

1

EC3352-DIGITAL SYSTEM DESIGN

II YEAR – III SEMESTER – R2021

UNIT- I BASIC CONCEPTS

INTRODUCTION:

In 1854, George Boole, an English mathematician, proposed algebra for

symbolically representing problems in logic so that they may be analyzed mathematically.

The mathematical systems founded upon the work of Boole are called Boolean algebra in

his honor.

The application of a Boolean algebra to certain engineering problems was

introduced in 1938 by C.E. Shannon.

For the formal definition of Boolean algebra, we shall employ the

postulates formulated by E.V. Huntington in 1904.

Fundamental postulates of Boolean algebra:

The postulates of a mathematical system forms the basic assumption from

which it is possible to deduce the theorems, laws and properties of the system.

The most common postulates used to formulate various structures are—

i) Closure:

A set S is closed w.r.t. a binary operator, if for every pair of elements of S, the

binary operator specifies a rule for obtaining a unique element of S.

The result of each operation with operator (+) or (.) is either 1 or 0 and 1, 0 ЄB.

ii) Identity element:

A set S is said to have an identity element w.r.t a binary operation * on S, if

there exists an element e Є S with the property,

Eg: 0+ 0 = 0 0+1=1+0=1 a) x+ 0= x

1.1=1 1.0=0.1=1 b) x. 1 = x

iii) Commutative law:

A binary operator * on a set S is said to be commutative if,

for all x, y Є S x * y = y * x

LECTURE NOTES

e* x = x * e = x

2

Eg: 0+ 1 = 1+ 0 = 1 a) x+ y= y+ x

0 . 1 = 1 . 0 = 0 b) x. y= y. x

iv) Distributive law:

If * and • are two binary operation on a set S, • is said to be distributive over +

whenever,

Similarly, + is said to be distributive over • whenever,

v) Inverse:

A set S having the identity element e, w.r.t. binary operator * is said to have an

inverse, whenever for every x Є S, there exists an element x’ Є S such that,

a) x+ x’ = 1, since 0 + 0’ = 0+ 1 and 1+ 1’ = 1+ 0 = 1

b) x. x’ = 1, since 0 . 0’ = 0. 1 and 1. 1’ = 1. 0 = 0

Summary:

Postulates of Boolean algebra:

POSTULATES (a) (b)

Postulate 2 (Identity) x + 0 = x x . 1 = x

Postulate 3 (Commutative) x+ y = y+ x x . y = y. x

Postulate 4 (Distributive) x (y+ z) = xy+ xz x+ yz = (x+ y). (x+ z)

Postulate 5 (Inverse) x+x’ = 1 x. x’ = 0

Basic theorem and properties of Boolean algebra:

Basic Theorems:

x . (y+ z) = (x. y) + (x. z)

x + (y. z) = (x+ y). (x+ z)

x. x’ Є e

3

The theorems, like the postulates are listed in pairs; each relation is the dual of

the one paired with it. The postulates are basic axioms of the algebraic structure and need

no proof. The theorems must be proven from the postulates. The proofs of the theorems

with one variable are presented below. At the right is listed the number of the postulate that

justifies each step of the proof.

1) a) x+ x = x

 x+ x = (x+ x) . 1------------------- by postulate 2(b) [x. 1 = x]

= (x+ x). (x+ x’)------------------- 5(a) [x+ x’ = 1]

= x+ xx’------------------- 4(b) [x+yz = (x+y)(x+z)]

= x+ 0------------------- 5(b) [x. x’ = 0]

= x------------------- 2(a) [x+0 = x]

b) x. x = x

 x. x = (x. x) + 0------------------- by postulate 2(a) [x+ 0 = x]

 = (x. x) + (x. x’)------------------- 5(b) [x. x’ = 0]

 = x (x+ x’)------------------- 4(a) [x (y+z) = (xy)+ (xz)]

 = x (1)------------------- 5(a) [x+ x’ = 1]

 = x------------------- 2(b) [x.1 = x]

2) a) x+ 1 = 1

 x+ 1 = 1 . (x+ 1)------------------- by postulate 2(b) [x. 1 = x]

 = (x+ x’). (x+ 1)------------------- 5(a) [x+ x’ = 1]

 = x+ x’.1------------------- 4(b) [x+yz = (x+y)(x+z)]

 = x+ x’-------------------

= 1-------------------

2(b) [x. 1 = x]

5(a) [x+ x’= 1]

b) x .0 = 0

3) (x’)’ = x

From postulate 5, we have x+ x’ = 1 and x. x’ = 0, which defines the

complement of x. The complement of x’ is x and is also (x’)’.

Therefore, since the complement is unique,

(x’)’ = x.

4) Absorption Theorem:

a) x+ xy = x

4

x+ xy = x. 1 + xy------------------- by postulate 2(b) [x. 1 = x]

= x (1+ y)------------------- 4(a) [x (y+z) = (xy)+ (xz)]

= x (1) ------------------- by theorem 2(a)

= x -------------------- by postulate 2(a)

[x+ 1 = x]

[x. 1 = x]

b) x. (x+ y) = x

x. (x+ y) = x. x+ x. y------------------- 4(a) [x (y+z) = (xy)+ (xz)]

= x + x.y ------------------- by theorem 1(b)

= x -------------------- by theorem 4(a)

[x. x = x]

[x+ xy = x]

c) x+ x’y = x+ y

x+ x’y = x+ xy+ x’y------------------- by theorem 4(a) [x+ xy = x]

= x+ y (x+ x’) --------------------- by postulate 4(a) [x (y+z) = (xy)+ (xz)]

= x+ y (1)-------------------

= x+ y-------------------

5(a)

2(b)

[x+ x’ = 1]

[x. 1= x]

d) x. (x’+y) = xy

x. (x’+y) = x.x’+ xy------------------- by postulate 4(a) [x (y+z) = (xy)+ (xz)]

= 0+ xy-------------------

= xy.-------------------

5(b)

2(a)

[x. x’ = 0]

[x+ 0= x]

Properties of Boolean algebra:

1. Commutative property:

Boolean addition is commutative, given by

According to this property, the order of the OR operation conducted on the

variables makes no difference.

Boolean algebra is also commutative over multiplication given by,

This means that the order of the AND operation conducted on the variables makes

no difference.

2. Associative property:

x+ y = y+ x

x. y = y. x

5

The associative property of addition is given by,

The OR operation of several variables results in the same, regardless of the grouping

of the variables.

The associative law of multiplication is given by,

It makes no difference in what order the variables are grouped during the AND

operation of several variables.

3. Distributive property:

The Boolean addition is distributive over Boolean multiplication, given by

The Boolean addition is distributive over Boolean addition, given by

4. Duality:

It states that every algebraic expression deducible from the postulates of

Boolean algebra remains valid if the operators and identity elements are interchanged.

If the dual of an algebraic expression is desired, we simply interchange OR

and AND operators and replace 1’s by 0’s and 0’s by 1’s.

x+ x’ = 1 is x. x’ = 0

Duality is a very important property of Boolean algebra.

A+ (B+ C) = (A+B) + C

A. (B. C) = (A.B) . C

A+ BC = (A+B) (A+C)

A. (B+C) = (A.B)+ (A.C)

6

Summary:

Theorems of Boolean algebra:

DeMorgan’s Theorems:

Two theorems that are an important part of Boolean algebra were proposed by

DeMorgan.

The first theorem states that the complement of a product is equal to the sum of

the complements.

The second theorem states that the complement of a sum is equal to the product of

the complements.

Consensus Theorem:

In simplification of Boolean expression, an expression of the form AB+ A’C+ BC,

the term BC is redundant and can be eliminated to form the equivalent expression AB+ A’C.

The theorem used for this simplification is known as consensus theorem and is stated as,

The dual form of consensus theorem is stated as,

THEOREMS

1 Idempotent

(a)

x + x = x

x + 1 = 1

(b)

x . x = x

x . 0 = 0

2

3

Involution (x’)’ = x

Absorption

4

5

Associative

DeMorgan’s Theorem

x+ xy = x

x+ x’y = x+ y

x+(y+ z)= (x+ y)+ z

(x+ y)’= x’. y’

x (x+ y) = x

x. (x’+ y)= xy

x (yz) = (xy) z

(x. y)’= x’+ y’

(AB)’ = A’+ B’

(A+ B)’ = A’. B’

AB+ A’C+ BC = AB+ A’C

(A+B) (A’+C) (B+C) = (A+B) (A’+C)

7

BOOLEAN FUNCTIONS:

Minimization of Boolean Expressions:
The Boolean expressions can be simplified by applying properties, laws

and theorems of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals:

1. x (x’+y)

= xx’+ xy

= 0 + xy

= xy.

[x. x’= 0]

[x+ 0 = x]

2. x+ x’y

= x + xy + x’y

= x+ y (x+x’)

= x+ y (1)

= x+ y.

3. (x+ y) (x+ y’)

= x.x+ xy’+ xy+ yy’

= x+ xy’+ xy+ 0

= x (1+ y’+ y)

= x (1)

= x.

[x+ xy= x]

[x+ x’ = 1]

[x. x= 0]; [y. y’= 0]

[1+y= 1]

4. xy + x’z + yz.

= xy + x’z + yz(x+ x’) [x+ x’= 1]

= xy + x’z + xyz + x’yz

Re-arranging,

= xy + xyz + x’z +x’yz

= xy (1+ z) + x’z (1+y)

= xy+ x’z.

5. xy+ yz+ y’z

= xy+ z (y+ y’)

= xy+ z (1)

= xy+ z.

[1+y= 1]

[y+ y’ = 1]

8

6. (x+ y) (x’+ z) (y+ z)

= (x+ y) (x’+ z) [dual form of consensus theorem,

(A+ B) (A’+ C) (B+ C) = (A+ B) (A’+ C)]

7. x’y+ xy+ x’y’

= y (x’+ x) + x’y’

= y (1) + x’y’

= y+ x’y’

= y+ x’.

8. x+ xy’+ x’y

= x (1+ y’)+ x’y

= x (1) + x’y

= x+ x’y

= x+ y.

9. AB + (AC)' + AB’C (AB + C)

= AB + (AC)' + AAB'BC + AB'CC

= AB + (AC)' + 0+ AB'CC

= AB + (AC)' + AB'C

= AB + A' + C' +AB'C

= AB+A’+C'+AB'

= A' + B+ C’+ AB’

Re- arranging,

[x (y+ z) = xy+ xz]

[x+ x’ = 1]

[x+ x’y’ = x+ y’]

[1+ x = 1]

[x+ x’y = x+ y]

[B.B' = 0]

[C.C = 1]

[(AC)' = A' + C']

[C’ + AB’C = C’ + AB’]

[A’+AB=A’+B]

=A'+AB’+B+C' [A’+AB=A’+B]

=A'+B’+B+C'

= A'+1+C’

= 1

[B’+B=1]

[A+ 1=1]

10. (x’+ y) (x+ y)

= x’.x+ x’y+ yx+ y.y

= y (x’+ x+ 1)

= y.

11. xy+ xyz+ xy (w+ z)

= xy (1+ z+ w+ z)

= 0+ x’y+ xy+ y [x.x’= 0]; [x. x= x]

= y(1) [1+ x = 1]

9

= xy (1)

= xy.

12. xy+ xyz+ xyz’+ x’yz

= xy (1+ z+ z’)+ x’yz

= xy (1) + x’yz

= xy+ x’yz

= y (x+ z).

[1+ x = 1]

[1+ x = 1]

= y (x+ x’z) [x+ x’y = x+ y]

13. xyz+ xy’z+ xyz’

= xy (z+ z’) + xy’z

= x(y+ z)

= xy+ xy’z

= x(y+ y’z)

[x+ x’= 1]

[x+ x’y = x+ y]

14. x’y’z’+ x’yz’+ xy’z’+ xyz’

= x’z’ (y’+ y)+ xz’ (y’+ y)

= x’z’+ xz’ [x+ x’= 1]

= z’ (x’+ x)

= z’

15. w’xyz’+ xyz’+ xy’z’+ xy’z

= xyz’ (w’+ 1) + xy’z’+ xy’z

= xz’ (y+ y’) + xy’z

= xz’+ xy’z

= x (z‘+ y’z)

[x+ x’= 1]

= xyz’+ xy’z’+ xy’z [1+ x = 1]

[x+ x’= 1]

= x (z’+ y’). [x’+ xy’ = x’+ y’]

16. w’xy’z+ w’xyz+ wxz

= w’xz (y’+ y)+ wxz

= w’xz+ wxz

= xz (w’+ w)

= xz.

17. x’y’z’+ x’y’z+ x’yz’+ x’yz+ xy’z’

= x’y’ (z’+z) + x’y (z’+z)+ xy’z’

= x’ y’ (1) + x’y (1)+ xy’z’

= x’y’ + x’y + xy’z’

= x’(y’+y) + xy’z’

= w’xz (1)+ wxz [x+ x’= 1]

[x+ x’= 1]

[x+ x’= 1]

10

= x’ (1) + xy’z’ [x+ x’= 1]

= x’ + xy’z’

= x’+ y’z’. [x’+ xy’ = x’+ y’]

18. w’y (w’xz)’ + w’xy’z’ + wx’y

= w’y (w’’+ x’+ z’) + w’xy’z’ + wx’y

= w’y (w+ x’+ z’) + w’xy’z’ + wx’y

= w’yw+ w’y x’+ w’y z’ + w’xy’z’ + wx’y

= 0 + w’x’y+ w’y z’ + w’xy’z’ + wx’y

Re-arranging,
= w’x’y+ wx’y + w’y z’ + w’xy’z’

= x’y (w’+ w) + w’z’ (y+ xy’)

[x’’ = x]

[x. x’= 0]

= x’y (1) + w’z’ (y+ xy’) [x+ x’= 1]

= x’y+ w’z’ (y+x) [x+ x’y = x+ y]

19. xy+ x (y+ z) + y (y+ z)

= xy+ xy+ xz+ yy+ yz

= xy+ xz+ y+ yz

= xy+ xz+ y

[x+ x= x]; [x. x= x]

[x+ xy= x]

= y+ xz [x+ xy= x]

20. [xy’ (z+ wy) + x’y’] z

= [xy’z+ xy’wy+ x’y’] z

= [xy’z+ 0+ x’y’] z

= xy’z. z+ x’y’z

= xy’z+ x’y’z

= y’z (x+ x’)

[x. x’= 0]

[x. x= x]

= y’z (1) [x+ x’= 1]

= y’z.

21. x’yz+ xy’z’+ x’y’z’+ xy’z+ xyz

= yz (x’+x) + xy’z’+ x’y’z’+ xy’z

= yz (1) + y’z’ (x+ x’) + xy’z

= yz+ y’z’ (1) + xy’z

= yz+ y’z’+ xy’z

= yz+ y’ (z’+ xz)

[x+ x’= 1]

[x+ x’= 1]

= yz+ y’ (z’+ x) [x’+ xy = x’+ y]

= yz+ y’z’+ xy’

22. [(xy)’+ x’+ xy]’

= [x’+ y’+ x’+ xy]’

= [x’+ y’+ xy]’ [x+ x= x]

11

= 0.

23. [xy+ xz]’+ x’y’z

= (xy)’. (xz)’+ x’y’z

= (x’+ y’). (x’+ z’)+ x’y’z

= x’x’+ x’z’+ x’y’+ y’z’+ x’y’z

= [x’+ y’+ x]’

= [y’+ 1]’

= [1]’

[x’+ xy = x’+ y]

[x+ x’= 1]

[1+ x = 1]

= x’+ x’z’+ x’y’+ y’ [z’+ x’z]

= x’+ x’y’+ y’z’+ x’y’

= x’+ x’z’+ x’y’+ y’z’+ x’y’z[x+ x= x]

= x’+ x’z’+ x’y’+ y’ [z’+ x’] [x’+ xy = x’+ y]

= x’+ x’y’+ y’ [z’+ x’] [x+ xy = x]

= x’+ y’z’+ x’y’

= x’+ y’z’.

[x+ xy = x]

[x+ xy = x]

24. xy+ xy’(x’z’)’

= xy+ xy’ (x’’+ z’’)

= xy+ xy’x+ xy’z

= xy+ xy’ [1+ z]

= xy+ xy’

= x(y+ y’)

= xy+ xy’ (x+ z)

= xy+ xy’+ xy’z

= xy+ xy’ [1]

[x’’ = x]

[x. x= x]

[1+ x = 1]

= x [1] [x+ x’= 1]

= x.

25. [(xy’+ xyz)’+ x (y+ xy’)]’

= [x(y’+yz)’+ x (y+ xy’)]’

= [x(y’+z)’+ x (y+ x)]’ [x’+ xy = x’+ y]; [x+ x’y = x+ y]

= [x(y’+z)’+ xy+ x.x)]’

= [(xy’+xz)’+ xy+ x)]’ [x. x= x]

= [(xy’+xz)’+ x)]’ [x+ xy = x]

= [(xy’)’. (xz)’+ x]’

= [(x’+y’’). (x’+z’)+ x]’

= [x’+ yz’+ x]’

= 0.

