium is

homogeneous if te is also independent of space coordinates. A linear homogeneous and
isotropic medium is called a simple medium and for such medium the relative permittivity is
a constant.

Dielectric constant r'51:’iay be a function of space coordinates. For anistropic materials, the
dielectric constant is different in different directions of the electric field, D and E are related
by a permittivity tensor which may be written as:

o, 1 G2 s ||&
Dy £ Ep B Ey
Bl 18 & &afl&] 2.77)

For crystals, the reference coordinates can be chosen along the principal axes, which make
off diagonal elements of the permittivity matrix zero. Therefore, we have

D 3 rE-1 [:I ¥
D,l=10 & E,
ol 1o o gll&

CH IR (2.78)

Media exhibiting such characteristics are called biaxial. Further, if 1~ Z2 then the medium is

called uniaxial. It may be noted that for isotropic media, S s
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Lossy dielectric materials are represented by a complex dielectric constant, the imaginary

part of which provides the power loss in the medium and this is in general dependant on
frequency.

Another phenomenon is of importance is dielectric breakdown. We observed that the
applied electric field causes small displacement of bound charges in a dielectric material that
results into polarization. Strong field can pull electrons completely out of the molecules.
These electrons being accelerated under influence of electric field will collide with molecular
lattice structure causing damage or distortion of material. For very strong fields, avalanche
breakdown may also occur. The dielectric under such condition will become conducting.

The maximum electric field intensity a dielectric can withstand without breakdown is referred
to as the dielectric strength of the material.

Boundary Conditions for Electrostatic Fields:

Let us consider the relationship among the field components that exist at the interface
between two dielectrics as shown in the figure 2.17. The permittivity of the medium 1 and

£y

medium 2 are “land respectively and the interface may also have a net charge density

s Coulomb/m.

E, & D,
\ AW N

Medium 2

Fig 2.17: Boundary Conditions at the interface between two dielectrics

We can express the electric field in terms of the tangential and normal

B =5, +H,

components &2 = Far ¥ Eay (2.79)
where E; and E, are the tangential and normal components of the electric field respectively.

Let us assume that the closed path is very small so that over the elemental path length the
variation of E can be neglected. Moreover very near to the interface, Ak =10 Therefore

TE.&‘? =Bt — B, L+ E[Em + ) _g[Em +E,) =0



Thus, we have,

Lo Dy

By = &y or & £ i.e. the tangential component of an electric field is continuous
across the interface.

For relating the flux density vectors on two sides of the interface we apply Gauss’s law to a
small pillbox volume as shown in the figure. Once again as &% =0 we can write

Thus we find that the normal component of the flux density vector D is discontinuous
across an interface by an amount of discontinuity equal to the surface charge density
at the interface.

Example

Two further illustrate these points; let us consider an example, which involves the refraction
of D or E at a charge free dielectric interface as shown in the figure 2.18.

Using the relationships we have just derived, we can write

E,=Essnd =ﬂsin5'1 =H, = A and, =&sin &
&

) E2 s (2.82a)
Dy =Dheos§ = Ly, =D,Cosy (2.82b)
In terms of flux density vectors,
ﬂ sin & =—2siné,
£ 2 (2.83a)
Dyoos§ = 150058 o (2.83b)
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10N

Fig 2.18: Refraction of D or E at a Charge Free Dielectric Interface
Capacitance and Capacitors

We have already stated that a conductor in an electrostatic field is an Equipotential body and
any charge given to such conductor will distribute themselves in such a manner that electric
field inside the conductor vanishes. If an additional amount of charge is supplied to an
isolated conductor at a given potential, this additional charge will increase the surface charge

I 1 J Julein
density s Since the potential of the conductor is given by gy , the potential
e c-£
of the conductor will also increase maintaining the ratio " same. Thus we can write "

where the constant of proportionality C is called the capacitance of the isolated conductor. Sl
unit of capacitance is Coulomb/ Volt also called Farad denoted by F. It can It can be seen
that if V=1, C = Q. Thus capacity of an isolated conductor can also be defined as the amount
of charge in Coulomb required to raise the potential of the conductor by 1 Volt.

Of considerable interest in practice is a capacitor that consists of two (or more) conductors
carrying equal and opposite charges and separated by some dielectric media or free space.
The conductors may have arbitrary shapes. A two-conductor capacitor is shown in figure
2.19.



http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

Fig 2.19: Capacitance and Capacitors

When a d-c voltage source is connected between the conductors, a charge transfer occurs
which results into a positive charge on one conductor and negative charge on the other
conductor. The conductors are equipotential surfaces and the field lines are perpendicular to
the conductor surface. If V is the mean potential difference between the conductors, the

C=Q

capacitance is given by . Capacitance of a capacitor depends on the geometry of the
conductor and the permittivity of the medium between them and does not depend on the
charge or potential difference between conductors. The capacitance can be computed by

assuming Q(at the same time -Q on the other conductor), first determining E using Gauss’s

F=-[Edi
theorem and then determining I . We illustrate this procedure by taking the
example of a parallel plate capacitor.
Example: Parallel plate capacitor

Gausian
Surface

g

Fig 2.20: Parallel Plate Capacitor

For the parallel plate capacitor shown in the figure 2.20, let each plate has area A and a
distance h separates the plates. A dielectric of permittivity £fills the region between the
plates. The electric field lines are confined between the plates. We ignore the flux fringing at
the edges of the plates and charges are assumed to be uniformly distributed over the

_e
. . s o L
conducting plates with densities “*and - ~+, A
gP_ 2
By Gauss’s theorem we can write, .......... EonAE (2.85)

As we have assumed **to be uniform and fringing of field is neglected, we see that E is

k

- =L

constant in the region between the plates and therefore, we can write g4 Thus,
= o = E‘ﬂ

for a parallel plate capacitor we have, vk
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Series and parallel Connection of capacitors

Capacitors are connected in various manners in electrical circuits; series and parallel
connections are the two basic ways of connecting capacitors. We compute the equivalent
capacitance for such connections.

Series Case: Series connection of two capacitors is shown in the figure 2.21. For this case
we can write,

‘?q

I

I—lﬁ

+

s

I
i

+
S

V1 _1,1
@ Co O & (2.87)
i V2
Clgs
| ) | | s | |
| | |
+2 D +2 -0 e
L 5 o O O—
+ - * )
v i

Fig 2.21: Series Connection of Capacitors

oy
||
+0F - Gy
v
& _| I_
+0I -0I e 2
o
+ -
| |
| |
+y-

Fig 2.22: Parallel Connection of Capacitors

The same approach may be extended to more than two capacitors connected in series.
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Parallel Case: For the parallel case, the voltages across the capacitors are the same.

The total charge & ~ &1 ¥ =G + 0

B 0= (0] (TR T (2.88)
Electrostatic Energy and Energy Density

We have stated that the electric potential at a point in an electric field is the amount of work
required to bring a unit positive charge from infinity (reference of zero potential) to that point.
To determine the energy that is present in an assembly of charges, let us first determine the
amount of work required to assemble them. Let us consider a number of discrete charges
Q1, Q2. , Qn are brought from infinity to their present position one by one. Since initially
there is no field present, the amount of work done in bring Q1 is zero. Q2 is brought in the
presence of the field of Q1, the work done W1= Q2V21 where V21 is the potential at the location
of Q2 due to Q1. Proceeding in this manner, we can write, the total work done

W=00,+ (00 + P00+ (Vb T Vi)

Therefore,

2=Vl ¥ Wyt PRIt Vo t Ve T Ll o U T

N
DWW =P+ Ve Z{”}Q:
Tl
1 o
W= EZP}QI
OF, o 2 =R (2.92)

If instead of discrete charges, we now have a distribution of charges over a volume v then we
can write,
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where ¥ is the volume charge density and V represents the potential function.

Since, e =T'D,we can write

=1 J‘(v D v
2
Yo (2.94)
Using the vector identity,
V.0D)=D VY + WE we can write
1 -
W = El(v. ¥y -D ‘W) v
%?[Vﬂ) ds - %I(E- V) dv
; Vo s (2.95)
> §(vD)as ! 1
In the expression ~ , for point charges, since V varies as ¥ and D varies as ©
1

- T _ _ _
the term V Z'varies as 7~ while the area varies as r2. Hence the integral term varies at least
1

as " and the as surface becomes large (i.e. ¥ — %2) the integral term tends to zero.

Thus the equation for W reduces to

1
W = —EI(D‘?V)Q' - J‘(D E)d - —J‘ (B )av =Iwedv
v Yo (2.96)

1
W, =—gf"

2 , is called the energy density in the electrostatic field.
Poisson’s and Laplace’s Equations
For electrostatic field, we have seen that
v D= 2,
B o ettt (2.97)

Form the above two equations we can write
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Vi (eE) =V (~VV) = g,

Using vector identity we can write, ﬁvVJervE:_p" ................. (2.99)

For a simple homogeneous medium, £is constantand ¥ &= U Therefore,

Ty =V - -2
E o, (2.100)

This equation is known as Poisson’s equation. Here we have introduced a new operator,

2 . . .
K ( del square), called the Laplacian operator. In Cartesian coordinates,

. e d d al” ai” v .
VWV =NVl ={—a +—da, +—d p—a, +—dad,+—d_)
dx "~y dz o a ) (2.101)
Therefore, in Cartesian coordinates, Poisson equation can be written as:
2 2 2
&L d E’ L7 =
dx"  dx"  odx E i, (2.102)
In cylindrical coordinates,
o, 18 [ a g] 18 &
VW e |r— |+ —s+—F
rorl e ) sag et L (2.103)
In spherical polar coordinate system,
13 a7 1 af. v 1@
rear dr ) r‘sin8 dé 38) rsn*8d¢y (2.104)

At points in simple media, where no free charge is present, Poisson’s equation reduces to

V=0 (2.105)
which is known as Laplace’s equation.