= [(x’+y). (x’+z’)+ x]’

= [(x’+ yz’)+ x]’

= [1+ yz’]’

= [1]’

[x’’ = x]

[(x+ y) (x+ z)= x+ yz]

[x+ x’= 1]

[1+ x = 1]

12

26. [(xy+ z’) ((x+ y)’+z)]’

= [(xy+ z’) ((x’. y’)+z)]’

= [xy. x’y’+ xy. z+ z’. x’y’+ z’. z]’

= [0+ xyz+ x’y’z’+ 0]’

= [xyz+ x’y’z’]’

= (xyz)’. (x’y’z’)’

= (x’+ y’+ z’). (x’’+ y’’+ z’’)

= (x’+ y’+ z’). (x+ y+ z).

27. (x+ y) (x’z’+ z) (y’+ xz)’

= (x+ y) (x’z’+ z) (y’’. (xz)’)

= (x+ y) (x’+ z) (y. (xz)’)

= (x+ y) (x’+ z) (y. (x’+z’))

= (x.x’+ xz+ x’y+ yz) (x’y+ yz’)

= (0+ xz+ x’y+ yz) (x’y+ yz’)

= (xz+ x’y+ yz) (x’y+ yz’)

= xz. x’y+ xz. yz’+ x’y. x’y+ x’y. yz’+ yz. x’y+ yz. yz’

= 0+ 0+ x’y+ x’yz’+ x’yz+ 0

= x’y+ x’yz’+ x’yz

= x’y (1+ z’+ z)

= x’y (1)

= x’y.

28. Y= ∑m (1, 3, 5, 7)

= x’y’z+ x’yz+ xy’z+ xyz

= x’z(y’+y) + xz(y’+y)

= x’z (1)+ xz (1)

= x’z+ xz

= z(x’+ x)

= z (1)

= z.

[x. x’= 0]

[x’’ = x]

[x+ x’y = x+ y]; [x’’ = x]

[x. x’= 0]; [x. x= x]

[1+ x = 1]

[x+ x’= 1]

[x+ x’= 1]

13

COMPLEMENT OF A FUNCTION:

The complement of a function F is F’ and is obtained from an interchange of 0’s for

1’s and 1’s for 0’s in the value of F. The complement of a function may be derived

algebraically through DeMorgan’s theorem.

DeMorgan’s theorems for any number of variables resemble in form the two-

variable case and can be derived by successive substitutions similar to the method used

in the preceding derivation. These theorems can be generalized as –

(A+B+C+D+…+F)’=A’B’C’D’…F’

(A B C D … F)’ = A’+B’+ C’+ D’+ … +F’.

Find the complement of the following functions,

1. F= x’yz’+ x’y’z

F’= (x’yz’+ x’y’z)’

= (x”+ y’+ z”) . (x”+ y”+z’)

= (x+ y’+ z). (x+ y+ z’).

2. F= (xy + y’z + xz) x.

F’ = [(xy + y’z + xz) x]’

= (xy + y’z + xz)’ + x’

= [(xy)’ . (y’z)’. (xz)’] + x’

= [(x’+y’). (y+z’). (x’+z’)] + x’

= [(x’y+ x’z’+ 0+ y’z’) (x’+z’)] + x’

= x’x’y+ x’x’z’+ x’y’z’+ x’yz’+ x’z’z’+ y’z’z’+ x’

= x’y+ x’z’+ x’y’z’+ x’yz’+ x’z’+ y’z’+ x’

= x’y+ x’z’+ x’z’ (y’+ y) + y’z’+ x’

= x’y+ x’z’+ x’z’ (1) + y’z’+ x’

= x’y+ x’z’+ y’z’+ x’

= x’y+ x’+ x’z’+ y’z’

[x+ x = x], [x. x = x]

[x+ x’= 1]

= x’(y+1) + x’z+ y’z’ [y+1= 1]

= x’ (1+z) + y’z’

= x’+ y’z’

[y+1= 1]

14

3. F= x (y’z’+ yz)

F’= [x (y’z’+ yz)]’

= x’+ (y’z’+ yz)’

= x’+ (y’z’)’. (yz)’

= x’+ (y”+ z”) . (y’+ z’)

= x’+ (y+ z) . (y’+ z’).

4. F= xy’+ x’y

F’= (xy’+ x’y)’

= (xy’)’. (x’y)’

= (x’+y) (x+y’)

= x’x+ x’y’+ yx+ yy’

= x’y’+ xy.

5. f = wx’y + xy’+ wxz

f’ = (wx’y + xy’+ wxz)’

= (wx’y)’ (xy’)’ (wxz)’

= (w’+x+ y’) (x’+ y) (w’+ x’+ z’)

= (w’x’+ w’y+ xx’+ xy+ x’y’+ yy’) (w’+ x’+ z’)

= (w’x’+ w’y+ xy+ x’y’) (w’+ x’+ z’)

= w’x’. w’+ w’y. w’+ xy. w’+ x’y’. w’+ w’x’. x’+w’y. x’+ xy. x’+ x’y’. x’+

w’x’. z’+ w’y. z’+ xy. z’+ x’y’.z’

= w’x’+ w’y+ w’xy+ w’x’y’+ w’x’+ w’x’y+ 0 + x’y’+ w’x’z’+ w’yz’+ xyz’+ x’y’z’

= w’x’+ w’y+ w’xy+ w’x’y’+ w’x’y+ x’y’+ w’x’z’+ w’yz’+ xyz’+ x’y’z’

= w’x’(1+ y’+ y+ z’)+ w’y(1+ x+ z’)+ x’y’(1+ z’)+ xyz’

= w’x’(1)+ w’y(1)+ x’y’(1)+ xyz’

= w’x’+ w’y+ x’y’+ xyz’

15

CANONICAL AND STANDARD FORMS:

Minterms and Maxterms:

A binary variable may appear either in its normal form (x) or in its complement form

(x’). Now either two binary variables x and y combined with an AND operation. Since each

variable may appear in either form, there are four possible combinations:

x’y’, x’y, xy’ and xy

Each of these four AND terms is called a ‘minterm’.

In a similar fashion, when two binary variables x and y combined with an

OR operation, there are four possible combinations:

x’+ y’, x’+ y, x+ y’ and x+ y

Each of these four OR terms is called a ‘maxterm’.

The minterms and maxterms of a 3- variable function can be represented as

in table below.

x

Variables

y

Z

Minterms

mi

Maxterms

Mi

0 0 0 x’y’z’ = m0 x+ y+ z= M0

0 0 1 x’y’z = m1 x+ y+ z’= M1

0 1 0 x’yz’ = m2 x+ y’+ z= M2

0 1 1 x’yz = m3 x+ y’+ z’= M3

1 0 0 xy’z’ = m4 x’+ y+ z= M4

1 0 1 xy’z = m5 x’+ y+ z’= M5

1 1 0 xyz’ = m6 x’+ y’+ z= M6

1 1 1 xyz = m7 x’+ y’+ z’= M7

Sum of Minterm: (Sum of Products)

The logical sum of two or more logical product terms is called sum of products

expression. It is logically an OR operation of AND operated variables such as:

16

Sum of Maxterm: (Product of Sums)

A product of sums expression is a logical product of two or more logical sum

terms. It is basically an AND operation of OR operated variables such as,

Canonical Sum of product expression:

If each term in SOP form contains all the literals then the SOP is known as standard

(or) canonical SOP form. Each individual term in standard SOP form is called minterm

canonical form.

F (A, B, C) = AB’C+ ABC+ ABC’

Steps to convert general SOP to standard SOP form:

1. Find the missing literals in each product term if any.

2. AND each product term having missing literals by ORing the literal and

its complement.

3. Expand the term by applying distributive law and reorder the literals in

the product term.

4. Reduce the expression by omitting repeated product terms if any.

Obtain the canonical SOP form of the function:

1. Y(A, B) = A+ B

= A. (B+ B’)+ B (A+ A’)

= AB+ AB’+ AB+ A’B

= AB+ AB’+ A’B.
2. Y (A, B, C) = A+ ABC

= A. (B+ B’). (C+ C’)+ ABC

= (AB+ AB’). (C+ C’)+ ABC

= ABC+ ABC’+ AB’C+ AB’C’+ ABC

= ABC+ ABC’+ AB’C+ AB’C’

= m7+ m6+ m5+ m4

17

= ∑m (4, 5, 6, 7).

3. Y(A,B,C)=A+BC

= A. (B+ B’). (C+ C’)+(A+ A’). BC

= (AB+ AB’). (C+ C’)+ ABC+ A’BC

= ABC+ ABC’+ AB’C+ AB’C’+ ABC+ A’BC

= ABC+ ABC’+ AB’C+ AB’C’+ A’BC

= m7+ m6+ m5+ m4+ m3

= ∑m (3, 4, 5, 6, 7).

4. Y (A, B, C) = AC+ AB+ BC

= AC (B+ B’)+ AB (C+ C’)+ BC (A+ A’)

= ABC+ AB’C+ ABC+ ABC’+ ABC+ A’BC

= ABC+ AB’C+ ABC’+ A’BC

= ∑m (3, 5, 6, 7).

5. Y (A, B, C, D) = AB+ ACD

= AB (C+ C’) (D+ D’) + ACD (B+ B’)

= (ABC+ ABC’) (D+ D’) + ABCD+ AB’CD

= ABCD+ ABCD’+ ABC’D+ ABC’D’+ ABCD+ AB’CD

= ABCD+ ABCD’+ ABC’D+ ABC’D’+ AB’CD.

Canonical Product of sum expression:

If each term in POS form contains all literals then the POS is known as standard (or)

Canonical POS form. Each individual term in standard POS form is called Maxterm

canonical form.

 F (A, B, C) = (A+ B+ C). (A+ B’+ C). (A+ B+ C’)

 F (x, y, z) = (x+ y’+ z’). (x’+ y+ z). (x+ y+ z)

Steps to convert general POS to standard POS form:

1. Find the missing literals in each sum term if any.

2. OR each sum term having missing literals by ANDing the literal and

its complement.

3. Expand the term by applying distributive law and reorder the literals in

the sum term.

4. Reduce the expression by omitting repeated sum terms if any.

18

Obtain the canonical POS expression of the functions:

1. Y= A+ B’C

= (A+ B’) (A+ C) [A+ BC = (A+B) (A+C)]

= (A+ B’+ C.C’) (A+ C+ B.B’)

= (A+ B’+C) (A+ B’+C’) (A+ B+ C) (A+ B’+ C)

= (A+ B’+C). (A+ B’+C’). (A+ B+ C)

= M2. M3. M0

= ∏M (0, 2, 3)

2. Y= (A+B) (B+C) (A+C)

= (A+B+ C.C’) (B+ C+ A.A’) (A+C+B.B’)

= (A+B+C) (A+B+C’) (A+B+C) (A’+B+C) (A+B+C) (A+B’+C)

= (A+B+C) (A+B+C’) (A’+B+C) (A+B’+C)

= M0. M1. M4. M2

= ∏M (0, 1, 2, 4)

3. Y= A. (B+ C+ A)

= (A+ B.B’+ C.C’). (A+ B+ C)

= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’) (A+B+C)

= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’)

= M0. M1. M2. M3

= ∏M (0, 1, 2, 3)

4. Y= (A+B’) (B+C) (A+C’)

= (A+B’+C.C’) (B+C+ A.A’) (A+C’+ B.B’)

= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’) (A+B’+C’)

= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’)

= M2. M3. M0. M4. M1

= ∏M (0, 1, 2, 3, 4)

5. Y= xy+ x’z

= (xy+ x’) (xy+ z)Using distributive law, convert the function into OR terms.

= (x+x’) (y+x’) (x+z) (y+z)

= (x’+y) (x+z) (y+z)

= (x’+y+ z.z’) (x+z+y.y’) (y+z+ x.x’)

[x+ x’=1]

= (x’+ y+ z) (x’+ y+ z’) (x+ y+ z) (x+ y’+ z) (x+ y+ z) (x’+ y+ z)

= (x’+ y+ z) (x’+ y+ z’) (x+ y+ z) (x+ y’+ z)

19

= M4. M5. M0.M2

= ∏M (0, 2, 4, 5).

KARNAUGH MAP MINIMIZATION:

The simplification of the functions using Boolean laws and theorems becomes

complex with the increase in the number of variables and terms. The map method, first

proposed by Veitch and slightly improvised by Karnaugh, provides a simple,

straightforward procedure for the simplification of Boolean functions. The method is called

Veitch diagram or Karnaugh map, which may be regarded as a pictorial representation of a

truth table.

The Karnaugh map technique provides a systematic method for simplifying and

manipulation of Boolean expressions. A K-map is a diagram made up of squares, with each

square representing one minterm of the function that is to be minimized. For n variables

on a Karnaugh map there are 2n numbers of squares. Each square or cell represents one of

the minterms. It can be drawn directly from either minterm (sum-of- products) or maxterm

(product-of-sums) Boolean expressions.

Two- Variable, Three Variable and Four Variable Maps

Karnaugh maps can be used for expressions with two, three, four and five variables.

The number of cells in a Karnaugh map is equal to the total number of possible input

variable combinations as is the number of rows in a truth table. For three variables, the

number of cells is 23 = 8. For four variables, the number of cells is 24 = 16.

Product terms are assigned to the cells of a K-map by labeling each row and each

column of a map with a variable, with its complement or with a combination of variables &

complements. The below figure shows the way to label the rows & columns of a 1, 2, 3 and

4- variable maps and the product terms corresponding to each cell.

It is important to note that when we move from one cell to the next along any row

or from one cell to the next along any column, one and only one variable in the product

term changes (to a complement or to an uncomplemented form). Irrespective of number

of variables the labels along each row and column must conform to a single change. Hence

gray code is used to label the rows and columns of K-map as shown ow.

Grouping cells for Simplification:

The grouping is nothing but combining terms in adjacent cells. The simplification is

achieved by grouping adjacent 1’s or 0’s in groups of 2i, where i = 1, 2, …, n and n is the

number of variables. When adjacent 1’s are grouped then we get result in the sum of product

form; otherwise we get result in the product of sum form.

20

21

Grouping Two Adjacent 1’s: (Pair)

In a Karnaugh map we can group two adjacent 1’s. The resultant group is called

Pair.

Grouping Four Adjacent 1’s: (Quad)

Examples of Pairs

In a Karnaugh map we can group four adjacent 1’s. The resultant group is called

Quad. Fig (a) shows the four 1’s are horizontally adjacent and Fig (b) shows they are

vertically adjacent. Fig (c) contains four 1’s in a square, and they are considered adjacent

to each other.

22

Examples of Quads

The four 1’s in fig (d) and fig (e) are also adjacent, as are those in fig (f) because, the

top and bottom rows are considered to be adjacent to each other and the leftmost and

rightmost columns are also adjacent to each other.

Grouping Eight Adjacent 1’s: (Octet)

In a Karnaugh map we can group eight adjacent 1’s. The resultant group is called Octet.

Simplification of Sum of Products Expressions: (Minimal Sums)

The generalized procedure to simplify Boolean expressions as follows:

1. Plot the K-map and place 1’s in those cells corresponding to the 1’s in the sum

of product expression. Place 0’s in the other cells.

2. Check the K-map for adjacent 1’s and encircle those 1’s which are not adjacent

to any other 1’s. These are called isolated 1’s.

3. Check for those 1’s which are adjacent to only one other 1 and encircle such

pairs.

23

4. Check for quads and octets of adjacent 1’s even if it contains some 1’s that have

already been encircled. While doing this make sure that there are minimum

number of groups.

5. Combine any pairs necessary to include any 1’s that have not yet been

grouped.

6. Form the simplified expression by summing product terms of all the groups.

Three- Variable Map:

1. Simplify the Boolean expression,

F(x, y, z) = ∑m (3, 4, 6, 7).

Soln:

F = yz+ xz’

2. F(x, y, z) = ∑m (0, 2, 4, 5, 6).

Soln:

F = z’+ xy’

3. F=A’C+A’B+AB’C+BC
Soln:

= A’C (B+ B’) + A’B (C+ C’) + AB’C + BC (A+ A’)

= A’BC+ A’B’C + A’BC + A’BC’ + AB’C + ABC + A’BC

= A’BC+ A’B’C + A’BC’ + AB’C + ABC

= m3+ m1+ m2+ m5+ m7

24

= ∑ m (1, 2, 3, 5, 7)

F=C+A’B

4. AB’C + A’B’C + A’BC + AB’C’ + A’B’C’

Soln:

= m5 + m1 + m3 + m4 + m0

= ∑ m (0, 1, 3, 4, 5)

F=A’C+B’

Four - Variable Map:

1. Simplify the Boolean expression,

Y = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D + AB’C’D + A’B’CD’

Soln:

Therefore, Y= A’B’CD’+ AC’D+ BC’

25

2. F (w, x, y, z) = ∑ m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

Soln:

Therefore,

F= y’+ w’z’+ xz’

3. F= A’B’C’+ B’CD’+ A’BCD’+ AB’C’

= A’B’C’ (D+ D’) + B’CD’ (A+ A’) + A’BCD’+ AB’C’ (D+ D’)

= A’B’C’D+ A’B’C’D’+ AB’CD’+ A’B’CD’+ A’BCD’+ AB’C’D+ AB’C’D’

= m1+ m0+ m10+ m2+ m6+ m9+ m8

= ∑ m (0, 1, 2, 6, 8, 9, 10)

Therefore,
F= B’D’+ B’C’+ A’CD’.