Laplace’s and Poisson’s equation are very useful for solving many practical electrostatic field
problems where only the electrostatic conditions (potential and charge) at some boundaries
are known and solution of electric field and potential is to be found throughout the volume.
We shall consider such applications in the section where we deal with boundary value
problems.
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ASSIGNMENT PROBLEMS

1. A charged ring of radius d carrying a charge of P Cim lies in the x-y plane with its
centre at the origin and a charge & C is placed at the point (0.0,2d) . Determine ©&

in terms of ¢ and € so that a test charge placed at (0,0,2d) does not experience
any force.

2. A semicircular ring of radius ¥ lies in the free space and carries a charge density s
C/m. Find the electric field at the centre of the semicircle.

3. Consider a uniform sphere of charge with charge density A and radius b , centered
at the origin. Find the electric field at a distance r from the origin for the two cases:
r<b and r>b . Sketch the strength of the electric filed as function of r .

4. A spherical charge distribution is given by

@t -, ria
o @
0, Fra

£ is the radius of the sphere. Find the following:

i. The total charge.
i EforrLdand 7 >

iii. The value of * where the £ becomes maximum.

5. With reference to the Figure 2.6 determine the potential and field at the point

£(0,0.%) if the shaded region contains uniform charge density A jm2 .

o=

Figure 2.6

6. A capacitor consists of two coaxial metallic cylinders of length L radius of the inner
conductor £ and that of outer conductor £ . A dielectric material having dielectric
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=34+ . . .
constant & 3 Efp,where A is the radius, fills the space between the

conductors. Determine the capacitance of the capacitor.

7. Determine whether the functions given below satisfy Laplace 's equation

V(x9.2) = e

) sz +yt + g

i) Vie,¢.z) = pzsin g+ o°

Unit Il Magnetostatics

In previous chapters we have seen that an electrostatic field is produced by static or
stationary charges. The relationship of the steady magnetic field to its sources is much more
complicated.

The source of steady magnetic field may be a permanent magnet, a direct current or an
electric field changing with time. In this chapter we shall mainly consider the magnetic field
produced by a direct current. The magnetic field produced due to time varying electric field
will be discussed later. Historically, the link between the electric and magnetic field was
established Oersted in 1820. Ampere and others extended the investigation of magnetic
effect of electricity . There are two major laws governing the magnetostatic fields are:

e Biot-Savart Law

e Ampere's Law

—_—

Usually, the magnetic field intensity is represented by the vector A 1tis customary to
represent the direction of the magnetic field intensity (or current) by a small circle with a dot
or cross sign depending on whether the field (or current) is out of or into the page as shown
in Fig. 4.1.
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So e

f (or1) out of the page # (or 1) into the page
Fig. 4.1: Representation of magnetic field (or current)
Biot- Savart Law

This law relates the magnetic field intensity dH produced at a point due to a differential
current element 4! as shown in Fig. 4.2.

Fig. 4.2: Magnetic field intensity due to a current element

The magnetic field intensity @ i at P can be written as,

= _ldixd, _HIxR

a5 == 5
4R AR e, (4.1a)
i = I@fﬂ&ia
SAI (4.1b)
where B | |is the distance of the current element from the point P.

Similar to different charge distributions, we can have different current distribution such as line

current, surface current and volume current. These different types of current densities are
shown in Fig. 4.3.
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idl -
fes
1 Y
T
da - '
Vo
Line Current Surface Current Volume Current

Fig. 4.3: Different types of current distributions

By denoting the surface current density as K (in amp/m) and volume current density as J (in
amp/m?) we can write:

idil = Kds = Jdv 4.2)

(It may be noted that £ = Kdw = Jda )

Employing Biot-Savart Law, we can now express the magnetic field intensity H. In terms of
these current distributions.

—  IdIxR
H= Z[ :
AR for line current. ........ooecvvvieenennn. (4.38)
— _FX_.-
- JﬁistER
. for surface current.........cccc........ (4.3b)
= I}“.:fvxﬂ
K
TR for volume current.......cccccceeene (4.3c)

To illustrate the application of Biot - Savart's Law, we consider the following example.

Example 4.1: We consider a finite length of a conductor carrying a current ** placed along z-
axis as shown in the Fig 4.4. We determine the magnetic field at point P due to this current
carrying conductor.
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]!

“f H
P P
Fig. 4.4: Field at a point P due to afinite length current carrying conductor

With reference to Fig. 4.4, we find that
.:I’E=.:;Ezax and R = fa,-za

Applying Biot - Savart's law for the current element ¥ di

we can write,
—5 _ JdIxR pdzd,
4.??_..'?.3 47?[,.'92 +22]3."2
........................................................ (4.5)
z
— =tan &
Substituting F we can write,
— "7 plsed’ ada y .
H=[— i, = SIf1 (X, — SN )&
W4J‘T Seec’ @ i’ 4;’1?:?[ “ &1) i’
......................... (4.6)

_ ol = —an?
We find that, for an infinitely long conductor carrying a current |, & =30 and & 90

Therefore, ............. 2 ettt ettt ettt ettt ettt r ettt 4.7
Ampere's Circuital Law:

Ampere's circuital law states that the line integral of the magnetic field H (circulation of H)
around a closed path is the net current enclosed by this path. Mathematically,
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The total current | enc can be written as,

= lj.ds wo

By applying Stoke's theorem, we can write
cjﬁd}’ - l‘?xﬁd&’
g !?XE..:;?E =J‘f..:i‘§
L VxH=J
which is the Ampere's law in the point form.
Applications of Ampere's law:
We illustrate the application of Ampere's Law with some examples.

Example 4.2: We compute magnetic field due to an infinitely long thin current carrying
conductor as shown in Fig. 4.5. Using Ampere's Law, we consider the close path to be a

circle of radius © as shown in the Fig. 4.5.

If we consider a small current element i(= laza,) , d g perpendicular to the plane

containing bothd and I: ,c:-a:)

A, Ji.e., H = Hd, .

. Therefore only component of  that will be present is

By applying Ampere's law we can write,

§=2L J‘Hﬂpd;é—HﬂpEJr I

o T .
Therefore, 7 which is same as equation (4.7)
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Fig. 4.5: Magnetic field due to an infinite thin current carrying conductor

Example 4.3: We consider the cross section of an infinitely long coaxial conductor, the inner
conductor carrying a current | and outer conductor carrying current - | as shown in figure 4.6.

We compute the magnetic field as a function of # as follows:

In the region 0LpLh
2
fﬂﬁ = Ii
A (4.12)
Iﬂlf ie
oo 2wt (4.13)

In the region Ripik

L. =1

N

—f
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Fig. 4.6: Coaxial conductor carrying equal and opposite

currents
ED 4 02 J.E;:—
In the region “2 =~ ="~
) ﬁ... _LIE:QL.‘
oo =11 PR
ok S T (4.15)
2 2
oot -~
B ni_ ol
e R (4.16)

oo R
In the region * ~ %

T - T
fre = 0 L (4.17)
Magnetic Flux Density:

In simple matter, the magnetic flux density B related to the magnetic field intensity f as

B=uid where # called the permeability. In particular when we consider the free space

B=tH where Hy —Am<10 H/m is the permeability of the free space. Magnetic flux
density is measured in terms of Wh/m 2 .

The magnetic flux density through a surface is given by:

— =+

W= !B.ds

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net
flux passing through the surface is equal to the charge enclosed by the surface. In case of
magnetic field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always
occur in pair (as N-S). For example, if we desire to have an isolated magnetic pole by
dividing the magnetic bar successively into two, we end up with pieces each having north (N)
and south (S) pole as shown in Fig. 4.7 (a). This process could be continued until the
magnets are of atomic dimensions; still we will have N-S pair occurring together. This means
that the magnetic poles cannot be isolated.
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S | W)
N
= o (L D
5
|a'f? — -
g g g Hor B lines
{a) {b)

Fig. 4.7: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current
carrying conductor

Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 4.7
(b), we find that these lines are closed lines, that is, if we consider a closed surface, the
number of flux lines that would leave the surface would be same as the number of flux lines
that would enter the surface.

From our discussions above, it is evident that for magnetic field,

iﬁﬁ.ds =0
...................................... (4.19)
which is the Gauss's law for the magnetic field.
By applying divergence theorem, we can write:
fﬁ_af;f =JV.§.:£v =0
Hence, V=0, (4.20)

which is the Gauss's law for the magnetic field in point form.
Magnetic Scalar and Vector Potentials:

In studying electric field problems, we introduced the concept of electric potential that
simplified the computation of electric fields for certain types of problems. In the same manner
let us relate the magnetic field intensity to a scalar magnetic potential and write:
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VRE =T e, (4.22)
Therefore, v ><|:— v V’“ )=J ............................. (4.23)
But using vector identity, ¥ (?V) =0 we find that H ="V, is valid only where J=0

Thus the scalar magnetic potential is defined only in the region where J=0, Moreover, Vi
in general is not a single valued function of position.

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as
shown in fig 4.8.

7=,

= #
In the region <o ib, J =0 and 2o

—
o
.

e
' il -
(P
| [
R :\\_//|
| N | |
| | |
|
| | |
I 7-1—13—1-'
|
|
|
e ————
Fig. 4.8: Cross Section of a Coaxial Line
If Vim is the magnetic potential then,
v
_vp; =_l b
o d¢
ry



g
M, =——g+tc
™ 2;?r¢
B
If we set Vi = 0 at ¥= then c=0 and 27

, I
LAt gsd Vs —d
2T
We observe that as we make a complete lap around the current carrying conductor , we

reach % again but Vr, this time becomes

7y = =6 +2)

2

We observe that value of Vi, keeps changing as we complete additional laps to pass through
the same point. We introduced Vr analogous to electostatic potential V. But for static electric

% Edi=0 =
fields, ¥ * & =0 and CP , whereas for steady magnetic field * *# = Owherever
Foopg PE AT, T . .
but even if along the path of integration.

We now introduce the vector magnetic potential which can be used in regions where
current density may be zero or nonzero and the same can be easily extended to time varying
cases. The use of vector magnetic potential provides elegant ways of solving EM field
problems.

= — V.[Vxd4)=0
Since ¥-& = Uand we have the vector identity that for any vector A ( )

write & =V x4

, We can

Here, the vector field 4 is called the vector magnet|c potential. Its Sl unit is Wb/m. Thus if
can find A of a given current distribution, B can be found from A through a curl operation.

We have introduced the vector function <1 and related its curl to £ . A vector function is

defined fully in terms of its curl as well as divergence. The choice of V.4 is made as follows.

VRV RA= (T H =)
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Great deal of simplification can be achieved if we choose V.A=0

. 2
Putting V-A=0 we get ¥ 2 = S which is vector poisson equation.
In Cartesian coordinates, the above equation can be written in terms of the components as

2 = —
R (4.27a)
VA =25 e (4.27b)
] = —
K (4.27c)

for which the solution is

1 — —
V=—4 J‘%dv', R=|r—r'|
TEpS ] (4.29)
— v
WA= —
In case of time varying fields we shall see that df | which is known as Lorentz

condition, V being the electric potential. Here we are dealing with static magnetic field, so
WA=10

By comparison, we can write the solution for Ax as

Computing similar solutions for other two components of the vector potential, the vector
potential can be written as

A=A i.a!!’v'
dmd R

This equation enables us to find the vector potential at a given point because of a volume

current density J Similarly for line or surface current density we can write
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................................................... (4.32)
T respectively......ccccovvevcieenieeenne, (4.33)

The magnetic flux wthrough a given area S is given by

= ‘!Ed;
............................................. (4.34)
Substituting & =V *4
= lTXE.dE - cfﬂ.:ﬂ
......................................... (4.35)

Vector potential thus have the physical significance that its integral around any closed path is
equal to the magnetic flux passing through that path.

Boundary Condition for Magnetic Fields:

Similar to the boundary conditions in the electro static fields, here we will consider the

behavior of £ and # at the interface of two different media. In particular, we determine how
the tangential and normal components of magnetic fields behave at the boundary of two
regions having different permeabilities.

The figure 4.9 shows the interface between two media having permeabities 1 and £, @«
being the normal vector from medium 2 to medium 1.

Medium |

=7
B
=7
e

s, Medium 2

Figure 4.9: Interface between two magnetic media

To determine the condition for the normal component of the flux density vector B we
consider a small pill box P with vanishingly small thickness h and having an elementary area
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A5 for the faces. Over the pill box, we can write

$ Bds=0
5 e, (4.36)
Since h --> 0, we can neglect the flux through the sidewall of the pill box

) B1d5 + B1.dS. =0

a5 as T (4.37)
. A dSa- cfS[—ax]

dS1=dSan and.........c heo e, (4.38)

| BudS = BpdS=0
where

Bp=Brar goq In =B (4.39)
Since £5'js small, we can write

[.E'M - £, )ﬁﬂ =10

(o] RS BIHB'JH .................................... (4.40)

That is, the normal component of the magnetic flux density vector is continuous across the
interface.

In vector form,

—

;x.(§1—32) =0

To determine the condition for the tangential component for the magnetic field, we consider a
closed path C as shown in figure 4.8. By applying Ampere's law we can write

Since h -->0,
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i i

We have shown in figure 4.8, a set of three unit vectors 2=, &f and % #such that they satisfy

d:r =@ p*dx (R H. rule). Here d{is tangential to the interface and “ #is the vector
perpendicular to the surface enclosed by C at the interface

The above equation can be written as

Hhila-HaMar == J A

i.e., tangential component of magnetic field component is discontinuous across the interface
where a free surface current exists.

If Js = 0, the tangential magnetic field is also continuous. If one of the medium is a perfect
conductor Js exists on the surface of the perfect conductor.

In vector form we can write,

(EI_EE).S:M

= (El —Ez).[;,,x;x]ﬂf
Tgmu DI @r B (4.45)
Therefore,
;xX(E1 —Ez) = }s
................................... (4.46)

ASSIGNMENT PROBLEMS

1. Aninfinitely long conductor carries a current | A is bent into an L shape and placed
as shown in Fig. P.4.7. Determine the magnetic field intensity at a point P (0,0, a).
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P(0,0,a)

Figure P.4.7

2. Consider a long filamentary carrying a current IA in the + Z direction. Calculate the
magnetic field intensity at point O (- a, a ,0). Also determine the flux through this

region described by ALpLpe= I:]and —hZush,
3. Averylong air cored solenoid is to produce an inductance 0.1H/m. If the member of
turns per unit length is 1000/m. Determine the diameter of this turns of the solenoid.
4. Determine the force per unit length between two infinitely long conductor each
carrying current IA and the conductor are separated by a distance ?d '.

Unit IV Electrodynamic fields

Introduction:

In our study of static fields so far, we have observed that static electric fields are produced by
electric charges, static magnetic fields are produced by charges in motion or by steady
current. Further, static electric field is a conservative field and has no curl, the static
magnetic field is continuous and its divergence is zero. The fundamental relationships for
static electric fields among the field quantities can be summarized as:

VxE=0 (5.1a)

(5.1b)

D=cX& (5.1¢)

Similarly for the magnetostatic case
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V.5=0 (5.2a)
VxH=7 (5.2b)
b=pd (5.2¢)

It can be seen that for static case, the electric field vectors £ and £’ and magnetic field
vectors & and £ form separate pairs.

In this chapter we will consider the time varying scenario. In the time varying case we will
observe that a changing magnetic field will produce a changing electric field and vice versa.

We begin our discussion with Faraday's Law of electromagnetic induction and then present
the Maxwell's equations which form the foundation for the electromagnetic theory.

Faraday's Law of electromagnetic Induction

Michael Faraday, in 1831 discovered experimentally that a current was induced in a
conducting loop when the magnetic flux linking the loop changed. In terms of fields, we can
say that a time varying magnetic field produces an electromotive force (emf) which causes a
current in a closed circuit. The quantitative relation between the induced emf (the voltage
that arises from conductors moving in a magnetic field or from changing magnetic fields) and
the rate of change of flux linkage developed based on experimental observation is known as
Faraday's law. Mathematically, the induced emf can be written as

dg

Emf= 4f Volts (5.3)

&
I

where *is the flux linkage over the closed path.

d¢
Anon zero c may result due to any of the following:

(a) time changing flux linkage a stationary closed path.
(b) relative motion between a steady flux a closed path.
(c) a combination of the above two cases.

The negative sign in equation (5.3) was introduced by Lenz in order to comply with the
polarity of the induced emf. The negative sign implies that the induced emf will cause a
current flow in the closed loop in such a direction so as to oppose the change in the linking
magnetic flux which produces it. (It may be noted that as far as the induced emf is
concerned, the closed path forming a loop does not necessarily have to be conductive).
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If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic

flux linking the coil induces an emf in each turn of the coil and total emf is the sum of the
induced emfs of the individual turns, i.e.,

_r3
Emf = df  Volts (5.4)

By defining the total flux linkage as
A=Np (5.5)
The emf can be written as

_di
Emf= df (5.6)

Continuing with equation (5.3), over a closed contour 'C' we can write

_ EFc Edi

Emf (5.7

where & is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C ' is given by

6= L[E..:fE
(5.8)
Where S is the surface for which 'C' is the contour.
From (5.7) and using (5.8) in (5.3) we can write
— - a — -
:}5 Edi= ——c:'P Bds
¢ gt 44 (5.9)
By applying stokes theorem
I?XE.&E= ! 98 4%
8 5 0t (5.10)

Therefore, we can write

il (5.11)
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which is the Faraday's law in the point form

d
We have said that non zero < can be produced in a several ways. One particular case is

when a time varying flux linking a stationary closed path induces an emf. The emf induced in
a stationary closed path by a time varying magnetic field is called a transformer emf .

Example: Ideal transformer

As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled
magnetically through a common core. Let us consider an ideal transformer whose winding
has zero resistance, the core having infinite permittivity and magnetic losses are zero.

—— ¢
imf(l) = _l
-+ L
iy N No | e {1
- | s
L — - \
Primary
winding Secondary
winding
Core

Fig 5.1: Transformer with secondary open

These assumptions ensure that the magnetization current under no load condition is
vanishingly small and can be ignored. Further, all time varying flux produced by the primary
winding will follow the magnetic path inside the core and link to the secondary coil without
any leakage. If N1 and Nz are the number of turns in the primary and the secondary windings
respectively, the induced emfs are

g, =M ?
2 (5.12a)

o, 99
dz (5.12b)

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the
dotted end of the winding.)

(5.13)


http://learnengineering.in/
http://learnengineering.in/

i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns.
Under ideal condition, the induced emf in either winding is equal to their voltage rating.

Vl_ﬂ_

s
v,

(5.14)

where '@’ is the transformation ratio. When the secondary winding is connected to a load, the
current flows in the secondary, which produces a flux opposing the original flux. The net flux
in the core decreases and induced emf will tend to decrease from the no load value. This
causes the primary current to increase to nullify the decrease in the flux and induced emf.
The current continues to increase till the flux in the core and the induced emfs are restored to
the no load values. Thus the source supplies power to the primary winding and the
secondary winding delivers the power to the load. Equating the powers

M =Y (5.15)

Lovy o8 N (5.16)
Further,

By =i M =0 (5.17)

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal
condition.

Motional EMF:

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2.

=1 Os

Fig 5.2

If a charge Q moves in a magnetic field 8 it experiences a force

(5.18)
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This force will cause the electrons in the conductor to drift towards one end and leave the
other end positively charged, thus creating a field and charge separation continuous until
electric and magnetic forces balance and an equilibrium is reached very quickly, the net
force on the moving conductor is zero.

=< E
can be interpreted as an induced electric field which is called the motional electric

| Ml

field

—

Ew =vnE (5.19)

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit
_ EP v Bl . _ i
is Je¢ . This emf is called the motional emf.

A classic example of motional emf is given in Additonal Solved Example No.1 .