26

4. Y= ABCD+ AB’C’D’+ AB’C+ AB

= ABCD+ AB’C’D’+ AB’C (D+D’)+ AB (C+C’) (D+D’)

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ (ABC+ ABC’) (D+ D’)

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD+ ABCD’+ ABC’D+ ABC’D’

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD’+ ABC’D+ ABC’D’

= m15+ m8+ m11+ m10+ m14+ m13+ m12

= ∑ m (8, 10, 11, 12, 13, 14, 15)

Therefore,
Y= AB+ AC+ AD’.

5. Y (A, B, C, D)= ∑ m (7, 9, 10, 11, 12, 13, 14, 15)

Therefore,

Y= AB+ AC+ AD+BCD.

27

6. Y= A’B’C’D+ A’BC’D+ A’BCD+ A’BCD’+ ABC’D+ ABCD+ AB’CD

= m1+ m5+ m7+ m6+ m13+ m15+ m11

= ∑ m (1, 5, 6, 7, 11, 13, 15)

In the above K-map, the cells 5, 7, 13 and 15 can be grouped to form a quad as

indicated by the dotted lines. In order to group the remaining 1’s, four pairs have to be

formed. However, all the four 1’s covered by the quad are also covered by the pairs. So, the

quad in the above k-map is redundant.

Therefore, the simplified expression will be,

Y = A’C’D+ A’BC+ ABD+ ACD.

7. Y= ∑ m (1, 5, 10, 11, 12, 13, 15)

Therefore, Y= A’C’D+ ABC’+ ACD+ AB’C.

28

8. Y= A’B’CD’+ ABCD’+ AB’CD’+ AB’CD+ AB’C’D’+ ABC’D’+ A’B’CD+ A’B’C’D’

Therefore, Y= AD’+ B’C+ B’D’

9. F (A, B, C, D) = ∑ m (0, 1, 4, 8, 9, 10)

Therefore, F= A’C’D’+ AB’D’+ B’C’.

Simplification of Sum of Products Expressions: (Minimal Sums)

1. Y= (A+ B+ C’) (A+ B’+ C’) (A’+ B’+ C’) (A’+ B+ C) (A+ B+ C)

= M1. M3. M7. M4. M0

=∏ M (0, 1, 3, 4, 7)

= ∑ m (2, 5, 6)

29

Y’ = B’C’+ A’C+ BC.

Y= Y” = (B’C’+ A’C+ BC)’

= (B’C’)’. (A’C)’. (BC)’

= (B”+ C”). (A”+C’). (B’+ C’)
Y = (B+ C). (A+C’). (B’+ C’)

2. Y= (A’+ B’+ C+ D) (A’+ B’+ C’+ D) (A’+ B’+ C’+ D’) (A’+ B+ C+ D) (A+ B’+ C’+ D)

(A+ B’+ C’+ D’) (A+ B+ C+ D) (A’+ B’+ C+ D’)

= M12. M14. M15. M8. M6. M7. M0. M13

= ∏M (0, 6, 7, 8, 12, 13, 14, 15)

Y’ = B’C’D’+ AB+ BC

Y= Y” = (B’C’D’+ AB+ BC)’

= (B’C’D’)’. (AB)’. (BC)’

= (B”+ C”+D”). (A’+B’). (B’+ C’)

= (B+ C+ D). (A’+ B’). (B’+ C’)

Therefore, Y= (B+ C+ D). (A’+ B’). (B’+ C’)

3. F(A, B, C, D)= ∏M (0, 2, 3, 8, 9, 12, 13, 14, 15)

Y’ = A’B’D’+ A’B’C+ ABD+ AC’

30

Y= Y” = (A’B’D’+ A’B’C+ ABD+ AC’)’

= (A’B’D’)’. (A’B’C)’. (ABD)’. (AC’)’

= (A”+ B”+ D”). (A”+ B”+C’). (A’+ B’+ D’). (A’+ C”)
= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)

Therefore, Y= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)

4. F(A, B, C, D)= ∑m (0, 1, 2, 5, 8, 9, 10)

= ∏M (3, 4, 6, 7, 11, 12, 13, 14, 15)

Y’ = BD’+ CD+ AB

Y= Y” = (BD’+ CD+ AB)’

= (BD’)’. (CD)’. (AB)’

= (B’+ D”). (C’+ D’). (A’+ B’)

= (B’+ D). (C’+ D’). (A’+ B’)

Therefore, Y= (B’+ D). (C’+ D’). (A’+ B’)

Don’t care Conditions:
A don’t care minterm is a combination of variables whose logical value is not

specified. When choosing adjacent squares to simplify the function in a map, the don’t

care minterms may be assumed to be either 0 or 1. When simplifying the function, we

can choose to include each don’t care minterm with either the 1’s or the 0’s, depending

on which combination gives the simplest expression.

1. F (x, y, z) = ∑m (0, 1, 2, 4, 5)+ ∑d (3, 6, 7)

31

F (x, y, z) = 1

2. F (w, x, y, z) = ∑m (1, 3, 7, 11, 15)+ ∑d (0, 2, 5)

F (w, x, y, z) = w’x’+ yz

3. F (w, x, y, z) = ∑m (0, 7, 8, 9, 10, 12)+ ∑d (2, 5, 13)

F (w, x, y, z) = w’xz+ wy’+ x’z’.

4. F (w, x, y, z) = ∑m (0, 1, 4, 8, 9, 10)+ ∑d (2, 11)

Soln:

F (w, x, y, z) = wx’+ x’y’+ w’y’z’.

32

5. F(A, B, C, D) = ∑m (0, 6, 8, 13, 14)+ ∑d (2, 4, 10)

Soln:

F(A, B, C, D) = CD’+ B’D’+ A’B’C’D’.

Five- Variable Maps:

A 5- variable K- map requires 25= 32 cells, but adjacent cells are difficult to identify

on a single 32-cell map. Therefore, two 16 cell K-maps are used.

If the variables are A, B, C, D and E, two identical 16- cell maps containing B, C, D

and E can be constructed. One map is used for A and other for A’.

In order to identify the adjacent grouping in the 5- variable map, we must

imagine the two maps superimposed on one another ie., every cell in one map is

adjacent to the corresponding cell in the other map, because only one variable changes

between such corresponding cells.

Five- Variable Karnaugh map (Layer Structure)

33

Thus, every row on one map is adjacent to the corresponding row (the one

occupying the same position) on the other map, as are corresponding columns. Also,

the rightmost and leftmost columns within each 16- cell map are adjacent, just as

they are in any 16- cell map, as are the top and bottom rows.

Typical subcubes on a five-variable map

However, the rightmost column of the map is not adjacent to the leftmost

column of the other map.

1. Simplify the Boolean function

F (A, B, C, D, E) = ∑m (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)

Soln:

F (A, B, C, D, E) = A’B’E’+ BE+ AD’E

34

2. F (A, B, C, D, E) = ∑m (0, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27, 29, 31)

Soln:

F (A, B, C, D, E) = C’D’E’+ A’B’CD’E+ A’B’CDE’+ AB’D’E’+ ABE+ BC’

3. F (A, B, C, D, E) = ∑m (1, 4, 8, 10, 11, 20, 22, 24, 25, 26)+∑d (0, 12, 16, 17)

Soln:

F (A, B, C, D, E) = B’C’D’+ A’D’E’+ BC’E’+ A’BC’D+ AC’D’+ AB’CE’

35

4. F (A, B, C, D, E) = ∑m (0, 1, 2, 6, 7, 9, 12, 28, 29, 31)

Soln:

F (A, B, C, D, E) = BCD’E’+ ABCE+ A’B’C’E’+ A’C’D’E+ A’B’CD

5. F (x1, x2, x3, x4, x5) = ∑m (2, 3, 6, 7, 11, 12, 13, 14, 15, 23, 28, 29, 30, 31)

Soln:

F (x1, x2, x3, x4, x5) = x2x3+ x3x4x5+ x1’x2’x4+ x1’x3’x4x5

36

6. F (x1, x2, x3, x4, x5) = ∑m (1, 2, 3, 6, 8, 9, 14, 17, 24, 25, 26, 27, 30, 31)+ ∑d (4, 5)

Soln:

F (x1, x2, x3, x4, x5) = x2x3’x4’+ x2x3x4x5’+ x3’x4’x5+ x1x2x4+ x1’x2’x3x5’+ x1’x2’x3’x4

LOGIC GATES

BASIC LOGIC GATES:

Logic gates are electronic circuits that can be used to implement the most

elementary logic expressions, also known as Boolean expressions. The logic gate is the most

basic building block of combinational logic.

There are three basic logic gates, namely the OR gate, the AND gate and the NOT

gate. Other logic gates that are derived from these basic gates are the NAND gate, the NOR

gate, the EXCLUSIVE- OR gate and the EXCLUSIVE-NOR gate.

GATE SYMBOL OPERATION TRUTH TABLE

NOT

(7404)

NOT gate (Invertion), produces

an inverted output pulse for a

given input pulse.

AND

(7408)

AND gate performs logical

multiplication. The output is

HIGH only when all the inputs

are HIGH. When any of the

inputs are low, the output is

LOW.

37

UNIVERSAL GATES:

The NAND and NOR gates are known as universal gates, since any logic

function can be implemented using NAND or NOR gates. This is illustrated in

the following sections.

a) NAND Gate:

The NAND gate can be used to generate the NOT function, the AND function,

OR

(7432)

OR gate performs logical

addition. It produces a HIGH

on the output when any of the

inputs are HIGH. The output is

LOW only when all inputs are

LOW.

NAND

(7400)

It is a universal gate. When any

of the inputs are LOW, the

output will be HIGH. LOW

output occurs only when all

inputs are HIGH.

NOR

(7402)

It is a universal gate. LOW

output occurs when any of its

input is HIGH. When all its

inputs are LOW, the output is

HIGH.

EX- OR

(7486)

The output is HIGH only when

odd number of inputs is HIGH.

EX- NOR
The output is HIGH only when

even number of inputs is HIGH.

Or when all inputs are zeros.

38

the OR function and the NOR function.

i) NOT function:

By connecting all the inputs together and creating a single common input.

NOT function using NAND gate

ii) AND function:

By simply inverting output of the NAND gate. i.e.,

AND function using NAND gates

iii) OR function:

By simply inverting inputs of the NAND gate. i.e.,

OR function using NAND gates

39

Bubble at the input of NAND gate indicates inverted input.

iv) NOR function:

By inverting inputs and outputs of the NAND gate.

NOR function using NAND gates

b) NOR Gate:

Similar to NAND gate, the NOR gate is also a universal gate, since it can be used

to generate the NOT, AND, OR and NAND functions.

i) NOT function:

By connecting all the inputs together and creating a single common input.

NOT function using NOR gates

40

ii) OR function:

By simply inverting output of the NOR gate. i.e.,

OR function using NOR gates

iii) AND function:

By simply inverting inputs of the NOR gate. i.e.,

AND function using NOR gates

Bubble at the input of NOR gate indicates inverted input.

Truth table

41

iv) NAND Function:

By inverting inputs and outputs of the NOR gate.

NAND function using NOR gates

Conversion of AND/OR/NOT to NAND/NOR:

1. Draw AND/OR logic.

2. If NAND hardware has been chosen, add bubbles on the output of each

AND gate and bubbles on input side to all OR gates.

If NOR hardware has been chosen, add bubbles on the output of each OR

gate and bubbles on input side to all AND gates.

3. Add or subtract an inverter on each line that received a bubble in step 2.

4. Replace bubbled OR by NAND and bubbled AND by NOR.

5. Eliminate double inversions.

1. Implement Boolean expression using NAND gates:

Original Circuit:

42

Soln:

NAND Circuit:

:

43

2. Implement Boolean expression for EX-OR gate using NAND gates.

Soln:

gate.

Adding bubbles on the output of each AND gates and on the inputs of each OR

Adding an inverter on each line that received bubble,

Eliminating double inversion,

44

Replacing inverter and bubbled OR with NAND, we have

1

 UNIT II COMBINATIONAL LOGIC CIRCUITS:

INTRODUCTION:

The digital system consists of two types of circuits, namely

(i) Combinational circuits

(ii) Sequential circuits

Combinational circuit consists of logic gates whose output at any time is

determined from the present combination of inputs. The logic gate is the most basic
building block of combinational logic. The logical function performed by a combinational
circuit is fully defined by a set of Boolean expressions.

Sequential logic circuit comprises both logic gates and the state of storage

elements such as flip-flops. As a consequence, the output of a sequential circuit depends
not only on present value of inputs but also on the past state of inputs.

In the previous chapter, we have discussed binary numbers, codes, Boolean algebra
and simplification of Boolean function and logic gates. In this chapter, formulation and
analysis of various systematic designs of combinational circuits will be discussed.

A combinational circuit consists of input variables, logic gates, and output

variables. The logic gates accept signals from inputs and output signals are generated
according to the logic circuits employed in it. Binary information from the given data
transforms to desired output data in this process. Both input and output are obviously the

binary signals, i.e., both the input and output signals are of two possible states, logic1 and
logic 0.

Block diagram of a combinational logic circuit

For n number of input variables to a combinational circuit, 2n possible

combinations of binary input states are possible. For each possible combination, there is
one and only one possible output combination. A combinational logic circuit can be

described by m Boolean functions and each output can be expressed in terms of n input
variables.

2

DESIGN PROCEDURE:

Any combinational circuit can be designed by the following steps of design procedure.

1. The problem is stated.

2. Identify the input and output variables.

3. The input and output variables are assigned letter symbols.

4. Construction of a truth table to meet input -output requirements.

5. Writing Boolean expressions for various output variables in terms of
input variables.

6. The simplified Boolean expression is obtained by any method of minimization—

algebraic method, Karnaugh map method, or tabulation method.

7. A logic diagram is realized from the simplified boolean expression using
logic gates.

The following guidelines should be followed while choosing the preferred form
for hardware implementation:

1. The implementation should have the minimum number of gates, with the
gates used having the minimum number of inputs.

2. There should be a minimum number of interconnections.

3. Limitation on the driving capability of the gates should not be ignored.

ARITHMETIC CIRCUITS – BASIC BUILDING BLOCKS:

In this section, we will discuss those combinational logic building blocks that can
be used to perform addition and subtraction operations on binary numbers. Addition and

subtraction are the two most commonly used arithmetic operations, as the other two,

namely multiplication and division, are respectively the processes of repeated addition

and repeated subtraction.

The basic building blocks that form the basis of all hardware used to perform the
arithmetic operations on binary numbers are half-adder, full adder, half-subtractor, full-
subtractor.

Half-Adder:

A half-adder is a combinational circuit that can be used to add two binary bits. It
has two inputs that represent the two bits to be added and two outputs, with one
producing the SUM output and the other producing the CARRY.

3

Block schematic of half-adder

The truth table of a half-adder, showing all possible input combinations and
the corresponding outputs are shown below.

Inputs Outputs

A B Carry (C) Sum (S)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0
Truth table of half-adder

K-map simplification for carry and sum:

The Boolean expressions for the SUM and CARRY outputs are given by the
equations,

Sum, S = A’B+ AB’= A
Carry, C = A . B

The first one representing the SUM output is that of an EX-OR gate, the second
one representing the CARRY output is that of an AND gate.

The logic diagram of the half adder is,

Logic Implementation of Half-adder

4

Full-Adder:

A full adder is a combinational circuit that forms the arithmetic sum of three
input bits. It consists of 3 inputs and 2 outputs.

Two of the input variables, represent the significant bits to be added. The third
input represents the carry from previous lower significant position. The block
diagram of full adder is given by,

Block schematic of full-adder

The full adder circuit overcomes the limitation of the half-adder, which can be used

to add two bits only. As there are three input variables, eight different input combinations
are possible. The truth table is shown below,

Truth Table:

Inputs Outputs

A B Cin Sum (S) Carry (Cout)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

To derive the simplified Boolean expression from the truth table, the Karnaugh map

method is adopted as,

5

The Boolean expressions for the SUM and CARRY outputs are given by the

equations,

Sum, S = A’B’Cin+ A’BC’in + AB’C’in + ABCin

Carry, Cout = AB+ ACin + BCin .