Maxwell's Equation

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field.
For time varying case, the relationship among the field vectors written as

?xﬁ _—E

olt (5.203)
VxH =7 (5.20D)
v.D-p (5.200)
VE=0 (5.20d)

In addition, from the principle of conservation of charges we get the equation of continuity

=+ d
vi=--£
il (5.21)
The equation 5.20 (a) - (d) must be consistent with equation (5.21).

We observe that

VVRH =0=V.J (5.22)

Since ¥ *4js zero for any vector A,
g0
—t — = I:I
Thus ¥ *H =J applies only for the static case i.e., for the scenario when o
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A classic example for this is given below .

Suppose we are in the process of charging up a capacitor as shown in fig 5.3.

Amperian Loop

e

Balloan shaped

surinee
=]

Fig 5.3

Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. lenc = | is the total
current passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no
current passes through this surface and hence lenc = 0. But for non steady currents such as
this one, the concept of current enclosed by a loop is ill-defined since it depends on what
surface you use. In fact Ampere's Law should also hold true for time varying case as well,
then comes the idea of displacement current which will be introduced in the next few slides.

We can write for time varying case,

v.(v><§)=o=v.?+a—p
Az
-~ A=
=V I+ VD
At
- aD
=v. j+a_
‘ (5.23)
vxH =F+22
ot (5.24)

The equation (5.24) is valid for static as well as for time varying case.
Equation (5.24) indicates that a time varying electric field will give rise to a magnetic field
a0
. i N N (At
even in the absence of “ . The term 2 has a dimension of current densities and is
called the displacement current density.

a0
Introduction of ¢ in ¥ *H equation is one of the major contributions of Jame's Clerk
Maxwell. The modified set of equations
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VxE=-"2
0¢ (5.25a)
vxF -F+ 22
dt (5.25b)
v.h=p (5.25¢)
V.B=10 (5.25d)

is known as the Maxwell's equation and this set of equations apply in the time varying

scenario, static fields are being a particular case * &% .

In the integral form

N A8
Edl=- —ds&

i J o (5.26a)
— - any = _ @ -

T{de —IS[J +E re I+IS P ey 5260

IV‘?.D dv = ?S Dl = I}r odv (5.260)

(PE..::E‘E =0
(5.264)

The modification of Ampere's law by Maxwell has led to the development of a unified
electromagnetic field theory. By introducing the displacement current term, Maxwell could
predict the propagation of EM waves. Existence of EM waves was later demonstrated by
Hertz experimentally which led to the new era of radio communication.

Boundary Conditions for Electromagnetic fields

The differential forms of Maxwell's equations are used to solve for the field vectors provided
the field quantities are single valued, bounded and continuous. At the media boundaries, the
field vectors are discontinuous and their behaviors across the boundaries are governed by
boundary conditions. The integral equations(egn 5.26) are assumed to hold for regions
containing discontinuous media.Boundary conditions can be derived by applying the
Maxwell's equations in the integral form to small regions at the interface of the two media.
The procedure is similar to those used for obtaining boundary conditions for static electric
fields (chapter 2) and static magnetic fields (chapter 4). The boundary conditions are
summarized as follows
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With reference to fig 5.3

&;x(E{—E)=0 5.27(a)
& (D -D;) = 5.27(5)
@, (B~ Hy) =5 5.27(c)
a, (B ~B;)=0 5.27(d)

pegion 2

Fig 5.4

Equation 5.27 (a) says that tangential component of electric field is continuous across the
interface while from 5.27 (c) we note that tangential component of the magnetic field is
discontinuous by an amount equal to the surface current density. Similarly 5.27 (b) states

that normal component of electric flux density vector Dis discontinuous across the interface
by an amount equal to the surface current density while normal component of the magnetic
flux density is continuous.

If one side of the interface, as shown in fig 5.4, is a perfect electric conductor, say region 2, a

—_—

surface current Js can exist even though & is zero as. & =
Thus egn 5.27(a) and (c) reduces to

-

o,

")

Ty (5.28(a))
0 (5.28(2))

-

o,

tral

Wave equation and their solution:

From equation 5.25 we can write the Maxwell's equations in the differential form as

v E -F+ 22
At
TXE=—E§
At
V-D=o0
V. E=0
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Let us consider a source free uniform medium having dielectric constant =, magnetic
permeability Hand conductivity & . The above set of equations can be written as

—

—~ = 3R

v>«<H=¢rE+eE (5.29(a))
-  3H

VxE=-u== 5.29(h
<Fe-u?l (529(5)

v E=0 5.29(c))

vV H=0 (5.29(d))

Using the vector identity ,
VXV A=V (7 4] -74
We can write from 5.29(b)

vxvx§=v-(‘?-§)—v3§

Substituting ¥ *#Z from 5.29(a)

= af = 8%
V(VE)-VE=-p_|cB+e "
dt &t
But in source free medium ¥ ' £ =0 (egn 5.29(c))
2
i ={HJ_E+ {{_{Eg
il (5.30)

In the same manner for equation egn 5.29(a)
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vxvx§=v-(‘?-ﬁ)—v2§

= J(TXE) + E%(?XE)
=T —{{_{E +EE - E
di di df

Since " =Ufrom egn 5.29(d), we can write

— AE AH
ViH = ga| == |+ ue

These two equations

(5.31)

]
?EE=,MJ—E+,HE'¥
dai
— aH aH
ViH = go| =2 |+ ue
H [az HE 58

are known as wave equations.

It may be noted that the field components are functions of both space and time. For example,
. . . . EandH . E ¢
if we consider a Cartesian co ordinate system, Eand A essentially represents [x,y,z, )

E[x,y,z,:)

and . For simplicity, we consider propagation in free space , i.e. & = 0 ,’H= H

and £~ ¥ The wave egn in equations 5.30 and 5.31 reduces to

f— i 2_.-
VIE = e, g] (5.32(a))
L
= (3°H
VH = g, Y ] (5'32(]:'))
L

Further simplifications can be made if we consider in Cartesian co ordinate system a special

case where Eand are considered to be independent in two dimensions, say Eand i are

assumed to be independent of y and z. Such waves are called plane waves.

From egn (5.32 (a)) we can write
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3E
az = Sl

FE
A
The vector wave equation is equivalent to the three scalar equations

-_ r e

3R, *E,

axﬂ = EU"HU aﬁﬂ (533[@))
v ¥,

PE E

= et | =7 (5:33(2)
L .

aE A

axﬂx = Eﬂ-'u;:l aiﬂx (533[6))

Since we have ¥ & = U,

g S L (5.34)
dx  dy dz

As we have assumed that the field components are independent of y and z egn (5.34)
reduces to

8%, _,

o (5.35)

i.e. there is no variation of Ey in the x direction.

2
35, _, 85, _,

2
Further, from 5.33(a), we find that dx implies il which requires any three of the
conditions to be satisfied: (i) Ex=0, (ii)Ex = constant, (iii)Ex increasing uniformly with time.

A field component satisfying either of the last two conditions (i.e (ii) and (iii))is not a part of a
plane wave motion and hence Ey is taken to be equal to zero. Therefore, a uniform plane
wave propagating in x direction does not have a field component (E or H) acting along x.

Without loss of generality let us now consider a plane wave having Ey component only
(Identical results can be obtained for E; component) .

The equation involving such wave propagation is given by
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ax; =Gk =3 (5.36)
The above equation has a solution of the form
B, = Alx-vt) + oz +wye] (5.37)

1
v =

[i]
where VA5

Thus equation (5.37) satisfies wave eqn (5.36) can be verified by substitution.

AlE=wt) corresponds to the wave traveling in the + x direction while Falx )
corresponds to a wave traveling in the -x direction. The general solution of the wave eqn thus
consists of two waves, one traveling away from the source and other traveling back towards
the source. In the absence of any reflection, the second form of the eqn (5.37) is zero and
the solution can be written as

E, = fl[x—vn.t:l (5.38)

Such a wave motion is graphically shown in fig 5.5 at two instances of time t; and t,.

fiix - vata)

Y

fifx = vaiz)

=
—_—
Rad
e
—

- \"

Fig 5.5 : Traveling wave in
the + x direction

Let us now consider the relationship between E and H components for the forward traveling
wave.

§=;Ey =c-:;;f1|:x—vu.f:|

Since b and there is no variation along y and z.
- OB,
VHE =g ——
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Since only z component of VR E exists, from (5.29(b))

0 __, o4,
ax 3t (5.39)

and from (5.29(a)) with & = 0, only H;component of magnetic field being present

TxH - -a, 2
dx
. OH, 0F,
o= =gy —
dx ok (5.40)
Substituting Ey from (5.38)
aH 3z, ,
L=-g v x—wt
ax LREy SVas1 ': D )
aq 1 :
—Z =g A [x—vu.fj
dx J,{JDED
£ :
Ho= [ (A (x-vt)dx+e
% I 1 0
gy o8
= [ |— Ffdx+
ﬂnjﬂxfl xtc

The constant of integration means that a field independent of x may also exist. However, this
field will not be a part of the wave motion.

H,= [,
s
Hence (5.41)

which relates the E and H components of the traveling wave.

E
zy= =2 = [H 21005 or 37702
Hx l'E-IZI



2y = Ho
. ||_
U is called the characteristic or intrinsic impedance of the free space

ASSIGNMENT PROBLEMS

4
1. Arectangular loop of area ® ¥ ™" rotates at € radis in a magnetic fields of B
Wb/m? normal to the axis of rotation. If the loop has N turns determine the induced
voltage in the loop.

2. If the electric field component in a nonmagnetic dielectric medium is given by
E=5010g(10° - 8x)4,
determine the dielectric constant and the corresponding A .
3. Avector field A in phasor form is given by

A= j5ye?s

¥

Express Ain instantaneous form.