The logic diagram for the above functions is shown as,

Implementation of full-adder in Sum of Products

The logic diagram of the full adder can also be implemented with two half-

adders and one OR gate. The S output from the second half adder is the exclusive-OR of
Cin and the output of the first half-adder, giving

Sum = Cin (A B) [x y = x‘y+ xy‘]

= Cin (A‘B+AB‘)

= C‘in (A‘B+AB‘) + Cin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)]

= C‘in (A‘B+AB‘) + Cin (AB+A‘B‘)

= A‘BC‘in + AB‘C‘in + ABCin + A‘B‘Cin .

6

and the carry output is,

Carry, Cout = AB+ Cin (A’B+AB’)

= AB+ A‘BCin+ AB‘Cin

= AB (Cin+1) + A‘BCin+ AB‘Cin [Cin+1= 1]

= ABCin+ AB+ A‘BCin+ AB‘Cin

= AB+ ACin (B+B‘) + A‘BCin

= AB+ ACin+ A‘BCin

= AB (Cin+1) + ACin+ A‘BCin [Cin+1= 1]

= ABCin+ AB+ ACin+ A‘BCin

= AB+ ACin+ BCin (A +A‘)

= AB+ ACin+ BCin.

Implementation of full adder with two half-adders and an OR gate

Half -Subtractor:

A half-subtractor is a combinational circuit that can be used to subtract one binary
digit from another to produce a DIFFERENCE output and a BORROW output. The
BORROW output here specifies whether a ‗1‘ has been borrowed to perform the
subtraction.

Block schematic of half-subtractor

The truth table of half-subtractor, showing all possible input combinations
and the corresponding outputs are shown below.

Input Output

A B Difference (D) Borrow (Bout)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

7

K-map simplification for half subtractor:

The Boolean expressions for the DIFFERENCE and BORROW outputs are given by
the equations,

Difference, D = A’B+ AB’= A B

Borrow, Bout = A’ . B

The first one representing the DIFFERENCE (D)output is that of an exclusive-OR
gate, the expression for the BORROW output (Bout) is that of an AND gate with input A
complemented before it is fed to the gate.

The logic diagram of the half adder is,

Logic Implementation of Half-Subtractor

Comparing a half-subtractor with a half-adder, we find that the expressions for the
SUM and DIFFERENCE outputs are just the same. The expression for BORROW in the case
of the half-subtractor is also similar to what we have for CARRY in the case of the half-

adder. If the input A, ie., the minuend is complemented, an AND gate can beused to
implement the BORROW output.
Full Subtractor:

A full subtractor performs subtraction operation on two bits, a minuend and a
subtrahend, and also takes into consideration whether a ‗1‘ has already been borrowed
by the previous adjacent lower minuend bit or not.

As a result, there are three bits to be handled at the input of a full subtractor,
namely the two bits to be subtracted and a borrow bit designated as B in. There are two
outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

8

9

BORROW output bit tells whether the minuend bit needs to borrow a ‗1‘ from the next
possible higher minuend bit.

Block schematic of full-adder

The truth table for full-subtractor is,

Inputs Outputs

A B Bin Difference(D) Borrow(Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

K-map simplification for full-subtractor:

The Boolean expressions for the DIFFERENCE and BORROW outputs are given

by the equations,

Difference, D = A’B’Bin+ A’BB’in + AB’B’in + ABBin

Borrow, Bout = A’B+ A’Cin + BBin .

The logic diagram for the above functions is shown as,

10

Implementation of full-adder in Sum of Products

The logic diagram of the full-subtractor can also be implemented with two half-
subtractors and one OR gate. The difference,D output from the second half subtractor
is the exclusive-OR of Bin and the output of the first half-subtractor, giving

Difference,D= Bin (A B) [x

= Bin (A‘B+AB‘)

= x‘y+ xy‘]

= B‘in (A‘B+AB‘) + Bin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)]

= B‘in (A‘B+AB‘) + Bin (AB+A‘B‘)

= A‘BB‘in + AB‘B‘in + ABBin + A‘B‘Bin

. and the borrow output is,

Borrow, Bout = A’B+ Bin (A’B+AB’)’ [(x‘y+xy‘)‘= (xy+x‘y‘)]

= A‘B+ Bin (AB+A‘B‘)

= A‘B+ ABBin+ A‘B‘Bin

= A‘B (Bin+1) + ABBin+ A‘B‘Bin [Cin+1= 1]

= A‘BBin+ A‘B+ ABBin+ A‘B‘Bin

= A‘B+ BBin (A+A‘) + A‘B‘Bin [A+A‘= 1]

= A‘B+ BBin+ A‘B‘Bin

= A‘B (Bin+1) + BBin+ A‘B‘Bin [Cin+1= 1]

= A‘BBin+ A‘B+ BBin+ A‘B‘Bin

= A‘B+ BBin+ A‘Bin (B +B‘)

= A‘B+ BBin+ A‘Bin.

Therefore,

we can implement full-subtractor using two half-subtractors and OR gate as,

Implementation of full-subtractor with two half-subtractors and an OR gate

y

11

Binary Adder (Parallel Adder):

The 4-bit binary adder using full adder circuits is capable of adding two 4-
bit numbers resulting in a 4-bit sum and a carry output as shown in figure below.

4-bit binary parallel Adder

Since all the bits of augend and addend are fed into the adder circuits
simultaneously and the additions in each position are taking place at the same time, this
circuit is known as parallel adder.

Let the 4-bit words to be added be represented by,

A3A2A1A0= 1111 and B3B2B1B0= 0011.

The bits are added with full adders, starting from the least significant position, to
form the sum it and carry bit. The input carry C0 in the least significant position must be
0. The carry output of the lower order stage is connected to the carry input of the next
higher order stage. Hence this type of adder is called ripple-carry adder.

In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in sum
S0 and carry C1. This carry C1 becomes the carry input to the second stage. Similarly in

the second stage, A1, B1 and C1 are added resulting in sum S1 and carry C2, in the third

stage, A2, B2 and C2 are added resulting in sum S2 and carry C3, in the third stage, A3, B3 and
C3 are added resulting in sum S3 and C4, which is the output carry. Thus the circuit results

in a sum (S3S2S1S0) and a carry output (Cout).

Though the parallel binary adder is said to generate its output immediately after
the inputs are applied, its speed of operation is limited by the carry propagation delay

12

through all stages. However, there are several methods to reduce this delay.

One of the methods of speeding up this process is look-ahead carry addition which
eliminates the ripple-carry delay.

Carry Propagation–Look-Ahead Carry Generator:

In Parallel adder, all the bits of the augend and the addend are available for

computation at the same time. The carry output of each full-adder stage is connected to

the carry input of the next high-order stage. Since each bit of the sum output depends on
the value of the input carry, time delay occurs in the addition process. This timedelay

is called as carry propagation delay.

For example, addition of two numbers (0011+ 0101) gives the result as 1000.
Addition of the LSB position produces a carry into the second position. This carry when

added to the bits of the second position, produces a carry into the third position. This carry

when added to bits of the third position, produces a carry into the last position. The sum
bit generated in the last position (MSB) depends on the carry that was generated by the
addition in the previous position. i.e., the adder will not produce correct result until LSB
carry has propagated through the intermediate full-adders. This represents a time delay

that depends on the propagation delay produced in an each full-adder. For example, if
each full adder is considered to have a propagation delay of

30nsec, then S3 will not react its correct value until 90 nsec after LSB is generated.

Therefore total time required to perform addition is 90+ 30 = 120nsec.

4-bit Parallel Adder

The method of speeding up this process by eliminating inter stage carry delay is
called look ahead-carry addition. This method utilizes logic gates to look at the lower
order bits of the augend and addend to see if a higher-order carry is to be generated. It

uses two functions: carry generate and carry propagate.

13

Full-Adder circuit

Consider the circuit of the full-adder shown above. Here we define
two functions: carry generate (Gi) and carry propagate (Pi) as,

Carry generate, Gi = Ai

Carry propagate, Pi = Ai Bi

the output sum and carry can be expressed as,

Si = Pi Ci

Ci+1 = Gi PiCi

Gi (carry generate), it produces a carry 1 when both Ai and Bi are 1, regardless of
the input carry Ci.

Pi (carry propagate) because it is the term associated with the propagation of the
carry from Ci to Ci+1.

The Boolean functions for the carry outputs of each stage and substitute for each
Ci its value from the previous equation:

C0= input carry

C1= G0 + P0C0

C2= G1 + P1C1 = G1 + P1 (G0 + P0C0)

= G1 + P1G0 + P1P0C0

C3= G2 + P2C2 = G2 + P2 (G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0

14

Since the Boolean function for each output carry is expressed in sum of products,

each function can be implemented with one level of AND gates followed by an OR gate.
The three Boolean functions for C1, C2 and C3 are implemented in the carry look-ahead
generator as shown below. Note that C3 does not have to wait for C2 and C1 to propagate;
in fact C3 is propagated at the same time as C1 and C2.

Logic diagram of Carry Look-ahead Generator

Using a Look-ahead Generator we can easily construct a 4-bit parallel adder with
a Look-ahead carry scheme. Each sum output requires two exclusive-OR gates. The

output of the first exclusive-OR gate generates the Pi variable, and the AND gate generates

the Gi variable. The carries are propagated through the carry look-ahead generator and
applied as inputs to the second exclusive-OR gate. All output carries are generated after a

delay through two levels of gates. Thus, outputs S1 through S3 have equal propagation
delay times.

15

4-Bit Adder with Carry Look-ahead

Binary Subtractor (Parallel Subtractor):

The subtraction of unsigned binary numbers can be done most conveniently by

means of complements. The subtraction A-B can be done by taking the 2‘s complement of

B and adding it to A. The 2‘s complement can be obtained by taking the 1‘s complement and
adding 1 to the least significant pair of bits. The 1‘s complement can be implemented with

inverters and a 1 can be added to the sum through the input carry.

16

The circuit for subtracting A-B consists of an adder with inverters placed between
each data input B and the corresponding input of the full adder. The input carry C0 must

be equal to 1 when performing subtraction. The operation thus performed becomes A,
plus the 1‘s complement of B, plus1. This is equal to A plus the 2‘s complement of B.

4-bit Parallel Subtractor

Parallel Adder/ Subtractor:
The addition and subtraction operation can be combined into one circuit with one

common binary adder. This is done by including an exclusive-OR gate with each full
adder. A 4-bit adder Subtractor circuit is shown below.

4-Bit Adder Subtractor

The mode input M controls the operation. When M= 0, the circuit is an adder and

when M=1, the circuit becomes a Subtractor. Each exclusive-OR gate receives input M

17

and one of the inputs of B. When M=0, we have B 0= B. The full adders receive the
value of B, the input carry is 0, and the circuit performs A plus B. When M=1, we have B

1= B‘ and C0=1. The B inputs are all complemented and a 1 is added through the input
carry. The circuit performs the operation A plus the 2‘s complement of B. The exclusive-
OR with output V is for detecting an overflow.

Decimal Adder (BCD Adder):

The digital system handles the decimal number in the form of binary coded decimal
numbers (BCD). A BCD adder is a circuit that adds two BCD bits and producesa sum digit
also in BCD.

Consider the arithmetic addition of two decimal digits in BCD, together with an

input carry from a previous stage. Since each input digit does not exceed 9, the output sum
cannot be greater than 9+ 9+1 = 19; the 1 is the sum being an input carry. The adder will

form the sum in binary and produce a result that ranges from 0 through 19.

These binary numbers are labeled by symbols K, Z8, Z4, Z2, Z1, K is the carry. The
columns under the binary sum list the binary values that appear in the outputs of the 4-
bit binary adder. The output sum of the two decimal digits must be represented in BCD.

Binary Sum BCD Sum

Decimal
K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

0 1 0 0 1 0 1 0 0 1 9

18

0 1 0 1 0 1 0 0 0 0 10

0 1 0 1 1 1 0 0 0 1 11

0 1 1 0 0 1 0 0 1 0 12

0 1 1 0 1 1 0 0 1 1 13

0 1 1 1 0 1 0 1 0 0 14

0 1 1 1 1 1 0 1 0 1 15

1 0 0 0 0 1 0 1 1 0 16

1 0 0 0 1 1 0 1 1 1 17

1 0 0 1 0 1 1 0 0 0 18

1 0 0 1 1 1 1 0 0 1 19

In examining the contents of the table, it is apparent that when the binary sum is
equal to or less than 1001, the corresponding BCD number is identical, and therefore no
conversion is needed. When the binary sum is greater than 9 (1001), we obtain a non-
valid BCD representation. The addition of binary 6 (0110) to the binary sum converts it to
the correct BCD representation and also produces an output carry as required.

The logic circuit to detect sum greater than 9 can be determined by simplifying
the boolean expression of the given truth table.

19

To implement BCD adder we require:

• 4-bit binary adder for initial addition

• Logic circuit to detect sum greater than 9 and

• One more 4-bit adder to add 01102 in the sum if the sum is greater than 9 or
carry is 1.

The two decimal digits, together with the input carry, are first added in the top4-

bit binary adder to provide the binary sum. When the output carry is equal to zero,

nothing is added to the binary sum. When it is equal to one, binary 0110 is added to
the binary sum through the bottom 4-bit adder. The output carry generated from the

bottom adder can be ignored, since it supplies information already available at the
output carry terminal. The output carry from one stage must be connected to the input

carry of the next higher-order stage.

Block diagram of BCD adder

Binary Multiplier:

Multiplication of binary numbers is performed in the same way as in decimal

numbers. The multiplicand is multiplied by each bit of the multiplier starting from the
least significant bit. Each such multiplication forms a partial product. Such partial

20

products are shifted one position to the left. The final product is obtained from the sum
of partial products.

Consider the multiplication of two 2-bit numbers. The multiplicand bits are B1 and
B0, the multiplier bits are A1 and A0, and the product is C3, C2, C1 and C0. The first partial

product is formed by multiplying A0 by B1B0. The multiplication of two bits such as A0 and

B0 produces a 1 if both bits are 1; otherwise, it produces a 0. This is identicalto an AND
operation. Therefore the partial product can be implemented with ANDgates as shown

in the diagram below.

The second partial product is formed by multiplying A1 by B1B0 and shifted one
position to the left. The two partial products are added with two half adder (HA) circuits.

2- bit by 2-bit Binary multiplier

Usually there are more bits in the partial products and it is necessary to use full

adders to produce the sum of the partial products. The least significant bit of the product
does not have to go through an adder since it is formed by the output of thefirst AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a

similar fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as

many levels as there are bits in the multiplier. The binary output in each level of AND gates
are added with the partial product of the previous level to form a new partial product. The

last level produces the product. For J multiplier bits and K multiplicand bits we need (J x

K) AND gates and (J-1) k-bit adders to produce a product of J+K bits.

Consider a multiplier circuit that multiplies a binary number of four bits by a
number of three bits. Let the multiplicand be represented by B3, B2, B1, B0 and the

multiplier by A2, A1, and A0. Since K= 4 and J= 3, we need 12 AND gates and two 4-bit
adders to produce a product of seven bits. The logic diagram of the multiplier is shown
below.

21

4-bit by 3-bit Binary multiplier

PARITY GENERATOR/ CHECKER:

A Parity is a very useful tool in information processing in digital computers to

indicate any presence of error in bit information. External noise and loss of signal strength
causes loss of data bit information while transporting data from one device to other
device, located inside the computer or externally. To indicate any occurrence of error, an
extra bit is included with the message according to the total number of 1s in a set of data,

which is called parity.
If the extra bit is considered 0 if the total number of 1s is even and 1 for odd

quantities of 1s in a set of data, then it is called even parity. On the other hand, if the extra

bit is 1 for even quantities of 1s and 0 for an odd number of 1s, then it is called oddparity.

22

The message including the parity is transmitted and then checked at the receiving
end for errors. An error is detected if the checked parity does not correspond with the one

transmitted. The circuit that generates the parity bit in the transmitter is called a parity
generator and the circuit that checks the parity in the receiver is called a parity checker.

Parity Generator:

A parity generator is a combination logic system to generate the parity bit at the
transmitting side. A table illustrates even parity as well as odd parity for a message
consisting of three bits.

3-bit Message Odd Party

bit

Even Parity

bit A B C

0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1
Parity generator truth table for even and odd parity

If the message bit combination is designated as A, B, C and Pe, Po are the even
and odd parity respectively, then it is obvious from table that the boolean expressions
of even parity and odd parity are
Pe = A (B C) and

Po = (A B C)′.

K-map Simplification:

P= A’B’C+ A’BC’+ A’B’C’+ ABC

= A’ (B’C+ BC’) + A (B’C’+ BC)

= A’ (B C) + A (B C)’
= A (B C)

23

Logic Diagram:

Parity Checker:

3- bit even parity generator

The message bits with the parity bit are transmitted to their destination, where

they are applied to a parity checker circuit. The circuit that checks the parity at the

receiver side is called the parity checker. The parity checker circuit produces a check bit
and is very similar to the parity generator circuit. If the check bit is 1, then it is assumed
that the received data is incorrect. The check bit will be 0 if the received data is correct.
The table shows the truth table for the even parity checker.

4-Bit Received Parity Error

Check (PEC) A B C D

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

24

K-map Simplification:

PEC= A’B’ (C’D+ CD’) + A’B (C’D’+ CD) + AB (C’D+ CD’) + AB’ (C’D’+ CD)

= A’B’ (C D) + A’B (C D)’ + AB (C D) + AB’ (C D)’

= (A’B’+ AB) (C D) + (A’B+ AB’) (C D)’

= (A B)’ (C D) + (A B) (C D)’

= (A B) (C D)

Logic Diagram:

4- bit even parity checker

MAGNITUDE COMPARATOR:

A magnitude comparator is a combinational circuit that compares two given

numbers (A and B) and determines whether one is equal to, less than or greater than the
other. The output is in the form of three binary variables representing the conditions A
= B, A>B and A<B, if A and B are the two numbers being compared.

Block diagram of magnitude comparator

25

For comparison of two n-bit numbers,
Boolean expressions requires a truth table of 22n

cumbersome.

the classical method to achieve the

entries and becomes too lengthy and

2-bit Magnitude Comparator:

The truth table of 2-bit comparator is given in table below—

Truth table:

Inputs Outputs

A3 A2 A1 A0 A>B A=B A<B

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

K-map Simplification:

26

Logic Diagram:

27

4-bit Magnitude Comparator:
2- bit Magnitude Comparator

Let us consider the two binary numbers A and B with four digits each. Write
the coefficient of the numbers in descending order as,

A = A3A2A1A0

B = B3 B2 B1 B0,

Each subscripted letter represents one of the digits in the number. It is observed from the
bit contents of two numbers that A = B when A3 = B3, A2 = B2, A1 = B1 and A0 = B0. When the
numbers are binary they possess the value of either 1 or 0, the equality relation of each
pair can be expressed logically by the equivalence function as

Or,

Or,

Xi = AiBi + Ai′Bi′
Xi = (A B)′.

Xi = (AiBi′ + Ai′Bi)′.

for i = 1, 2, 3, 4.

or, Xi ′ = A B

28

where,
Xi =1 only if the pair of bits in position i are equal (ie., if both are 1 or both are 0).

To satisfy the equality condition of two numbers A and B, it is necessary that all Xi
must be equal to logic 1. This indicates the AND operation of all Xi variables. In other
words, we can write the Boolean expression for two equal 4-bit numbers.

(A = B) = X3X2X1 X0.

The binary variable (A=B) is equal to 1 only if all pairs of digits of the two numbers
are equal.

To determine if A is greater than or less than B, we inspect the relative magnitudes

of pairs of significant bits starting from the most significant bit. If the two digits of the

most significant position are equal, the next significant pair of digits is compared. The
comparison process is continued until a pair of unequal digits is found. It may be

concluded that A>B, if the corresponding digit of A is 1 and B is 0. If the corresponding

digit of A is 0 and B is 1, we conclude that A<B. Therefore, we can derive the logical
expression of such sequential comparison by the following two Boolean functions,

(A>B) = A3B3′ +X3A2B2′ +X3X2A1B1′ +X3X2X1A0B0′
(A<B) = A3′B3 +X3A2′B2 +X3X2A1′B1 +X3X2X1A0′B0

The symbols (A>B) and (A<B) are binary output variables that are equal to 1 when

A>B or A<B, respectively.

The gate implementation of the three output variables just derived is simpler
than it seems because it involves a certain amount of repetition. The unequal outputs
can use the same gates that are needed to generate the equal output. The logic
diagram of the 4-bit magnitude comparator is shown below,

29

4-bit Magnitude Comparator

The four x outputs are generated with exclusive-NOR circuits and applied to

an AND gate to give the binary output variable (A=B). The other two outputs use the
x variables to generate the Boolean functions listed above. This is a multilevel
implementation and has a regular pattern.

30

Binary code Gray code

CODE CONVERTERS:

A code converter is a logic circuit that changes data presented in one type of
binary code to another code of binary code. The following are some of the most
commonly used code converters:

i. Binary-to-Gray code
ii. Gray-to-Binary code

iii. BCD-to-Excess-3
iv. Excess-3-to-BCD
v. Binary-to-BCD

vi. BCD-to-binary
vii. Gray-to-BCD

viii. BCD-to-Gray

ix. 8 4 -2 -1 to BCD converter

1. Binary to Gray Converters:

The gray code is often used in digital systems because it has the advantage that
only one bit in the numerical representation changes between successive numbers. The
truth table for the binary-to-gray code converter is shown below,

0

B3

0

B2

0

B1

0

B0

0

G3

0

G2

0

G1

0

G0

0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

31

K-map simplification:

Now, the above expressions can be implemented using EX-OR gates as,

32

Logic Diagram:

2. Gray to Binary Converters:

The truth table for the gray-to-binary code converter is shown below,

Truth table:
 Gray code Binary code

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 0 0

0 1 1 1 0 1 0 1

1 0 0 0 1 1 1 1

1 0 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 1 1 1 1 0 1

1 1 0 0 1 0 0 0

1 1 0 1 1 0 0 1

1 1 1 0 1 0 1 1

1 1 1 1 1 0 1 0

From the truth table, the logic expression for the binary code outputs can be written as,
G3= ∑m (8, 9, 10, 11, 12, 13, 14, 15)
G2= ∑m (4, 5, 6, 7, 8, 9, 10, 11)

G1= ∑m (2, 3, 4, 5, 8, 9, 14, 15)
G0= ∑m (1, 2, 4, 7, 8, 11, 13, 14)

33

K-map Simplification:

From the above K-map,
B3= G3

B2= G3‘G2+ G3G2‘

B2= G3 G2

B1= G3‘G2‘G1+ G3‘G2G1‘+ G3G2G1+ G3G2‘G1‘
= G3‘ (G2‘G1+ G2G1‘) + G3 (G2G1+ G2‘G1‘)

= G3‘ (G2 G1) + G3 (G2 G1)‘ [x y = x‘y+ xy‘], [(x y)‘ = xy+ x‘y‘]

B1= G3 G2 G1

B0= G3‘G2‘ G1‘G0+ G3‘G2‗G1G0‘+ G3G2G1‗G0+ G3G2G1 G0‘+ G3‘G2G1‘G0‘+

G3G2‗G1‘G0‘+ G3‘G2G1G0+ G3G2‗G1 G0.

= G3‘G2‘ (G1‘G0+ G1G0‘) + G3G2 (G1‘G0+ G1G0‘) + G1‘G0‘ (G3‘G2+ G3G2‘) +

G1G0 (G3‘G2+ G3G2‘).
= G3‘G2‘ (G0 G1) + G3G2 (G0 G1) + G1‘G0‘ (G2 G3) +G1G0 (G2 G3).

= G0 G1 (G3‘G2‘ + G3G2) + G2 G3 (G1‘G0‘+G1G0)

= (G0 G1) (G2 G3)‘+ (G2 G3) (G0 G1) [x y = x‘y+ xy‘]

B0= (G0 G1) (G2 G3).

34

Now, the above expressions can be implemented using EX-OR gates as,

Logic diagram of 4-bit gray-to-binary converter

3. BCD –to-Excess-3 Converters:

Excess-3 is a modified form of a BCD number. The excess-3 code can be derived
from the natural BCD code by adding 3 to each coded number.

For example, decimal 12 can be represented in BCD as 0001 0010. Now adding 3 to each digit
we get excess-3 code as 0100 0101 (12 in decimal). With this information the truth table for
BCD to Excess-3 code converter can be determined as,

Truth Table:

B3 B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

From the truth table, the logic expression for the Excess-3 code outputs can be
written as,

E3= ∑m (5, 6, 7, 8, 9) + ∑d (10, 11, 12, 13, 14, 15)
E2= ∑m (1, 2, 3, 4, 9) + ∑d (10, 11, 12, 13, 14, 15)
E1= ∑m (0, 3, 4, 7, 8) + ∑d (10, 11, 12, 13, 14, 15)
E0= ∑m (0, 2, 4, 6, 8) + ∑d (10, 11, 12, 13, 14, 15)

35

K-map Simplification:

36

Logic Diagram:

4. Excess-3 to BCD

Converter: Truth table:

Decimal
Excess-3 code BCD code

E3 E2 E1 E0 B3 B2 B1 B0

3 0 0 1 1 0 0 0 0

4 0 1 0 0 0 0 0 1

5 0 1 0 1 0 0 1 0

6 0 1 1 0 0 0 1 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 0 1 0 1

9 1 0 0 1 0 1 1 0

10 1 0 1 0 0 1 1 1

11 1 0 1 1 1 0 0 0

37

From the truth table, the logic expression for the Excess-3 code outputs can be
written as,

B3= ∑m (11, 12) + ∑d (0, 1, 2, 13, 14, 15)
B2= ∑m (7, 8, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)
B1= ∑m (5, 6, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)

B0= ∑m (4, 6, 8, 10, 12) + ∑d (0, 1, 2, 13, 14, 15)

K-map Simplification:

Now, the above expressions the logic diagram can be implemented as,

38

Logic Diagram:

5. BCD –to-Binary Converters:

The steps involved in the BCD-to-binary conversion process are as follows:
1. The value of each bit in the BCD number is represented by a binary equivalent

or weight.

2. All the binary weights of the bits that are 1‘s in the BCD are added.

3. The result of this addition is the binary equivalent of the BCD number.
Two-digit decimal values ranging from 00 to 99 can be represented in BCD by two 4-
bit code groups. For example, 1910 is represented as,

The left-most four-bit group represents 10 and right-most four-bit group represents 9.

The binary representation for decimal 19 is 1910 = 110012.

39

 BCD Code Binary

B4 B3 B2 B1 B0 E D C B A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0 1 1

0 0 1 0 0 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 0 0 0 1 1 0

0 0 1 1 1 0 0 1 1 1

0 1 0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0 0 1

1 0 0 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0 1 1

1 0 0 1 0 0 1 1 0 0

1 0 0 1 1 0 1 1 0 1

1 0 1 0 0 0 1 1 1 0

1 0 1 0 1 0 1 1 1 1

1 0 1 1 0 1 0 0 0 0

1 0 1 1 1 1 0 0 0 1

1 1 0 0 0 1 0 0 1 0

1 1 0 0 1 1 0 0 1 1

K-map Simplification:

40

41

From the above K-map,

A= B0

B= B1B4‘+ B1’B4

= B1 B4

C= B4’B2 + B2B1’ + B4B2’B1

D= B4’B3 + B4B3’B2’ + B4B3’B1’

E= B4B3 + B4B2B1

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

42

43

6. Binary to BCD Converter:

The truth table for binary to BCD converter can be written as,

Truth Table:

Decimal
 Binary Code BCD Code

D C B A B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 1

2 0 0 1 0 0 0 0 1 0

3 0 0 1 1 0 0 0 1 1

4 0 1 0 0 0 0 1 0 0

5 0 1 0 1 0 0 1 0 1

6 0 1 1 0 0 0 1 1 0

7 0 1 1 1 0 0 1 1 1

8 1 0 0 0 0 1 0 0 0

9 1 0 0 1 0 1 0 0 1

10 1 0 1 0 1 0 0 0 0

11 1 0 1 1 1 0 0 0 1

12 1 1 0 0 1 0 0 1 0

13 1 1 0 1 1 0 0 1 1

14 1 1 1 0 1 0 1 0 0

15 1 1 1 1 1 0 1 0 1

From the truth table, the logic expression for the BCD code outputs can be written as,

B0= ∑m (1, 3, 5, 7, 9, 11, 13, 15)
B1= ∑m (2, 3, 6, 7, 12, 13)
B2= ∑m (4, 5, 6, 7, 14, 15)
B3= ∑m (8, 9)

B4= ∑m (10, 11, 12, 13, 14, 15)

K-map Simplification:

44

From the above K-map, the logical expression can be obtained
as, B0= A

B1= DCB’+ D’B
B2= D’C+ CB
B3= DC’B’
B4= DC+ DB

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

45

7. Gray to BCD Converter:
The truth table for gray to BCD converter can be written as,

Truth Table:

Gray Code BCD Code

G3 G2 G1 G0 B4 B3
 B2

 B1 B0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 1 1 0 0 0 1 0

0 0 1 0 0 0 0 1 1

0 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 0 1

0 1 0 1 0 0 1 1 0

0 1 0 0 0 0 1 1 1

1 1 0 0 0 1 0 0 0

46

1 1 0 1 0 1 0 0 1

1 1 1 1 1 0 0 0 0

1 1 1 0 1 0 0 0 1

1 0 1 0 1 0 0 1 0

1 0 1 1 1 0 0 1 1

1 0 0 1 1 0 1 0 0

1 0 0 0 1 0 1 0 1

K-map Simplification:

47

From the above K-map, the logical expression can be obtained as,

B0= (G0 G1) (G2 G3)
B1= G’2G1+ G’3G2G’1

B2= G’3G2+ G3G’2G’1

B3= G3G2G’1

B4= G3G’2+ G3G1

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

48

8. BCD to Gray Converter:

The truth table for gray to BCD converter can be written as,

Truth table:

BCD Code (8421) Gray code

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

49

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

K-map Simplification:

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

50

9. 8 4 -2 -1 to BCD Converter:
The truth table for 8 4 -2 -1 to BCD converter can be written as,

Truth Table:

Gray Code BCD Code

D C B A B4 B3
 B2

 B1 B0

0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1

0 1 1 0 0 0 0 1 0

0 1 0 1 0 0 0 1 1

0 1 0 0 0 0 1 0 0

1 0 1 1 0 0 1 0 1

1 0 1 0 0 0 1 1 0

1 0 0 1 0 0 1 1 1

1 0 0 0 0 1 0 0 0

1 1 1 1 0 1 0 0 1

1 1 1 0 1 0 0 0 0

1 1 0 1 1 0 0 0 1

1 1 0 0 1 0 0 1 0

51

K-map Simplification:

From the above K-map, the logical expression can be obtained as,

52

B0= A
B1= A’B’CD+ (A B) (C’+D’)

B2= D’CB’A’+ C’ (A+B)
B3= D (ABC+ A’B’C’)

B4= CD (A’+B’)

Logic Diagram:

53

DECODERS:

A decoder is a combinational circuit that converts binary information from ‗n‘
input lines to a maximum of ‗2n‘ unique output lines. The general structure of
decoder circuit is –

General structure of decoder

The encoded information is presented as ‗n‘ inputs producing ‗2n‘ possible outputs.
The 2n output values are from 0 through 2n-1. A decoder is provided with enable inputs to
activate decoded output based on data inputs. When any one enable input is unasserted,
all outputs of decoder are disabled.

Binary Decoder (2 to 4 decoder):

A binary decoder has ‗n‘ bit binary input and a one activated output out of 2n

outputs. A binary decoder is used when it is necessary to activate exactly one of 2n outputs
based on an n-bit input value.

54

2-to-4 Line decoder

Here the 2 inputs are decoded into 4 outputs, each output representing one of the
minterms of the two input variables.

Inputs Outputs

Enable A B Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

As shown in the truth table, if enable input is 1 (EN= 1) only one of the outputs

(Y0 – Y3), is active for a given input.

The output Y0 is active, ie., Y0= 1 when inputs A= B= 0,

Y1 is active when inputs, A= 0 and B= 1,

Y2 is active, when input A= 1 and B= 0,
Y3 is active, when inputs A= B= 1.

3- to-8 Line Decoder:

A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Y0- Y7). Based
on the 3 inputs one of the eight outputs is selected.

The three inputs are decoded into eight outputs, each output representing one of
the minterms of the 3-input variables. This decoder is used for binary-to-octal conversion. The

input variables may represent a binary number and the outputs will represent the eight
digits in the octal number system. The output variables are mutually exclusive because
only one output can be equal to 1 at any one time. The output line whose value is equal to

1 represents the minterm equivalent of the binary number presently available in the input

lines.

Inputs Outputs

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

55

3-to-8 line decoder

BCD to 7-Segment Display Decoder:

A seven-segment display is normally used for displaying any one of the decimal

digits, 0 through 9. A BCD-to-seven segment decoder accepts a decimal digit in BCD

and generates the corresponding seven-segment code.

56

Each segment is made up of a material that emits light when current is passed

through it. The segments activated during each digit display are tabulated as—

Digit Display Segments Activated

0

a, b, c, d, e, f

1

b, c

2

a, b, d, e, g

3

a, b, c, d, g

4

b, c, f, g

5

a, c, d, f, g

57

Truth table:

 BCD code 7-Segment code

Digit A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

58

K-map Simplification:

59

Logic Diagram:

60

BCD to 7-segment display decoder

Applications of decoders:

1. Decoders are used in counter system.

2. They are used in analog to digital converter.
3. Decoder outputs can be used to drive a display system.

61

ENCODERS:

An encoder is a digital circuit that performs the inverse operation of a decoder.

Hence, the opposite of the decoding process is called encoding. An encoder is a

combinational circuit that converts binary information from 2n input lines to a maximum of
‗n‘ unique output lines.
The general structure of encoder circuit is –

General structure of Encoder

It has 2n input lines, only one which 1 is active at any time and ‗n‘ output lines. It
encodes one of the active inputs to a coded binary output with ‗n‘ bits. In an encoder, the
number of outputs is less than the number of inputs.