Unit V Electromagnetic waves

In the previous chapter we introduced the equations pertaining to wave propagation and
discussed how the wave equations are modified for time harmonic case. In this chapter we
discuss in detail a particular form of electromagnetic wave propagation called 'plane waves'.
The Helmhotz Equation:

In source free linear isotropic medium, Maxwell equations in phasor form are,
VxE=—jouH TxE=0
UxH = jock TxL =0
VXVXE =v[v><§) ~VE = e < H
or. ~TE = - jaou( jocE

or VE+ ot usE =0
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or, V' E+ K E = 0yhere * = @ke
An identical equation can be derived for .
e, VH+E'H=0

These equations

are called homogeneous vector Helmholtz's equation.

k= PNHE s called the wave number or propagation constant of the medium.

Plane waves in Lossless medium:

In a lossless medium, £ and u are real numbers, so K is real.

In Cartesian coordinates each of the equations 6.1(a) and 6.1(b) are equivalent to three
scalar Helmholtz's equations, one each in the components Ex, Ey and E; or Hx , Hy, Hz.

For example if we consider Ex component we can write

2 2 2
V5 TR DB L g

A uniform plane wave is a particular solution of Maxwell's equation assuming electric field
(and magnetic field) has same magnitude and phase in infinite planes perpendicular to the
direction of propagation. It may be noted that in the strict sense a uniform plane wave
doesn't exist in practice as creation of such waves are possible with sources of infinite
extent. However, at large distances from the source, the wavefront or the surface of the
constant phase becomes almost spherical and a small portion of this large sphere can be
considered to plane. The characteristics of plane waves are simple and useful for studying
many practical scenarios.

Let us consider a plane wave which has only Ex component and propagating along z . Since
the plane wave will have no variation along the plane perpendicular to z i.e., Xy plane,
dF, _dF, _ 0

dr  dy

. The Helmholtz's equation (6.2) reduces to,
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The solution to this equation can be written as

E(z)=EMz)+E (z)

+ -
2y & &g are the amplitude constants (can be determined from boundary conditions).

In the time domain, £x (Z-£) = Re(&; (z)e™)

Ex(z,0) = By cos(at —kz)+ By cos (@t + iz (6.5)

B &E
assuming are real constants.

+ = + _
Here, £y (2.£) = &y coslar - fz) represents the forward traveling wave. The plot of

+
Ex (2.0) for several values of t is shown in the Figure 6.1.

“ \

Figure 6.1: Plane wave traveling in the + z direction

As can be seen from the figure, at successive times, the wave travels in the +z direction.

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. ,
wt—kz = constant

Then we see that as t is increased to ¢ + & , Z also should increase to £ +42 g0 that



atf + M) — iz +52) = constant = @f — Sz

Or1 mﬂ!=kﬂz
ﬂe=a:r
OI’,"E"E i
When ﬁf—}l:"
. M dz
lim —=—

we write #7" & @t = phase velocity *Z .

Ve =

= | &

If the medium in which the wave is propagating is free space i.e., ET 6. HT A

yyo— 2 -1 __¢

Then Daf iy &g i A Hny

Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed
of light.

The wavelength Ais defined as the distance between two successive maxima (or minima or
any other reference points).

(@t —kz)-[@-k(z+A)] =2n

ie.,
Or, .-:C,-:i = 2)‘2’
1=2F
or, k
o
Substituting Ve,
_ 2TV _ Ve
i F
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Thus wavelength A also represents the distance covered in one oscillation of the wave.

. £ [z,£)=ED' cos[cm +Rz) L L
Similarly, represents a plane wave traveling in the -z direction.

The associated magnetic field can be found as follows:

From (6.4),

Ex (2) = Be
H=-_1 vx&
Jau

L]
y o O

@ _ M
where £  HE g is the intrinsic impedance of the medium.

When the wave travels in free space

Mo = |28 2120 = 37702
Fo is the intrinsic impedance of the free space.

In the time domain,

Which represents the magnetic field of the wave traveling in the +z direction.

For the negative traveling wave,
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For the plane waves described, both the E & H fields are perpendicular to the direction of
propagation, and these waves are called TEM (transverse electromagnetic) waves.

The E & H field components of a TEM wave is shown in Fig 6.2.

¥

Figure 6.2 : E & H fields of a particular plane wave at time t.
TEM Waves:

So far we have considered a plane electromagnetic wave propagating in the z-direction. Let
us now consider the propagation of a uniform plane wave in any arbitrary direction that
doesn't necessarily coincides with an axis.

For a uniform plane wave propagating in z-direction

—_— _ _ij
E(z) = B, E“isaconstant (/=101 (o] S (6.11)

The more general form of the above equation is

E[x,y,z) = Fog uriwih
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-+ _ o N o N n _ n
We define wave number vector k=ak, %y k—" ey =y (6.14)

And radius vector from the origin

Here ;H r =constant is a plane of constant phase and uniform amplitude just in the case of
E(z) = B 1
z =constant denotes a plane of constant phase and uniform amplitude.
If the region under consideration is charge free,
VE=0

v (Eue-f“) =0

7. (fﬁ) = AVF + VA

Using the vector identity and noting that Zojs constant we can

write,

EoW [E'ﬁ"" ';] =1

ar, _E.-D. E f;; + i ar; + if;x E—.i'l:-h?f"'%}'+&x:| -0
dx y Az

O?,ED.[—jkﬂxé‘_jka"';] =

ie., Eujs transverse to the direction of the propagation.

The corresponding magnetic field can be computed as follows:
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—_— 1 . 1 — _gr
Using the vector identity,

Txuﬁﬂ=wWXE+?w%E
Since Hy is constant we can write,

) = - e < B,

e
=— L —jkalxﬁue_i.kﬂ“ ';:I
Jai
- £ oxE(7)
@

T =Hlaxx§(;)

Where # is the intrinsic impedance of the medium. We observe that

fay

B(7
both “* and ) Thus the electromagnetic wave represented by
wave.

Plane waves in a lossy medium :

In a lossy medium, the EM wave looses power as it propagates. Such a medium is
conducting with conductivity & and we can write:

VxH=J+ jwek = (a+ ij)E

=jm[£+§3]§
gt

= JOEE (6.19)

a
g =£-j—=g&"-j&"
Where at is called the complex permittivity.

We have already discussed how an external electric field can polarize a dielectric and give
rise to bound charges. When the external electric field is time varying, the polarization vector
will vary with the same frequency as that of the applied field. As the frequency of the applied
filed increases, the inertia of the charge particles tend to prevent the particle displacement
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keeping pace with the applied field changes. This results in frictional damping mechanism
causing power loss.

In addition, if the material has an appreciable amount of free charges, there will be ohmic
losses. Itis customary to include the effect of damping and ohmic losses in the imaginary

£ . o
part of “<. An equivalent conductivity & = @ £" represents all losses.

E'"

The ratio £ is called loss tangent as this quantity is a measure of the power loss.

ja’ = ijE

Fig 6.3 : Calculation of Loss Tangent

With reference to the Fig 6.3,

:J?.-; ar £
tan5=T=—=—l
|st| @E £

where ¢ is the conduction current density and Jajg displacement current density. The loss
tangent gives a measure of how much lossy is the medium under consideration. For a good

dielectric medium (o< @), tand

(o= aF)

is very small and the medium is a good conductor if

. A material may be a good conductor at low frequencies but behave as lossy
dielectric at higher frequencies.

For a source free lossy medium we can write

VxH =(a+ joe)E VH =0
TxE=—jould VE=0
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TXVRE =?[‘\Tﬁ§) ~7iE = - i@ X H = -jau(a+ jms)g
0.?",?23 - ;VEE =1
2. .
Where ¥~ J@(a* jeg)
Proceeding in the same manner we can write,
VH -y H =0

12

e
=g+i 8= fioulat joF) = jajus|l+—
y=a+ig=[jou(c+ jor) Jv"#[ o

is called the propagation constant.

The real and imaginary parts & and 8 of the propagation constant &can be computed as
follows:

¥ =[cx+i,e3j2 = jau(a+ jeg)
ar,at - & = -t ue

2
.I.ag_[‘z;ig] =_m2l'{,{E
&

ar,dat +date’ ue = o it o

or.dat vdatfe@ e+ @yt et = @ ifct + @'yt

ar, [2::1’3 + mgga)z = gttt [1 + ;; ]
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2
S=a % 1+[£] +1
Similarly ... kA (6.23b)

Let us now consider a plane wave that has only x -component of electric field and propagate
along z.

o

;L Ex(z) = (Efe"x + En'e"“)ax

................................... (6.24)
Considering only the forward traveling wave
E‘[z,.ﬁ) =ERe [E{e_’xej‘"::]ax
= B¢ cos(ant - fz)a, (6.25)
—_— 1 —_
H=-— WK
Similarly, from S , we can find
= EI:I - o
Flz,6)=—e“cos(@ - fz)a,
e, (6.26)
Ja ;
7= L o
Where g eE
—_— EI:I —E
=t cos (o —ﬁz—ﬂxja_v
T (6.27)

From (6.25) and (6.26) we find that as the wave propagates along z, it decreases in
—T - -
amplitude by a factor # . Therefore “ is known as attenuation constant. Further Hand 7

are out of phase by an angle 5".

T
_<<1 n 1
For low loss dielectric, ¢ e, £ ==&,

Using the above condition approximate expression for & and ﬁcan be obtained as follows:

Lz
y=a+if= jofu [l—f—,
£
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& phase velocity

a
— 1
For good conductors @&

y = jafue

a a
1+_—]Ejm.,l';,f£' —
J@E JOE

We have used the relation

From (6.31) we can write

a+ifi= e+ j\7fue
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£ O g
=4 ) [TTH
a
= (14 )=
..................... (6.33)
And phase velocity
@& 2w
‘L’F === |[—
g Nuo (6.34)

Poynting Vector and Power Flow in Electromagnetic Fields:

Electromagnetic waves can transport energy from one point to another point. The electric
and magnetic field intensities asscociated with a travelling electromagnetic wave can be
related to the rate of such energy transfer.