Octal-to-Binary Encoder:
It has eight inputs (one for each of the octal digits) and the three outputs that

generate the corresponding binary number. It is assumed that only one input has a value of
1 at any given time.

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

The encoder can be implemented with OR gates whose inputs are determined
directly from the truth table. Output z is equal to 1, when the input octal digit is 1 or 3

or 5 or 7. Output y is 1 for octal digits 2, 3, 6, or 7 and the output is 1 for digits 4, 5, 6 or

7. These conditions can be expressed by the following output Boolean

functions: z= D1+ D3+ D5+ D7

62

y= D2+ D3+ D6+ D7

x= D4+ D5+ D6+ D7

The encoder can be implemented with three OR gates. The encoder defined in the
below table, has the limitation that only one input can be active at any given time. If two
inputs are active simultaneously, the output produces an undefined combination.

For eg., if D3 and D6 are 1 simultaneously, the output of the encoder may be 111.

This does not represent either D6 or D3. To resolve this problem, encoder circuits must

establish an input priority to ensure that only one input is encoded. If we establish a higher

priority for inputs with higher subscript numbers and if D3 and D6 are 1 at the same time, the
output will be 110 because D6 has higher priority than D3.

Octal-to-Binary Encoder

Another problem in the octal-to-binary encoder is that an output with all 0‘s is
generated when all the inputs are 0; this output is same as when D0 is equal to 1. The

discrepancy can be resolved by providing one more output to indicate that atleast one
input is equal to 1.

Priority Encoder:

A priority encoder is an encoder circuit that includes the priority function. In
priority encoder, if two or more inputs are equal to 1 at the same time, the input having

the highest priority will take precedence.

In addition to the two outputs x and y, the circuit has a third output, V (valid bit

indicator). It is set to 1 when one or more inputs are equal to 1. If all inputs are 0, there

is no valid input and V is equal to 0.

63

The higher the subscript number, higher the priority of the input. Input D3, has the

highest priority. So, regardless of the values of the other inputs, when D3 is 1, the output
for xy is 11.

D2 has the next priority level. The output is 10, if D2= 1 provided D3= 0. Theoutput
for D1 is generated only if higher priority inputs are 0, and so on down the priority levels.

Truth table:

Inputs Outputs

D0 D1 D2 D3 x y V

0 0 0 0 x x 0

1 0 0 0 0 0 1

x 1 0 0 0 1 1

x x 1 0 1 0 1

x x x 1 1 1 1

Although the above table has only five rows, when each don‘t care condition is

replaced first by 0 and then by 1, we obtain all 16 possible input combinations. For
example, the third row in the table with X100 represents minterms 0100 and 1100. The
don‘t care condition is replaced by 0 and 1 as shown in the table below.

Modified Truth table:

Inputs Outputs

D0 D1 D2 D3 x y V

0 0 0 0 x x 0

1 0 0 0 0 0 1
0 1 0 0

0 1 1
1 1 0 0

0 0 1 0

0
1

1
0

1
1

0
0

1 0 1

1 1 1 0

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

64

K-map Simplification:

The priority encoder is implemented according to the above Boolean functions.

4- Input Priority Encoder

65

MULTIPLEXER: (Data Selector)

A multiplexer or MUX, is a combinational circuit with more than one input line, one

output line and more than one selection line. A multiplexer selects binary information

present from one of many input lines, depending upon the logic status of the selection
inputs, and routes it to the output line. Normally, there are 2n input lines and n selection

lines whose bit combinations determine which input is selected. The multiplexer is often
labeled as MUX in block diagrams.

A multiplexer is also called a data selector, since it selects one of many inputs and
steers the binary information to the output line.

Block diagram of Multiplexer

2-to-1- line Multiplexer:

The circuit has two data input lines, one output line and one selection line, S.

When S= 0, the upper AND gate is enabled and I0 has a path to the output.
When S=1, the lower AND gate is enabled and I1 has a path to the output.

Logic diagram

The multiplexer acts like an electronic switch that selects one of the two sources.

Truth table:

Y

I0

I1

66

4-to-1-line Multiplexer:

A 4-to-1-line multiplexer has four (2n) input lines, two (n) select lines and one

output line. It is the multiplexer consisting of four input channels and information of one

of the channels can be selected and transmitted to an output line according to the select
inputs combinations. Selection of one of the four input channel is possible by two selection

inputs.
Each of the four inputs I0 through I3, is applied to one input of AND gate. Selection

lines S1 and S0 are decoded to select a particular AND gate. The outputs of the AND gate
are applied to a single OR gate that provides the 1-line output.

4-to-1-Line Multiplexer

Function table:

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

To demonstrate the circuit operation, consider the case when S1S0= 10. The AND

gate associated with input I2 has two of its inputs equal to 1 and the third input connected

to I2. The other three AND gates have atleast one input equal to 0, which makes their

outputs equal to 0. The OR output is now equal to the value of I2, providinga path from the
selected input to the output.

67

The data output is equal to I0 only if S1= 0 and S0= 0; Y= I0S1‘S0‘.

The data output is equal to I1 only if S1= 0 and S0= 1; Y= I1S1‘S0.
The data output is equal to I2 only if S1= 1 and S0= 0; Y= I2S1S0‘.

The data output is equal to I3 only if S1= 1 and S0= 1; Y= I3S1S0.

When these terms are ORed, the total expression for the data output is,

Y= I0S1’S0’+ I1S1’S0 +I2S1S0’+ I3S1S0.

As in decoder, multiplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive state, the outputs are disabled, and when

it is in the active state, the circuit functions as a normal multiplexer.

Quadruple 2-to-1 Line Multiplexer:

68

This circuit has four multiplexers, each capable of selecting one of two input lines.

Output Y0 can be selected to come from either A0 or B0. Similarly, output Y1 may have the
value of A1 or B1, and so on. Input selection line, S selects one of the lines in each of the
four multiplexers. The enable input E must be active for normal operation.

Although the circuit contains four 2-to-1-Line multiplexers, it is viewed as a circuit
that selects one of two 4-bit sets of data lines. The unit is enabled when E= 0. Then if S= 0,

the four A inputs have a path to the four outputs. On the other hand, ifS=1, the four B

inputs are applied to the outputs. The outputs have all 0‘s when E= 1, regardless of the

value of S.

Application:

The multiplexer is a very useful MSI function and has various ranges of applications

in data communication. Signal routing and data communication are the important

applications of a multiplexer. It is used for connecting two or more sources to guide to a
single destination among computer units and it is useful for constructing a common bus
system. One of the general properties of a multiplexer is that Boolean functions can be
implemented by this device.

Implementation of Boolean Function using MUX:

Any Boolean or logical expression can be easily implemented using a multiplexer.
If a Boolean expression has (n+1) variables, then ‗n‘ of these variables can be connected

to the select lines of the multiplexer. The remaining single variable along with constants

1 and 0 is used as the input of the multiplexer. For example, if C is the single variable, then
the inputs of the multiplexers are C, C‘, 1 and 0. By this method any logical expression can
be implemented.

In general, a Boolean expression of (n+1) variables can be implemented using a
multiplexer with 2n inputs.

1. Implement the following boolean function using 4: 1 multiplexer,
F (A, B, C) = ∑m (1, 3, 5, 6).

Solution:

Variables, n= 3 (A, B, C)

Select lines= n-1 = 2 (S1, S0)
2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

Implementation table:

Apply variables A and B to the select lines. The procedures for implementing the
function are:

69

i. List the input of the multiplexer
ii. List under them all the minterms in two rows as shown below.

The first half of the minterms is associated with A‘ and the second half with A. The given
function is implemented by circling the minterms of the function and applying the
following rules to find the values for the inputs of the multiplexer.

1. If both the minterms in the column are not circled, apply 0 to the corresponding
input.

2. If both the minterms in the column are circled, apply 1 to the

corresponding input.

3. If the bottom minterm is circled and the top is not circled, apply C to the input.

4. If the top minterm is circled and the bottom is not circled, apply C‘ to the input.

Multiplexer Implementation:

70

2. F (x, y, z) = ∑m (1, 2, 6, 7)
Solution:

Implementation table:

Multiplexer Implementation:

3. F (A, B, C) = ∑m (1, 2, 4, 5)
Solution:

Variables, n= 3 (A, B, C)
Select lines= n-1 = 2 (S1, S0)

2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

Implementation table:

71

Multiplexer Implementation:

4. F(P, Q, R, S)= ∑m (0, 1, 3, 4, 8, 9, 15)

Solution:

Variables, n= 4 (P, Q, R, S)

Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

72

Multiplexer Implementation:

5. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer

F (A, B, C, D) = ∑m (0, 1, 2, 4, 6, 9, 12, 14)

Solution:

Variables, n= 4 (A, B, C, D)
Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

73

Multiplexer Implementation (Using 8: 1 MUX):

Using 4: 1 MUX:

6. F (A, B, C, D) = ∑m (1, 3, 4, 11, 12, 13, 14, 15)

74

Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (S2, S1, S0)
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation:

7. Implement the Boolean function using 8: 1 multiplexer.

F (A, B, C, D) = A’BD’ + ACD + B’CD + A’C’D.

Solution:

Convert into standard SOP form,

= A‘BD‘ (C‘+C) + ACD (B‘+B) + B‘CD (A‘+A) + A‘C‘D (B‘+B)

= A‘BC‘D‘ + A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD + AB‘CD +A‘B‘C‘D+ A‘BC‘D

75

= A‘BC‘D‘ + A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD +A‘B‘C‘D+ A‘BC‘D

= m4+ m6+ m11+ m15+ m3+ m1+ m5

= ∑m (1, 3, 4, 5, 6, 11, 15)

Implementation table:

Multiplexer Implementation:

8. Implement the Boolean function using 8: 1 multiplexer.
F (A, B, C, D) = AB’D + A’C’D + B’CD’ + AC’D.

Solution:

Convert into standard SOP form,

= AB‘D (C‘+C) + A‘C‘D (B‘+B) + B‘CD‘ (A‘+A) + AC‘D (B‘+B)

76

= AB‘C‘D + AB‘CD+ A‘B‘C‘D + A‘BC‘D +A‘B‘CD‘ + AB‘CD‘ +AB‘C‘D+ ABC‘D

= AB‘C‘D + AB‘CD+ A‘B‘C‘D + A‘BC‘D +A‘B‘CD‘ + AB‘CD‘+ ABC‘D

= m9+ m11+ m1+ m5+ m2+ m10+ m13

= ∑m (1, 2, 5, 9, 10, 11, 13).

Implementation Table:

Multiplexer Implementation:

9. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer

F (w, x, y, z) = ∑m (1, 2, 3, 6, 7, 8, 11, 12, 14)

Solution:

Variables, n= 4 (w, x, y, z)

Select lines= n-1 = 3 (S2, S1, S0)

77

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation (Using 8:1 MUX):

(Using 4:1 MUX):

78

10. Implement the Boolean function using 8: 1 multiplexer

F (A, B, C, D) = ∏m (0, 3, 5, 8, 9, 10, 12, 14)
Solution:

Variables, n= 4 (A, B, C, D)
Select lines= n-1 = 3 (S2, S1, S0)
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

79

Multiplexer Implementation:

11. Implement the Boolean function using 8: 1 multiplexer

F (A, B, C, D) = ∑m (0, 2, 6, 10, 11, 12, 13) + d (3, 8, 14)
Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (S2, S1, S0)
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation Table:

80

Multiplexer Implementation:

12. An 8×1 multiplexer has inputs A, B and C connected to the selection inputs S2,

S1, and S0 respectively. The data inputs I0 to I7 are as follows
I1=I2=I7= 0; I3=I5= 1; I0=I4= D and I6= D'.

Determine the Boolean function that the multiplexer implements.

Multiplexer Implementation:

81

Implementation table:

F (A, B, C, D) = ∑m (3, 5, 6, 8, 11, 12, 13).

DEMULTIPLEXER:

Demultiplex means one into many. Demultiplexing is the process of taking
information from one input and transmitting the same over one of several outputs.

A demultiplexer is a combinational logic circuit that receives information on a
single input and transmits the same information over one of several (2n) output lines.

Block diagram of demultiplexer

The block diagram of a demultiplexer which is opposite to a multiplexer in its
operation is shown above. The circuit has one input signal, ‗n‘ select signals and 2n

output signals. The select inputs determine to which output the data input will be
connected. As the serial data is changed to parallel data, i.e., the input caused to appear

on one of the n output lines, the demultiplexer is also called a ―data distributer‖ or a

―serial-to-parallel converter‖ .

82

1-to-4 Demultiplexer:

A 1-to-4 demultiplexer has a single input, Din, four outputs (Y0 to Y3) and
two select inputs (S1 and S0).

Logic Symbol

The input variable Din has a path to all four outputs, but the input information
is directed to only one of the output lines. The truth table of the 1-to-4 demultiplexer is
shown below.

Enable S1 S0 Din Y0 Y1 Y2 Y3

0 x x x 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 1

Truth table of 1-to-4 demultiplexer

From the truth table, it is clear that the data input, Din is connected to the

output Y0, when S1= 0 and S0= 0 and the data input is connected to output Y1 when S1=
0 and S0= 1. Similarly, the data input is connected to output Y2 and Y3 when S1= 1 and

S0= 0 and when S1= 1 and S0= 1, respectively. Also, from the truth table, the expression

for outputs can be written as follows,

83

Y0= S1’S0’Din

Y1= S1’S0Din

Y2= S1S0’Din

Y3= S1S0Din

Logic diagram of 1-to-4 demultiplexer

Now, using the above expressions, a 1-to-4 demultiplexer can be implemented
using four 3-input AND gates and two NOT gates. Here, the input data line Din, is connected
to all the AND gates. The two select lines S1, S0 enable only one gate at a time

and the data that appears on the input line passes through the selected gate to the

associated output line.

1-to-8 Demultiplexer:

A 1-to-8 demultiplexer has a single input, Din, eight outputs (Y0 to Y7) and
three select inputs (S2, S1 and S0). It distributes one input line to eight output lines

based on the select inputs. The truth table of 1-to-8 demultiplexer is shown below.

Din S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 x x x 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

84

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

Truth table of 1-to-8 demultiplexer

From the above truth table, it is clear that the data input is connected with one of
the eight outputs based on the select inputs. Now from this truth table, the expression
for eight outputs can be written as follows:

Y0= S2‘S1‘S0‘Din Y4= S2 S1‘S0‘Din

Y1= S2‘S1‘S0Din Y5= S2 S1‘S0Din

Y2= S2‘S1S0‘Din Y6= S2 S1S0‘Din

Y3= S2‘S1S0Din Y7= S2S1S0Din

Now using the above expressions, the logic diagram of a 1-to-8 demultiplexer can be

drawn as shown below. Here, the single data line, Din is connected to all the eight AND
gates, but only one of the eight AND gates will be enabled by the select input lines. For
example, if S2S1S0= 000, then only AND gate-0 will be enabled and thereby the data input,

Din will appear at Y0. Similarly, the different combinations of the select inputs, the input
Din will appear at the respective output.

85

Logic diagram of 1-to-8 demultiplexer

1. Design 1:8 demultiplexer using two 1:4 DEMUX.

86

2. Implement full subtractor using demultiplexer.

Inputs Outputs

A B Bin Difference(D) Borrow(Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

1

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

INTRODUCTION

In combinational logic circuits, the outputs at any instant of time depend only on

the input signals present at that time. For a change in input, the output occurs

immediately.

Combinational Circuit- Block Diagram

In sequential logic circuits, it consists of combinational circuits to which

storage elements are connected to form a feedback path. The storage elements are

devices capable of storing binary information either 1 or 0.

The information stored in the memory elements at any given time defines the

present state of the sequential circuit. The present state and the external circuit

determine the output and the next state of sequential circuits.

Sequential Circuit- Block Diagram

Thus in sequential circuits, the output variables depend not only on the

present input variables but also on the past history of input variables.

The rotary channel selected knob on an old-fashioned TV is like a

combinational. Its output selects a channel based only on its current input – the

position of the knob. The channel-up and channel-down push buttons on a TV is like

a sequential circuit. The channel selection depends on the past sequence of up/down

pushes.

2

The comparison between combinational and sequential circuits is given in

table below.

S.No Combinational logic Sequential logic

1

The output variable, at all times

depends on the combination of

input variables.

The output variable depends not only

on the present input but also depend

upon the past history of inputs.

2 Memory unit is not required
Memory unit is required to store the

past history of input variables.

3 Faster in speed Slower than combinational circuits.

4 Easy to design Comparatively harder to design.

5 Eg. Parallel adder Eg. Serial adder

3.2 Classification of Logic Circuits

The sequential circuits can be classified depending on the timing of

their signals:

 Synchronous sequential circuits

 Asynchronous sequential circuits.