Let us consider Maxwell's Curl Equations:

TRE = —E
at
vxE =T+
ot

Using vector identity
7. (EXE) -HVxE-EVxH
the above curl equations we can write

722
ot

v(E<H)--522-F
it
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or, V(ExH)--H 2 57-5 D

£ e (6.35)

590 _3(1 m
dr |z and EJ=cE*
- — a1 1
V(ExH)=-—| e B+ _uH*|- o
dil 2 2
Applying Divergence theorem we can write,
T Irh d 1 3, | 2 2
(ExH)..:f3=—— e B B QY - [aRY
di | 2 2

g leghl g ar
asdl 2 2

The term represents the rate of change of energy stored in the

JJEW
electric and magnetic fields and the term represents the power dissipation within

the volume. Hence right hand side of the equation (6.36) represents the total decrease in
power within the volume under consideration.

§(ExH)ai = gPas

The left hand side of equation (6.36) can be written as where

—

F=ERi (W/mt?) is called the Poynting vector and it represents the power density vector
associated with the electromagnetic field. The integration of the Poynting vector over any
closed surface gives the net power flowing out of the surface. Equation (6.36) is referred to
as Poynting theorem and it states that the net power flowing out of a given volume is equal to
the time rate of decrease in the energy stored within the volume minus the conduction
losses.

Poynting vector for the time harmonic case:

ot
For time harmonic case, the time variation is of the form &f , and we have seen that

' cat
instantaneous value of a quantity is the real part of the product of a phasor quantity and e’
when ©2% & js ysed as reference. For example, if we consider the phasor
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E(z)=a,B,(z) =a, B

then we can write the instanteneous field as

E(zt)=Re [EEZ) EM] “goos(et-pzya, (6.37)

when Ep is real.
Let us consider two instanteneous quantities A and B such that

A=Ee (ﬂé""”’) = |ﬂ|cos [mﬁ + .::E)

B =Re(Be™)=|B|cos(at + 8)

where A and B are the phasor quantities.

A =4
e,

B =|B|e”*
Therefore,
AR = |;'El||:os|[.:m + -::E) |B||:os|[mi + ,5)
= 2 |4||B[cos (@~ )+ cos (201 +ar + )]
20 0 b T e, (6.39)

po 2

Since A and B are periodic with period @ | the time average value of the product form

AB, denoted by AB can be written as

— 1f
AR =—Jﬂ3¢fﬁ
T

A5 = 114|B|cos (a- £)
s (6.40)

Further, considering the phasor quantities A and B, we find that
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45" =|ale” e = 4l

Re(AB") =|4||B|cos{ @~ &)

and , Wwhere * denotes complex conjugate.

— 1 R
;. AB=—Re(45")
The poynting vector £ = £*7 can be expressed as

P-a,(EH, -EH,\va (BH, - BH,) *a,(BH, - EH,)

If we consider a plane electromagnetic wave propagating in +z direction and has only =
component, from (6.42) we can write:

— o

Fr=£E, I:z,r.)Hy [z,f)cxg
Using (6.41)

B = %Re [E (D)5, (2)a, ]

Bro = %RE(EK ()4, (2))

Fal

E(z) = E(2)a, H()=H,()a

where * , for the plane wave under consideration.

For a general case, we can write

—

P =lRe(ExE')
2

..................... (6.44)
We can define a complex Poynting vector
- ] = —
o= —HERH
2
. . By =Re(f)
and time average of the instantaneous Poynting vector is given by .

Polarisation of plane wave:
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The polarisation of a plane wave can be defined as the orientation of the electric field vector

as a function of time at a fixed point in space. For an electromagnetic wave, the specification
of the orientation of the electric field is sufficent as the magnetic field components are related
to electric field vector by the Maxwell's equations.

Let us consider a plane wave travelling in the +z direction. The wave has both Exand Ey
components.

The corresponding magnetic fields are given by,

—_ 1.-'\. —

H=_un =&

=

A

=Eax>< a, Eﬂﬂzy Eﬂy g

1 .n. e _:
= —[—Eﬂy a,+ 2 ax]e o
7
Depending upon the values of Eqx and Eoy we can have several possibilities:
1. If Eqy = 0O, then the wave is linearly polarised in the x-direction.
2. If Eoy = 0, then the wave is linearly polarised in the y-direction.

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly

polarised wave with the axis of polarisation inclined at an angle B , With respect to
the x-axis. This is shown in fig 6.4.
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Fig 6.4 : Linear Polarisation

4. If Eox and Eoy are complex with different phase angles, E will not point to a single spatial
direction. This is explained as follows:

Lt For = |Fale”

E, =|E, "
Then,

E (z.f)=FRe [|Em|£'?h£""’“£"""’] = |Em||:os (@t - bz +a)

E =k
and 2.8 E:[

£,

o gmiEE et ] -

£, |cos (@t — Sz+b) (6.46)

E:. =
To keep the things simple, let us consider a =0 and
the electric field on the z =0 plain.

T
2

. Further, let us study the nature of

From equation (6.46) we find that,

E,(o,t) =|E,|cos @t

K
cos|@E+—| =

E,(o,0) = E

oy

£,

[—sin mﬁ)
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—t:c}sgmﬁ+sin3mﬁ=l
IE | |E

..................................... (6.47)
and the electric field vector at z = 0 can be written as
cos c:t —|E |sin| @ a
)= 1B B (6.49)
E Elo.t
Assuming | ""| *1, the plot of [D’ )for various values of tis hown in figure 6.5.
.
"
i=372w
Eox
— = x
I=ma'w =0
Eoy
= o2m

Figure 6.5 : Plot of E(o,1)

From equation (6.47) and figure (6.5) we observe that the tip of the arrow representing
electric field vector traces gn ellipse and the field is said to be elliptically polarised.
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Figure 6.6: Polarisation ellipse

The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of

semimajor to semiminor axis), tilt angle lrlf‘r(orientation with respect to xaxis) and sense of
rotation(i.e., CW or CCW).

Linear polarisation can be treated as a special case of elliptical polarisation, for which the
axial ratio is infinite.

B
In our example, if | ""| “1 from equation (6.47), the tip of the arrow representing electric

field vector traces out a circle. Such a case is referred to as Circular Polarisation. For circular
polarisation the axial ratio is unity.

PR

L‘;/ =
™

Sy

Figure 6.7: Circular Polarisation (RHCP)
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Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if
the electric field vector rotates in the direction of the fingers of the right hand when the thumb
points in the direction of propagation-(same and CCW). If the electric field vector rotates in
the opposite direction, the polarisation is asid to be left hand circular polarisation (LHCP)
(same as CW).

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the E
field vertical to the ground( vertical polarisation) where as TV signals are horizontally
polarised waves. FM broadcast is usually carried out using circularly polarised waves.

In radio communication, different information signals can be transmitted at the same
frequency at orthogonal polarisation ( one signal as vertically polarised other horizontally
polarised or one as RHCP while the other as LHCP) to increase capacity. Otherwise, same
signal can be transmitted at orthogonal polarisation to obtain diversity gain to improve
reliability of transmission.

Behaviour of Plane waves at the inteface of two media:

We have considered the propagation of uniform plane waves in an unbounded
homogeneous medium. In practice, the wave will propagate in bounded regions where

several values of &% < will be present. When plane wave travelling in one medium meets a
different medium, it is partly reflected and partly transmitted. In this section, we consider
wave reflection and transmission at planar boundary between two media.

]

Medium 1 Medium 2

Eil.l MJ o £, gz, OB

£ I E;

i.!r Em
(L E;

H; ﬂ{:.u

(s

,11\-..-’

Fig 6.8 : Normal Incidence at a plane boundary

Casel: Let z = 0 plane represent the interface between two media. Medium 1 is

characterised by (&, 4.0) and medium 2 is characterized by (8. 45.03) _



Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted field
components respectively.

The incident wave is assumed to be a plane wave polarized along x and travelling in medium

o

1 along %z direction. From equation (6.24) we can write

T e, (6.49.a)
Hi(z) = —axE, () =22e™ G,
7 T (6.49.b)
y = J @
where /1 =\[ja:r,u1 (a1 +jeg) and L Yarjes :

Because of the presence of the second medium at z =0, the incident wave will undergo
partial reflection and partial transmission.

s

The reflected wave will travel along %z in medium 1.

The reflected field components are:

— _ J"lzn
By o B r o —— (6.50a)
— 1 . . r
Hey=—|-=x ]XE gt g == N a,
M oo (6.50b)

The transmitted wave will travel in medium 2 along “z for which the field components are

o

i -pE
B = e (6.51a)
E:r = E—mé'_nx @,
e, (6.51b)
J @B

o . My = [
where 2~ J"Fm’{'{‘"‘ (o +jog,) and Gt D
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In medium 1,
E1 =E;' +E?’and El =§:‘ +§r
and in medium 2,
By =Eigng Hz2 = H:

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field
components and noting that incident, reflected and transmitted field components are
tangential at the boundary, we can write

o Hi(0)+Hr (0) = Hi(0)

From equation 6.49 to 6.51 we get,

L (6.52a)
E, B, _E&,
T T (6.52b)
Eliminating E ,
E_‘:"—& =i|:E;";. +Em)
T T 2
Byl |- B | o
or moon, o T
or, Fo =Ty
Pl
Pt (6.53)

is called the reflection coefficient.

From equation (6.52), we can write
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28, =B, |1+
L

g,=-21 g, -1z,

Ta
or, ?.?1 * ?-"'12

is called the transmission coefficient.

We observe that,

Tty Tty (6.55)

T = 21y _ My TR T T 14T

The following may be noted

(i) both * and T are dimensionless and may be complex

iy 0 <<

Let us now consider specific cases:

Case I: Normal incidence on a plane conducting boundary

The medium 1 is perfect dielectric {Jl - D) and medium 2 is perfectly conducting {J:‘ - m) .

S s a4
S
L =0

M =\|/[fmﬁ1:' (jae)
= J@HE = J8

From (6.53) and (6.54)
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Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to
the medium 1.

VH(z)=E,e ‘w‘xa’ - F o™ g =—2;E‘,sinﬁlz.:;;

)

2 W E(z,t)=Re [—EU.r'E!-‘, 5111 ﬁzeﬁ"!]ax =2FE sin Szsin@a,

................................. (6.56)
Proceeding in the same manner for the magnetic field in region 1, we can show that,
— ~ 2K
M [z,.ﬁ) =a, —2cos Gzcos @t
L e (6.57)

The wave in medium 1 thus becomes a standing wave due to the super posmon of a
forward travelling wave and a backward travelling wave. For a given ' t', both El and H lvary
sinusoidally with distance measured from z = 0. This is shown in figure 6.9.

ar = Tl

-——____‘_‘l

N N
V

»
Wl = @t = g2
fa) Ky versus g o= o
parmet
conauetor

/\X\/

(b) Hy versus 2 s _ s

Figure 6.9: Generation of standing wave

Zeroes of Ei(z,t) and Maxima of Hy(z,t).

Maxima of E1(z,t) and zeroes of Hi(z,t).



L oCour at ,812 =—xnT or Z = —H—

2

o

socour at Az =—|:2n+1:l > or £ = —I':E?z+1j%, =012 ..

Case2: Normal incidence on a plane dielectric boundary

If the medium 2 is not a perfect conductor (i.e. o R ) partial reflection will result. There will
be a reflected wave in the medium 1 and a transmitted wave in the medium 2.Because of the
reflected wave, standing wave is formed in medium 1.

From equation (6.49(a)) and equation (6.53) we can write
F1=F, (g"'x + 1";3"5)&,;

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics (
ap=0,a,=0

)
W= JanfinE =08 = La]
£
¥y = J@ ey = 5 Ty = %
5

In this case both "and 7lbecome real numbers.
El = &XE;}; (Q‘Jﬁlx + ré,.i",t?ﬁ)
- &*Ez'ﬂ ((1 + T) PR (Eiﬁlf - é.—.r;ﬂ.x))

= ax B, Te ™ +T(2jsin 42))
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From (6.61), we can see that, in medium 1 we have a traveling wave component with
amplitude TE;, and a standing wave component with amplitude 2JEjo.

The location of the maximum and the minimum of the electric and magnetic field components
in the medium 1from the interface can be found as follows.

The electric field in medium 1 can be written as

B = ész.(,e‘f*""" (1 + re‘ﬂﬁx)

.................. (6.62)
If PR ﬂli.e. ['>o
The maximum value of the electric field is
| =E (1+T
B, g0 (6.63)
and this occurs when
285, = —2am
R R M
Zmmr E - Ey - 5 ;il
or 4 , N=0,1,2,3 i, (6.64)
N |
The minimum value of is
B =&, (1-T
| |mm [ ) ................. (6.65)
And this occurs when
2682 = ~(2n+ )
Zny =~ (2n +1)i
or 4 N=0,1,2, 3 s (6.66)

For "2 < i.e. <0

B| & (1-T
The maximum value of | is [ :Iwhich occurs at the zmin locations and the minimum

)
value of | 1|is £y [H 1")
(6.66).

which occurs at zmax locations as given by the equations (6.64) and
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|2l
From our discussions so far we observe that | Imn can be written as

[Flw _ 141
5= =
|E|mm 1_|r| (6.67)

The quantity S is called as the standing wave ratio.

0<r|<1
S

A the range of S is given by 1 £5 £

From (6.62), we can write the expression for the magnetic field in medium 1 as

— o~ B . .
Hy=a, =2 788 (1 —reﬂ"ﬁx)
oo, (6.68)
mw | B |
From (6.68) we find that will be maximum at locations where is minimum and vice
versa.

In medium 2, the transmitted wave propagates in the + z direction.
Oblique Incidence of EM wave at an interface

So far we have discuss the case of normal incidence where electromagnetic wave traveling
in a lossless medium impinges normally at the interface of a second medium. In this section
we shall consider the case of oblique incidence. As before, we consider two cases

When the second medium is a perfect conductor.
When the second medium is a perfect dielectric.

A plane incidence is defined as the plane containing the vector indicating the direction of
propagation of the incident wave and normal to the interface. We study two specific cases
when the incident electric field £iis perpendicular to the plane of incidence (perpendicular

polarization) and & parallel to the plane of incidence (parallel polarization). For a general
case, the incident wave may have arbitrary polarization but the same can be expressed as a
linear combination of these two individual cases.

Oblique Incidence at a plane conducting boundary
Perpendicular Polarization

The situation is depicted in figure 6.10.
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4 K
,;:jbf P4 Perfect Conducior
- “"_,.,-—-—._,_‘___,_,-r"’f
a®
i T
N
Qi
E Ei o, ————
o=0 o, ==

Figure 6.10: Perpendicular Polarization

As the EM field inside the perfect conductor is zero, the interface reflects the incident plane
wave. @¥d respectively represent the unit vector in the direction of propagation of the

incident and reflected waves, igﬁ the angle of incidence and is tﬁ‘e angle of reflection.

We find that

dwi = @z Cos8 +agysn &
dar = ~dz GOS8, tazsnd,

Since the incident wave is considered to be perpendicular to the plane of incidence, which
for the present case happens to be xz plane, the electric field has only y-component.

Therefore,

—_

Hi [x,z) = ayﬁ'me_j’gﬁ"' T
_ &yﬂgﬂe—jﬁl[mmﬁﬁ.&cc@&]j

The corresponding magnetic field is given by

—_ 1 - —
Hi(xz)=—|a, ®&i(x.2)
. ]

= l [— Cos 5'!-5,; +zin .9!.&3] Eme_jﬁ(mn%-'-zms'?i:'
7

Similarly, we can write the reflected waves as
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By (x.z)= a yEme?_"r.’Ela_" T
_ ayEWE—jﬁl[xsm&r— 20030y |

Since at the interface z=0, the tangential electric field is zero.

B E—J’,lesin&i + Emél—jﬁlxsinﬂr -0

o

The condition 5: N 5‘? is Snell's law of reflection.

—

Erlix z) = _al}-E. E‘J'ﬁ[xﬂmﬁi—zcns&i:l

and Er III,Z:] =l &xrxﬁr[x,iz:]]
#

= E, [_ax cosd, - &x sin 5!] E‘Jﬁ(mn%—zcns%)
|

The total electric field is given by

31 [x, z) = E‘ [x,z) + Er [x,zj
= —a,2jE, sin (fzcos 8, )é_"?.’ﬂlxsmgi

Similarly, total magnetic field is given by

—

Hi(xz)= —EE—*’ [&x cos &, cos( Az cos ﬂjeﬂlﬁlmn% + &x; sin & sin [ fzcos &, jle_j’alxsm&’ ]

o

From eqns (6.76) and (6.77) we observe that

1. Along z direction i.e. normal to the boundary
y component of Eand x component of Hmaintain standing wave patterns according
to 511 AsZ apg £05 AaZ where Az = A 5058 No average power propagates along z

as y component of dhd x component of arébut of phase.
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2. Along xi.e. paraIIeI to the interface

y component of E and z component of H are in phase (both time and space) and
propagate with phase velocity

The wave propagating along the x direction has its amplitude varying with z and hence

constitutes a non uniform plane wave. Further, only electric field Eijs perpendicular to the
direction of propagation (i.e. x), the magnetic field has component along the direction of
propagation. Such waves are called transverse electric or TE waves.

i. Parallel Polarization:

In this case also #®and @ are given by equations (6.69). Here Hiand #rhave only y
component.

X X
s Perfect Conductor
. /_...—-—-—-.._,___...-r"'-
a¥
f ‘.’_,_...———\_._\___,_,..-F“'
i — - z
\t{ -
E: P
a=0 &y =@

Figure 6.11: Parallel Polarization
With reference to fig (6.11), the field components can be written as:

Incident field components:

E, (x.2) = B, [Eos 5;&,; —sin 5:}_&3] Q-J'ﬁl[mm-%ﬂcnsq)

(1) -y S5



Reflected field components:

—

~ ~ —i B xsing, —zcoss,
Ey(xz)=E, [a:x cosd, +ax smé??,]é' S A{rsingy 7)

Fy(5.7) - -3 B 800

B (6.80)

Since the total tangential electric field component at the interface is zero.
E [x,U)+E|[x,U) =

Which leads to B, =&, and 6=8 as before.

Substituting these quantities in (6.79) and adding the incident and reflected electric and
magnetic field components the total electric and magnetic fields can be written as

E; (x.z)=-2E, &x; cos & sin [ fzros &)+ iz sin g cos( fzcos E}!j] g /AT

and  Hi (x,2) = éy 25 cos{ fzros g )e_j’slxsmﬁ"

M

Once again, we find a standing wave pattern along z for the x and y components of £ and

| while a non uniform plane wave propagates along x with a phase velocity given by
@

S v, = —

where & . Since, for this propagating wave, magnetic field is in

transverse direction, such waves are called transverse magnetic or TM waves.

v =
1x R
sin &

Oblique incidence at a plane dielectric interface

We continue our discussion on the behavior of plane waves at an interface; this time we
consider a plane dielectric interface. As earlier, we consider the two specific cases, namely
parallel and perpendicular polarization.
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Fig 6.12: Oblique incidence at a plane dielectric interface

For the case of a plane dielectric interface, an incident wave will be reflected partially and
transmitted partially.