In synchronous sequential circuits, signals can affect the memory elements

only at discrete instants of time. In asynchronous sequential circuits change

in input signals can affect memory element at any instant of time. The

memory elements used in both circuits are Flip-Flops, which are capable of

storing 1-bit information.

3

S.No Synchronous sequential circuits Asynchronous sequential circuits

1
Memory elements are clocked

Flip-Flops

Memory elements are either unclocked

Flip-Flops or time delay elements.

2

The change in input signals can

affect memory element upon

activation of clock signal.

The change in input signals can affect

memory element at any instant of time.

3

The maximum operating speed

of clock depends on time delays

involved.

Because of the absence of clock, it can

operate faster than synchronous

circuits.

4 Easier to design More difficult to design

3.3 LATCHES:

Latches and Flip-Flops are the basic building blocks of the most sequential

circuits. Latches are used for a sequential device that checks all of its inputs

continuously and changes its outputs accordingly at any time independent of clocking

signal. Enable signal is provided with the latch. When enable signal is activeoutput

changes occur as the input changes. But when enable signal is not activated input

changes do not affect the output.

Flip-Flop is used for a sequential device that normally samples its inputs and

changes its outputs only at times determined by clocking signal.

3.3.1 SR Latch:

The simplest type of latch is the set-reset (SR) latch. It can be constructed from

either two NOR gates or two NAND gates.

SR latch using NOR gates:

The two NOR gates are cross-coupled so that the output of NOR gate 1 is

connected to one of the inputs of NOR gate 2 and vice versa. The latch has two outputs

Q and Q’ and two inputs, set and reset.

4

SR latch using NOR gates

Before going to analyse the SR latch, we recall that a logic 1 at any input of a

NOR gate forces its output to a logic 0. Let us understand the operation of this circuit

for various input/ output possibilities.

Case 1: S= 0 and R= 0

Initially, Q= 1 and Q’= 0

Let us assume that initially Q=1 and Q’=0. With Q’=0, both inputs to NORgate

1 are at logic 0. So, its output, Q is at logic 1. With Q=1, one input of NOR gate 2 is at

logic

1. Hence its output, Q’ is at logic 0. This shows that when S and R both are

low, the output does not change.

Initially, Q= 0 and Q’= 1

With Q’=1, one input of NOR gate 1 is at logic 1, hence its output, Q is at logic

0. With Q=0, both inputs to NOR gate 2 are at logic 0. So, its output Q’ is at logic 1. In

this case also there is no change in the output state.

5

Case 2: S= 0 and R= 1

In this case, R input of the NOR gate 1 is at logic 1, hence its output, Q is at logic 0.

Both inputs to NOR gate 2 are now at logic 0. So that its output, Q’ is at logic 1.

Case 3: S= 1 and R= 0

In this case, S input of the NOR gate 2 is at logic 1, hence its output, Q is at logic 0.

Both inputs to NOR gate 1 are now at logic 0. So that its output, Q is at logic 1.

Case 4: S= 1 and R= 1

When R and S both are at logic 1, they force the outputs of both NOR gates to

the low state, i.e., (Q=0 and Q’=0). So, we call this an indeterminate or prohibited state,

and represent this condition in the truth table as an asterisk (*). This condition also

violates the basic definition of a latch that requires Q to be complement of Q’. Thus in

normal operation this condition must be avoided by making sure that 1’s are not

applied to both the inputs simultaneously.

We can summarize the operation of SR latch as follows:

 When S= 0 and R= 0, the output, Qn+1 remains in its present state, Qn.

 When S= 0 and R= 1, the latch is reset to 0.

 When S= 1 and R= 0, the latch is set to 1.

 When S= 1 and R= 1, the output of both gates will produce 0.

i.e., Qn+1= Qn+1’= 0.

The truth table of NOR based SR latch is shown below.

S R Qn Qn+1 State

0

0

0

0

0

1

0

1

No Change

(NC)

0

0

1

1

0

1

0

0

Reset

1

1

0

0

0

1

1

1

Set

1

1

1

1

0

1

x

x

Indeterminate

*

SR latch using NAND gates:

The SR latch can also be implemented using NAND gates. The inputs of this

Latch are S and R. To understand how this circuit functions, recall that a low on any

input to a NAND gate forces its output high.

SR latch using NAND gates

Logic Symbol

We can summarize the operation of SR latch as follows:

 When S= 0 and R= 0, the output of both gates will produce 0.

i.e., Qn+1= Qn+1’= 1.

 When S= 0 and R= 1, the latch is reset to 0.

 When S= 1 and R= 0, the latch is set to 1.

 When S= 1 and R= 1, the output, Qn+1 remains in its present state, Qn.

The truth table of NAND based SR latch is shown below.

S R Qn Qn+1 State

0

0

0

0

0

1

x

x

Indeterminate

*

0

0

1

1

0

1

1

1

Set

1

1

0

0

0

1

0

0

Reset

1

1

1

1

0

1

0

1

No Change

(NC)

Gated SR Latch:

In the SR latch, the output changes occur immediately after the input

changes i.e, the latch is sensitive to its S and R inputs all the time.

A latch that is sensitive to the inputs only when an enable input is active.

Such a latch with enable input is known as gated SR latch.

 The circuit behaves like SR latch when EN= 1. It retains its previous state

when EN= 0

SR Latch with enable input using NAND gates Logic Symbol

The truth table of gated SR latch is show below.

EN S R Qn Qn+1 State

1

1

0

0

0

0

0

1

0

1
No Change (NC)

1

1

0

0

1

1

0

1

0

0
Reset

1

1

1

1

0

0

0

1

1

1

Set

1

1

1

1

1

1

0

1

x

x

Indeterminate

*

0

0

x

x

x

x

0

1

0

1

No Change (NC)

When S is HIGH and R is LOW, a HIGH on the EN input sets the latch. When S is

LOW and R is HIGH, a HIGH on the EN input resets the latch.

3.3.2 D Latch

In SR latch, when both inputs are same (00 or 11), the output either does not

change or it is invalid. In many practical applications, these input conditions are not

required. These input conditions can be avoided by making them complement of each

other. This modified SR latch is known as D latch.

D Latch Logic Symbol

As shown in the figure, D input goes directly to the S input, and its complement

is applied to the R input. Therefore, only two input conditions exists, either S=0 and

R=1 or S=1 and R=0. The truth table for D latch is shown below.

EN D Qn Qn+1 State

1 0 x 0 Reset

1 1 x 1 Set

0 x x Qn No Change (NC)

As shown in the truth table, the Q output follows the D input. For this reason,

D latch is called transparent latch.

When D is HIGH and EN is HIGH. Q goes HIGH. When D is LOW and EN is

HIGH, Q goes LOW. When EN is LOW, the state of the latch is not affected by the D

input.

3.4 TRIGGERING OF FLIP-FLOPS

The state of a Flip-Flop is switched by a momentary change in the input signal.

This momentary change is called a trigger and the transition it causes is said to trigger

the Flip-Flop. Clocked Flip-Flops are triggered by pulses. A clock pulse starts from an

initial value of 0, goes momentarily to 1and after a short time, returns to its initial 0

value.

Latches are controlled by enable signal, and they are level triggered, either

positive level triggered or negative level triggered. The output is free to change

according to the S and R input values, when active level is maintained at the enable

input.

Flip-Flops are different from latches. Flip-Flops are pulse or clock edge

triggered instead of level triggered.

3.5 EDGE TRIGGERED FLIP-FLOPS

Flip-Flops are synchronous bistable devices (has two outputs Q and Q’). In this

case, the term synchronous means that the output changes state only at aspecified

point on the triggering input called the clock (CLK), i.e., changes in the output occur

in synchronization with the clock.

An edge-triggered Flip-Flop changes state either at the positive edge (rising

edge) or at the negative edge (falling edge) of the clock pulse and is sensitive to its

inputs only at this transition of the clock. The different types of edge-triggered Flip-

Flops are—

 S-R Flip-Flop,

 J-K Flip-Flop,

 D Flip-Flop,

 T Flip-Flop.

Although the S-R Flip-Flop is not available in IC form, it is the basis for the D

and J-K Flip-Flops. Each type can be either positive edge-triggered (no bubble at C

input) or negative edge-triggered (bubble at C input). The key to identifying an edge-

triggered Flip-Flop by its logic symbol is the small triangle inside the block at the clock

(C) input. This triangle is called the dynamic input indicator.

3.5.1 S-R Flip-Flop

The S and R inputs of the S-R Flip-Flop are called synchronous inputs because

data on these inputs are transferred to the Flip-Flop's output only on the triggering

edge of the clock pulse. The circuit is similar to SR latch except enable signal is

replaced by clock pulse (CLK). On the positive edge of the clock pulse, the circuit

responds to the S and R inputs.

SR Flip-Flop

When S is HIGH and R is LOW, the Q output goes HIGH on the triggering edge

of the clock pulse, and the Flip-Flop is SET. When S is LOW and R is HIGH, theQ output

goes LOW on the triggering edge of the clock pulse, and the Flip-Flop is RESET. When

both S and R are LOW, the output does not change from its prior state. An invalid

condition exists when both S and R are HIGH.

CLK S R Qn Qn+1 State

1

1

0

0

0

0

0

1

0

1

No Change (NC)

1

1

0

0

1

1

0

1

0

0

Reset

1

1

1

1

0

0

0

1

1

1

Set

1

1

1

1

1

1

0

1

x

x

Indeterminate

*

0

0

x

x

x

x

0

1

0

1

No Change (NC)

Truth table for SR Flip-Flop

Input and output waveforms of SR Flip-Flop

3.5.2 J-K Flip-Flop:

JK means Jack Kilby, Texas Instrument (TI) Engineer, who invented IC in 1958.

JK Flip-Flop has two inputs J(set) and K(reset). A JK Flip-Flop can be obtained from

the clocked SR Flip-Flop by augmenting two AND gates as shown below.

JK Flip Flop

The data input J and the output Q’ are applied o the first AND gate and its

output (JQ’) is applied to the S input of SR Flip-Flop. Similarly, the data input K and

the output Q are applied to the second AND gate and its output (KQ) is applied to

the R input of SR Flip-Flop.

J=K=0

When J=K= 0, both AND gates are disabled. Therefore clock pulse have no

effect, hence the Flip-Flop output is same as the previous output.

J=0,K=1

When J= 0 and K= 1, AND gate 1 is disabled i.e., S= 0 and R= 1. This condition

will reset the Flip-Flop to 0.

J=1,K=0

When J= 1 and K= 0, AND gate 2 is disabled i.e., S= 1 and R= 0. Therefore the

Flip-Flop will set on the application of a clock pulse.

J=K=0

When J=K= 1, it is possible to set or reset the Flip-Flop. If Q is High, AND gate

2 passes on a reset pulse to the next clock. When Q is low, AND gate 1 passes on a

set pulse to the next clock. Eitherway, Q changes to the complement of the last state

i.e., toggle. Toggle means to switch to the opposite state. The truth table of JK Flip-

Flop is given below.

CLK
Inputs Output

State

 J K Qn+1

1 0 0 Qn No Change

1 0 1 0 Reset

1 1 0 1 Set

1 1 1 Qn’ Toggle

Input and output waveforms of JK Flip-Flop

Characteristic table and Characteristic equation:

The characteristic table for JK Flip-Flop is shown in the table below. From the table,

K-map for the next state transition (Qn+1) can be drawn and the simplified logic expression

which represents the characteristic equation of JK Flip-Flop can be found.

Qn J K Qn+1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Characteristic table

K-map Simplification:

Characteristic equation: Qn+1= JQ’+ K’Q.

3.5.3 D Flip-Flop:

Like in D latch, in D Flip-Flop the basic SR Flip-Flop is used with complemented

inputs. The D Flip-Flop is similar to D-latch except clock pulse is used instead of

enable input.

D Flip-Flop

To eliminate the undesirable condition of the indeterminate state in the RS Flip-

Flop is to ensure that inputs S and R are never equal to 1 at the same time. This is done by

D Flip-Flop. The D (delay) Flip-Flop has one input called delay input andclock pulse

input. The D Flip-Flop using SR Flip-Flop is shown below.

The truth table of D Flip-Flop is given below.

Clock D Qn+1 State

1 0 0 Reset

1 1 1 Set

0 x Qn No Change

Truth table for D Flip-Flop

Input and output waveforms of clocked D Flip-Flop

Looking at the truth table for D Flip-Flop we can realize that Qn+1

function follows the D input at the positive going edges of the clock pulses.

Characteristic table and Characteristic equation:

The characteristic table for D Flip-Flop shows that the next state of the Flip- Flop

is independent of the present state since Qn+1 is equal to D. This means that an input pulse

will transfer the value of input D into the output of the Flip-Flop independent of the value

of the output before the pulse was applied.

The characteristic equation is derived from K-map.

Qn D Qn+1

0 0 0

0 1 1

1 0 0

1 1 1

Characteristic table

Characteristic equation: Qn+1= D.

3.5.4 T Flip-Flop

The T (Toggle) Flip-Flop is a modification of the JK Flip-Flop. It is obtained

from JK Flip-Flop by connecting both inputs J and K together, i.e., single input.

Regardless of the present state, the Flip-Flop complements its output when the clock

pulse occurs while input T= 1.

T Flip-Flop

When T= 0, Qn+1= Qn, ie., the next state is the sameas the present state and no

change occurs.

When T= 1, Qn+1= Qn’,ie., the next state is the complement of the present state.

The truth table of T Flip-Flop is given below.

T Qn+1 State

0

1

QnN

Qn’To

o Change

ggle

Truth table for T Flip-Flop

Characteristic table and Characteristic equation:

The characteristic table for T Flip-Flop is shown below and characteristic

equation is derived using K-map.

Qn T Qn+1

0 0 0

0 1 1

1 0 1

1 1 0

K-map Simplification:

Characteristic equation: Qn+1= TQn’+ T’Qn.

3.5.5 Master-Slave JK Flip-Flop

A master-slave Flip-Flop is constructed using two separate JK Flip-Flops. The

first Flip-Flop is called the master. It is driven by the positive edge of the clock pulse. The

second Flip-Flop is called the slave. It is driven by the negative edge of the clock pulse.

The logic diagram of a master-slave JK Flip-Flop is shown below.

Logic diagram

When the clock pulse has a positive edge, the master acts according to its J-K

inputs, but the slave does not respond, since it requires a negative edge at the clock

input.

When the clock input has a negative edge, the slave Flip-Flop copies the

master outputs. But the master does not respond since it requires a positive edge at

its clock input.

The clocked master-slave J-K Flip-Flop using NAND gates is shown below.

Master-Slave JK Flip-Flop

3.6 APPLICATION TABLE (OR) EXCITATION TABLE:

The characteristic table is useful for analysis and for defining the operation

of the Flip-Flop. It specifies the next state (Qn+1) when the inputs and present state

are known.

The excitation or application table is useful for design process. It is used to

find the Flip-Flop input conditions that will cause the required transition, when the

present state (Qn) and the next state (Qn+1) are known.

3.6.1 SR Flip-Flop:

Characteristic Table
Modified Table

Present

State

Next

State
Inputs

Qn Qn+1 S R

0 0 0 x

0 1 1 0

1 0 0 1

1 1 x 0

Excitation Table

The above table presents the excitation table for SR Flip-Flop. It consists of present

state (Qn), next state (Qn+1) and a column for each input to show how the required

transition is achieved.

There are 4 possible transitions from present state to next state. The required

Input conditions for each of the four transitions are derived from the information

available in the characteristic table. The symbol ‘x’ denotes the don’t care condition,

it does not matter whether the input is 0 or 1.

Present

State
Inputs

Next

State

Qn S R Qn+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 x

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 x

Present

State

Next

State

Inputs

Inputs

Qn Qn+1 S R S R

0 0 0 0

0

x
0 0 0 1

0 1 1 0 1 0

1 0 0 1 0 1

1 1 0 0
x 0

1 1 1 0

3.6.2 JK Flip-Flop:

Characteristic Table Modified Table

Present

State

Next

State
Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Excitation Table

Present

State

Inputs

Next

State

Qn J K Qn+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Present

State

Next

State

Inputs

Inputs

Qn Qn+1 J K J K

0 0 0 0

0

x
0 0 0 1

0 1 1 0

1

x
0 1 1 1

1 0 0 1
x 1

1 0 1 1

1 1 0 0

x

0
1 1 1 0

3.6.3 D Flip-Flop

Characteristic Table Excitation Table

3.6.4 T Flip-Flop

Present

State

Input

Next

State

Qn T Qn+1

0 0 0

0 1 1

1 0 1

1 1 0

Characteristic Table

Modified Table

Present

State

Next

State

Input

Qn Qn+1 T

0 0 0

0 1 1

1 0 1

1 1 0

Present

State

Input

Next

State

Qn D Qn+1

0 0 0

0 1 1

1 0 0

1 1 1

Present

State

Next

State

Input

Qn Qn+1 D

0 0 0

0 1 1

1 0 0

1 1 1

3.7 REALIZATION OF ONE FLIP-FLOP USING OTHER FLIP-FLOPS

It is possible to convert one Flip-Flop into another Flip-Flop with some

additional gates or simply doing some extra connection. The realization of one Flip-

Flop using other Flip-Flops is implemented by the use of characteristic tables and

excitation tables. Let us see few conversions among Flip-Flops.