8,8, and 8

In Fig(6.12), * corresponds respectively to the angle of incidence, reflection and

transmission.
1. Parallel Polarization
As discussed previously, the incident and reflected field components can be written as

B, (r.2) =&, ['305 5';-&:; —sin 5‘1&3] E-J’,Bl[xsm.sgﬂ.;.;.s,%j

Hi(r.5) -3 Bo g IAlsntacost)
B, (6.82)

—

- - — i & [ ¥sing, —zcosd
o I:x,z:l =H  |arcos 8 +azsin 5‘,]2 T4 y 7}

T, (5.7) = -, B By -eeos)

B, (6.83)

In terms of the reflection coefficient [

- L - oy . & _ &
Ey(x.z)=TE, [ﬂx cosd, +assin Er]e S oing, 20056

Hy I:x,z:] = —ay Eé—jﬁimmﬂr—zcns&,}

L (6.84)

The transmitted filed can be written in terms of the transmission coefficient T
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xaindy+ecosdy

E:(xz)=TE, [&x cos &, — assin Hr]e_j’az[

B (1.2) = ay Lo g Sl
M, (6.85)

We can now enforce the continuity of tangential field components at the boundary i.e. z=0

cos 512_&.‘.,?';31’-’5111'53 +Tros Q?E‘J',Elxsimﬂr = Trog HIE—J',ngsinﬂ

lé—;’,ﬂlxsinﬂi _ Eg—jﬁlxsinﬂr _ Eg—j,&gxsmﬂ;

and
! ! A, (6.86)
E H . .
If both “*and "~ *are to be continuous at z=0 for all x , then form the phase matching we
have
Geind = Send, = 4 sin §
."“We find that
& =6,
and fsing =Gend (6.87)
Further, from equations (6.86) and (6.87) we have
cos& +l cosd =Trosé,
1 I T
and ———=—
PR R, (6.88)

cos & 1:1 +1":l =Tcoesé,

1 T
d—(1-T)==
- .?‘21[ ) #y
S T=%1-1)
#

.'.[mlcosﬂi + 3, cos&?‘tjl— =n cos8, —moosd
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- mcosd —ncos

or... . Mcosg tmeosd (6.89)

2ry cos 8,

B #,cosd +mcos (6.90)

From equation (6.90) we find that there exists specific angle =4 for which I'= 0 such that

HyCO8 8, = mcosd

FUPNET, (e e (6.92)

For non magnetic material T H T
Using this condition

. 5 .
1-sin® 8 =L{1-zin* 8

. g .
and sin® & = Lsin® g,
2

From equation (6.93), solving for sin & we get

1

£
1+ L

£

sind, =

This angle of incidence for which I'= 0is called Brewster angle. Since we are dealing with

N . g
parallel polarization we represent this angle by ~*Iso that

1

s Qb" = =
1+-L
£
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2. Perpendicular Polarization

For this case

E;‘ [x,z) = ayﬁéﬂe_"rﬁl[xsmﬁi +zcns.5rjj
H, (x,2])= = ~ay cos 8+ G 5 a}]g—iﬁ[l’sm%wcnggj
o

7, [x,Z) - ayl—-EiJé—Jﬁ[xsinﬂr—zcnsﬂr:l
Hy(x,2) = Lo [&x cos &, +as sin 5‘,] e

#

- j [ xeing -zcossy)

E: [x’ Z:] _ ayTEmE—j,ﬂl(xsmﬂchsﬂ:]

xsindy+ zccnsﬁ_rj

He(rz)= 7E, [—&x cos &, +assin 5',] ol

#y
Using continuity of field components at z=0
A AxEng | o —fexeng _ TE, oSNy

aﬂ.d _lEOS gzé'_vil-'g.lxmn% + E Ccos g?g_,il;alxslnlﬂ,r = _ z cos ag—j.ﬁgxsmﬂt
G N ”,

As in the previous case

Gend = Send, = G sin §

& =6
and snd, = ﬁsin 2
......................... (6.98)
Using these conditions we can write
+I'=7
cosd  [cosd Trosd,

— + = —

g ! 1 T (6.99)

From equation (6.99) the reflection and transmission coefficients for the perpendicular

polarization can be computed as
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r _ M cosf —acosd
nycosd tamcosd

and T Znycosd

nycosd +acosd (6.100)

We observe that if [ =0 for an angle of incidence &%

Mycosdy, =ncosh

- 2
Socost 8 =5 cos &8,
)

&

Ly

" 1-sin? g, =229 (1-4in%8)
A Ey

san g, = ﬁsin 8,
Again

M8
Ay £y

o2 -2
JoEnt g, = sin” &,

A

[wf_ a] MR MR g

e ey HE

sin? 8 L 1- e

or Hy&y M H &y
1,2 _

sin? [#’1 Hy ]51 _ | £ ﬁ*’zfl]
or Ly £ P
inld = o (e — 5
7 2
S S ala ) (6.101)

We observe if “1 ~ #2 = #0j e in this case of non magnetic material Brewster angle does
not exist as the denominator or equation (6.101) becomes zero. Thus for perpendicular
polarization in dielectric media, there is Brewster angle so that I" can be made equal to zero.
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From our previous discussion we observe that for both polarizations

_A

sand, = —=zin 8,

i M T M T A

. & .
sin g, = ||—1 sin &,
&
2

For & >Eg; g > 8

g, = i 8. = sin'lA‘/g
The incidence angle §=6 for which Zie. A is called the critical angle of

incidence. If the angle of incidence is larger than & total internal reflection occurs. For such
case an evanescent wave exists along the interface in the x direction (w.r.t. fig (6.12)) that
attenuates exponentially in the normal i.e. z direction. Such waves are tightly bound to the
interface and are called surface waves.



	1
	Fig 1.3: Distance Vector
	Product of Vectors
	Fig 1.4: Vector dot product

	9
	10
	2. Cylindrical co-ordinate system

	11
	Transformation between Cartesian and Cylindrical coordinates:
	Fig 1.10: Spherical Polar Coordinate System
	Fig 1.12(b) : Exploded view
	Coordinate transformation between rectangular and spherical polar:

	19
	Fig 1.15: Closed Line Integral
	Fig 1.16 : Surface Integral
	Volume Integrals:
	The Del Operator :
	Gradient of a Scalar function:

	23
	Fig 1.17 : Gradient of a scalar function
	Fig 1.18: Flux Lines
	Fig 1.19: Evaluation of divergence in curvilinear coordinate

	27
	Divergence theorem :

	28
	Fig 1.20: Curl of a Vector

	31
	ASSIGNMENT PROBLEMS

	Coulomb's Law
	34
	Fig 2.1: Coulomb's Law
	Electric Field
	Fig 2.2: Continuous Volume Distribution of Charge
	Electric flux density:
	.....................................(2.12)
	1. An infinite line charge
	Fig 2.4: Infinite Line Charge


	39
	3. Uniformly Charged Sphere
	.........................(2.18)
	Fig 2.6: Uniformly Charged Sphere



	41
	Unit II Electrostatics-II


	Electrostatic Potential and Equipotential Surfaces
	Fig 2.9: Electrostatic Potential calculation for a point charge
	Fig 2.10: Electrostatic Potential due a Displaced Charge
	Example: Electric Dipole
	47
	Equipotential Surfaces

	49
	Fig 2.12: Equipotential Lines for a Positive Point Charge
	Fig 2.13: Equipotential Lines and Flux Lines for a Dipole Boundary conditions for Electrostatic fields
	Fig 2.14: Boundary Conditions for at the surface of a Conductor
	Behavior of dielectrics in static electric field: Polarization of dielectric
	Fig 2.15: Polarised Dielectric Medium
	Fig 2.16: Potential at an External Point due to an Elementary Dipole dv'.
	Boundary Conditions for Electrostatic Fields:
	Fig 2.17: Boundary Conditions at the interface between two dielectrics

	57
	or i.e. the tangential component of an electric field is continuous across the interface.
	Thus we find that the normal component of the flux density vector D is discontinuous across an interface by an amount of discontinuity equal to the surface charge density at the interface.

	58
	Fig 2.18: Refraction of D or E at a Charge Free Dielectric Interface Capacitance and Capacitors

	59
	Example: Parallel plate capacitor

	60
	Fig 2.21: Series Connection of Capacitors

	61
	Electrostatic Energy and Energy Density
	Poisson’s and Laplace’s Equations

	64
	FIgure 2.6
	Unit III Magnetostatics
	Fig. 4.1: Representation of magnetic field (or current)
	Fig. 4.2: Magnetic field intensity due to a current element
	Fig. 4.3: Different types of current distributions
	Fig. 4.4: Field at a point P due to a finite length current carrying conductor
	Ampere's Circuital Law:
	Applications of Ampere's law:
	Fig. 4.5: Magnetic field due to an infinite thin current carrying conductor
	currents

	71
	72
	Fig. 4.7: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying conductor
	Magnetic Scalar and Vector Potentials:
	Fig. 4.8: Cross Section of a Coaxial Line

	74
	76
	Figure 4.9: Interface between two magnetic media

	77
	79
	Figure P.4.7
	Unit IV Electrodynamic fields Introduction:
	Faraday's Law of electromagnetic Induction

	82
	Example: Ideal transformer
	Fig 5.1: Transformer with secondary open
	Motional EMF:
	Fig 5.2
	Maxwell's Equation

	85
	Fig 5.3

	86
	87
	Fig 5.4
	Wave equation and their solution:
	Fig 5.5 : Traveling wave in

	93
	Unit V   Electromagnetic waves
	Plane waves in Lossless medium:

	95
	Figure 6.1: Plane wave traveling in the + z direction

	96
	97
	98
	Figure 6.2 : E & H fields of a particular plane wave at time t.

	100
	101
	Fig 6.3 : Calculation of Loss Tangent
	Poynting Vector and Power Flow in Electromagnetic Fields:
	Poynting vector for the time harmonic case:
	Polarisation of plane wave:

	109
	Fig 6.4 : Linear Polarisation
	Figure 6.5 : Plot of E(o,t)
	Figure 6.6: Polarisation ellipse
	Figure 6.7: Circular Polarisation (RHCP)

	113
	Behaviour of Plane waves at the inteface of two media:
	Fig 6.8 : Normal Incidence at a plane boundary

	114
	115
	Case I: Normal incidence on a plane conducting boundary
	Figure 6.9: Generation of standing wave

	117
	Case2: Normal incidence on a plane dielectric boundary

	119
	Oblique Incidence of EM wave at an interface
	Oblique Incidence at a plane conducting boundary
	Figure 6.10: Perpendicular Polarization
	ii. Parallel Polarization:

	123
	124
	Oblique incidence at a plane dielectric interface
	Fig 6.12: Oblique incidence at a plane dielectric interface
	1. Parallel Polarization
	2. Perpendicular Polarization

	128
	130