 SR Flip-Flop to D Flip-Flop

 SR Flip-Flop to JK Flip-Flop

 SR Flip-Flop to T Flip-Flop

 JK Flip-Flop to T Flip-Flop

 JK Flip-Flop to D Flip-Flop

 D Flip-Flop to T Flip-Flop

 T Flip-Flop to D Flip-Flop

3.7.1 SR Flip-Flop to D Flip-Flop:

 Write the characteristic table for required Flip-Flop (D Flip-Flop).

 Write the excitation table for given Flip-Flop (SR Flip-Flop).

 Determine the expression for the given Flip-Flop inputs (S and R) by

using K- map.

 Draw the Flip-Flop conversion logic diagram to obtain the required Flip-

Flop (D Flip-Flop) by using the above obtained expression.

The excitation table for the above conversion is

Required Flip-Flop (D)
Given Flip-Flop

(SR)

Input Present state Next state Flip-Flop Inputs

D Qn Qn+1 S R

0

0

1

1

0

1

0

1

0

0

1

1

0 x

1

0

0

0

1

x

D Flip-Flop

3.7.2 SR Flip-Flop to JK Flip-Flop

The excitation table for the above conversion is,

Inputs Present state Next state
Flip-Flop

 Input

J K Qn Qn+1 S R

0 0 0 0 0 x
0 0 1 1 x 0
0 1 0 0 0 x
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 x 0
1 1 0 1 1 0

1 1 1 0 0 1

JK Flip-Flop

2.7.3 SR Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state
Flip-Flop

 Inputs

T Qn Qn+1 S R

0 0 0 0 x
0 1 1 x 0
1 0 1 1 0

1 1 0 0 1

3.7.4 JK Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state
Flip-Flop

 Inputs

T Qn Qn+1 J K

0 0 0 0 x
0 1 1 x 0
1 0 1 1 x

1 1 0 x 1

JK Flip-Flop to D Flip-Flop

The excitation table for the above conversion is

Input Present state Next state
Flip-Flop

 Inputs

D Qn Qn+1 J K

0 0 0 0 x
0 1 0 x 1
1 0 1 1 x

1 1 1 x 0

D Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state
Flip-Flop

Input

T Qn Qn+1 D

0 0 0 0
0 1 1 1
1 0 1 1

1 1 0 0

T Flip-Flop to D Flip-Flop

The excitation table for the above conversion is

Input Present state Next state
Flip-Flop

Input

D Qn Qn+1 T

0 0 0 0
0 1 0 1
1 0 1 1

1 1 1 0

3.8 CLASSIFICATION OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

In synchronous or clocked sequential circuits, clocked Flip-Flops are used as

memory elements, which change their individual states in synchronism with the

periodic clock signal. Therefore, the change in states of Flip-Flop and change in state

of the entire circuits occur at the transition of the clock signal.

The synchronous or clocked sequential networks are represented by two models.

 Moore model: The output depends only on the present state of the Flip-Flops.

 Mealy model: The output depends on both the present state of the Flip-Flops

and on the inputs.

3.8.1 Moore model:

In the Moore model, the outputs are a function of the present state of the Flip-

Flops only. The output depends only on present state of Flip-Flops, it appears only

after the clock pulse is applied, i.e., it varies in synchronism with the clock input.

Moore model

3.8.2 Mealy model:

In the Mealy model, the outputs are functions of both the present state of the

Flip-Flops and inputs.

Mealy model

3.8.3 Difference between Moore and Mealy model

Sl.No Moore model Mealy model

1 Its output is a function of present

state only.

Its output is a function of present state

as well as present input.

2 Input changes does not affect the

output.

Input changes may affect the output of

the circuit.

3 It requires more number of states

for implementing same function.

It requires less number of states for

implementing same function.

3.9 ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

The behavior of a sequential circuit is determined from the inputs, outputs

and the state of its Flip-Flops. The outputs and the next state are both a function of

the inputs and the present state. The analysis of a sequential circuit consists of

obtaining a table or diagram from the time sequence of inputs, outputs and internal

states.

Before going to see the analysis and design examples, we first understand the

state diagram, state table.

3.9.1 State Diagram

State diagram is a pictorial representation of a behavior of a sequential

circuit.

 In the state diagram, a state is represented by a circle and the transition between

states is indicated by directed lines connecting the circles.

 A directed line connecting a circle with circle with itself indicates that next

state is same as present state.

 The binary number inside each circle identifies the state represented by the circle.

 The directed lines are labeled with two binary numbers separated by a symbol

‘/’. The input value that causes the state transition is labeled first and the output

value during the present state is labeled after the symbol ‘/’.

In case of Moore circuit, the directed lines are labeled with only one binary number

representing the state of the input that causes the state transition. The output state is

indicated within the circle, below the present state because output state depends only

on present state and not on the input.

www.Poriyaan.in EnggTree.com

Downloaded from E3n0ggTree.com

State diagram for Mealy circuit State diagram for Moore circuit

3.9.2 State Table

State table represents relationship between input, output and Flip-Flop states.

 It consists of three sections labeled present state, next state and output.

o The present state designates the state of Flip-Flops before the occurrence

of a clock pulse, and the output section gives the values of the output

variables during the present state.

o Both the next state and output sections have two columns representing

two possible input conditions: X= 0 and X=1.

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

AB AB AB Y Y

a a c 0 0

b b a 0 0

c d c 0 1

d b d 0 0

http://www.poriyaan.in/

 In case of Moore circuit, the output section has only one column since output

does not depend on input.

Present state
Next state Output

 X= 0 X= 1 Y
AB AB AB

a a c 0

b b a 0

c d c 1

d b d 0

2.9.3 State Equation

It is an algebraic expression that specifies the condition for a Flip-Flop state

transition.

The Flip-Flops may be of any type and the logic diagram may or may not

include combinational circuit gates.

3.9.4 ANALYSIS PROCEDURE

The synchronous sequential circuit analysis is summarizes as given below:

1. Assign a state variable to each Flip-Flop in the synchronous sequential circuit.

2. Write the excitation input functions for each Flip-Flop and also write the

Moore/ Mealy output equations.

3. Substitute the excitation input functions into the bistable equations for

the Flip-Flops to obtain the next state output equations.

4. Obtain the state table and reduced form of the state table.

5. Draw the state diagram by using the second form of the state table.

3.9.5 Analysis of Mealy Model

1. A sequential circuit has two JK Flip-Flops A and B, one input (x) and one output

(y). the Flip-Flop input functions are,

JA= B+ x JB= A’+ x’

KA= 1 KB= 1

and the circuit output function, Y= xA’B.

a) Draw the logic diagram of the Mealy circuit,

b) Tabulate the state table,

c) Draw the state diagram.

Soln:

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flops, use

the JK Flip-Flop characteristics table.

Present state Input Flip-Flop Inputs Next state Output

A B x
JA= B+ x KA= 1 JB= A’+ x’ KB= 1

A(t+1) B(t+1) Y= xA’B

0 0 0 0 1 1 1 0 1 0
0 0 1 1 1 1 1 1 1 0
0 1 0 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 0 1

1 0 0 0 1 1 1 0 1 0
1 0 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 0 0 0

1 1 1 1 1 0 1 0 0 0

Next state Output

A

B

A

x= 0

B

A

x= 1

B

x= 0

y

x= 1

y

0 0 0 1 1 1 0 0
0 1 1 0 1 0 0 1
1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0

Second form of state table

State Diagram:

State Diagram

2. A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one

output (y). the Flip-Flop input functions are:

DA= Ax+ Bx

DB= A’xand the circuit output function is,

Y= (A+ B) x’.

(a) Draw the logic diagram of the circuit,

(b) Tabulate the state table,

(c) Draw the state diagram.

Soln:

State Table:

Present state Input Flip-Flop Inputs Next state Output

A B x
DA=

Ax+Bx

DB= A’x A(t+1) B(t+1) Y= (A+B)x’

0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1

0 1 1 1 1 1 1 0

1 0 0 0 0 0 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 1

1 1 1 1 0 1 0 0

Present state

Next state Output

x= 0 x= 1 x= 0 x= 1

A B A B A B Y Y

0
0
1
1

0
1
0
1

0
0
0
0

0
0
0
0

0
1
1
1

1
1
0
0

0
1
1
1

0
0
0
0

Second form of state table

State Diagram:

3. Analyze the synchronous Mealy machine and obtain its state diagram.

Soln:

The given synchronous Mealy machine consists of two D Flip-Flops, one inputs and

one output.

The Flip-Flop input functions are,

DA= Y1’Y2X’

DB= X+ Y1’Y2

The circuit output function is, Z= Y1Y2X

State Table:

Present state Input Flip-Flop Inputs Next state Output

Y1 Y2 X DA= Y1’Y2X’ DB= X+ Y1’Y2 Y1 (t+1) Y2 (t+1) Z= Y1Y2X

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 0

0 1 1 0 1 0 1 0

1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 1 0 1 0 1 1

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

Y1 Y2 Y1 Y2 Y1 Y2 Z Z

0

0

1

1

0

1

0

1

0

1

0

0

0

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

Second form of state table

State Diagram:

4. A sequential circuit has two JK Flop-Flops A and B, two inputs x and y and

one output z. The Flip-Flop input equation and circuit output equations are

JA = Bx + B' y'

JB = A' x

z = Ax' y' + Bx' y'

KA = B' xy'

KB = A+ xy'

(a) Draw the logic diagram of the circuit

(b) Tabulate the state table.

(c) Derive the state equation.

State diagram:

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flop, use

the JK Flip-Flop characteristic table,

Present

state
Input Flip-Flop Inputs Next state Output

A B x y
JA=

Bx+B’y’

KA=

B’xy’

JB=

A’x

KB=

A+xy’
A(t+1) B(t+1) z

0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 1 1 1 1 1 0

0 0 1 1 0 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 1 1 1 1 0

0 1 1 1 1 0 1 0 1 1 0

1 0 0 0 1 0 0 1 1 0 1

1 0 0 1 0 0 0 1 1 0 0

1 0 1 0 1 1 0 1 0 0 0

1 0 1 1 0 0 0 1 1 0 0

1 1 0 0 0 0 0 1 1 0 1

1 1 0 1 0 0 0 1 1 0 0

1 1 1 0 1 0 0 1 1 0 0

1 1 1 1 1 0 0 1 1 0 0

State Equation:

5. A sequential circuit has two JK Flip-Flop A and B. the Flip-Flop input functions

are: JA= B

KA= Bx’

JB= x’

KB= A x.

(a) Draw the logic diagram of the circuit,

(b) Tabulate the state table,

(c) Draw the state diagram.

Logic diagram:

The output function is not given in the problem. The output of the Flip-Flops

may be considered as the output of the circuit.

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flop, use

the JK Flip-Flop characteristic table.

Present state Input Flip-Flop Inputs Next state

A B x JA= B KA= Bx’ JB= x’ KB= A x A(t+1) B(t+1)

0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 0

0 1 0 1 1 1 0 1 1

0 1 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1 1

1 0 1 0 0 0 0 1 0

1 1 0 1 1 1 1 0 0

1 1 1 1 0 0 0 1 1

www.Poriyaan.in EnggTree.com

 Next state

 X= 0 X= 1

A

0

B

0

A

0

 B

1

A

0

 B
0

0 1 1 1 1 0

1 0 1 1 1 0

1 1 0 0 1 1

State Diagram:

3.9.6 Analysis of Moore Model

6. Analyze the synchronous Moore circuit and obtain its state diagram.

Soln:

Using the assigned variable Y1 and Y2 for the two JK Flip-Flops, we can write

the four excitation input equations and the Moore output equation as follows:

http://www.poriyaan.in/

JA= Y2X ; KA= Y2’

JB= X ; KB= X’ and output function, Z= Y1Y2’

State table:

Present state Input Flip-Flop Inputs Next state Output

Y1

Y2

X JA= Y2X KA= Y2’ JB= X KB= X’

Y1 (t+1)
Y2

(t+1) Z= Y1Y2’

0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0

0 1 1 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 0 1
1 0 1 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1 0 0

1 1 1 1 0 1 0 1 1 0

Present state
Next state Output

X= 0 X= 1
Y

Y1
 Y2 Y1 Y2 Y1 Y2

0

0
1
1

0

1
0
1

0

0
0
1

0

0
0
0

0

1
0
1

1

1
1
1

0

0
1
0

State Diagram:

Second form of state table

Here the output depends on the present state only and is independent of the

input. The two values inside each circle separated by a slash are for the present state

and output.

7. A sequential circuit has two T Flip-Flop A and B. The Flip-Flop input functions

are:

TA= Bx TB= x

y= AB

(a) Draw the logic diagram of the circuit,

(b) Tabulate the state table,

(c) Draw the state diagram.

Soln:

Logic diagram:

State table

Present state Input Flip-Flop Inputs Next state Output

A B x TA= Bx TB= x A (t+1) B (t+1) y= AB

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 0 0 0 1 0

0 1 1 1 1 1 0 0

1 0 0 0 0 1 0 0

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 1

1 1 1 1 1 0 0 1

Present state

Next state Output

 x= 0 x= 1 x= 0 x= 1

A B A B A B y y

0

0

1

1

0

1

0

1

0

0

1

1

0

1

0

1

0

1

1

0

1

0

1

0

0

0

0

1

0

0

0

1

State Diagram:

Second form of state table

3.10 STATE REDUCTION/ MINIMIZATION

The state reduction is used to avoid the redundant states in the sequential

circuits. The reduction in redundant states reduces the number of required Flip-Flops

and logic gates, reducing the cost of the final circuit.

The two states are said to be redundant or equivalent, if every possible set of

inputs generate exactly same output and same next state. When two states are

equivalent, one of them can be removed without altering the input-output

relationship.

Since ‘n’ Flip-Flops produced 2n state, a reduction in the number of states may

result in a reduction in the number of Flip-Flops.

The need for state reduction or state minimization is explained with one example.

State diagram

Step 1: Determine the state table for given state diagram

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

a b c 0 0

b d e 1 0

c c d 0 1

d a d 0 0

e c d 0 1

State table

Step 2: Find equivalent states

From the above state table c and e generate exactly same next state and same

output for every possible set of inputs. The state c and e go to next states c and d and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state e can be removed

and replaced by c. The final reduced state table is shown below.

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

a b c 0 0

b d c 1 0

c c d 0 1

d a d 0 0

Reduced state table

The state diagram for the reduced table consists of only four states and is shown

below.

Reduced state diagram

1. Reduce the number of states in the following state table and tabulate the reduced

state table.

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

Soln:

From the above state table e and g generate exactly same next state and same

output for every possible set of inputs. The state e and g go to next states a and f and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state g can be removed

and replaced by e.

The reduced state table-1 is shown below.

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f e f 0 1

Reduced state table-1

Now states d and f are equivalent. Both states go to the same next state (e, f)

and have same output (0, 1). Therefore one state can be removed; f is replaced by d.

The final reduced state table-2 is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1
Reduced state table-2

Thus 7 states are reduced into 5 states.

2. Determine a minimal state table equivalent furnished below

Present state
Next state

X= 0 X= 1

1 1, 0 1, 0

2 1, 1 6, 1

3 4, 0 5, 0

4 1, 1 7, 0

5 2, 0 3, 0

6 4, 0 5, 0

7 2, 0 3, 0

Soln:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

1 1 1 0 0

2 1 6 1 1

3 4 5 0 0

4 1 7 1 0

5 2 3 0 0

6 4 5 0 0

7 2 3 0 0

From the above state table, 5 and 7 generate exactly same next state and same

output for every possible set of inputs. The state 5 and 7 go to next states 2 and 3 and

have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state 7 can be removed

and replaced by 5.

Similarly, 3 and 6 generate exactly same next state and same output for

every possible set of inputs. The state 3 and 6 go to next states 4 and 5 and have

outputs 0 and 0 for x=0 and x=1 respectively. Therefore state 6 can be removed and

replaced by 3.

The final reduced state table is shown below.

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

1 1 1 0 0

2 1 3 1 1

3 4 5 0 0

4 1 5 1 0

5 2 3 0 0

Reduced state table

Thus 7 states are reduced into 5 states.

3. Minimize the following state table.

Present state Next state

 X= 0 X= 1

A D, 0 C, 1

B E, 1 A, 1

C H, 1 D, 1

D D, 0 C, 1

E B, 0 G, 1

F H, 1 D, 1

G A, 0 F, 1

H C, 0 A, 1

I G, 1 H,1

Soln:

Present state Next state Output

X= 0 X= 1 X= 0 X= 1

A D C 0 1

B E A 1 1

C H D 1 1

D D C 0 1

E B G 0 1

F H D 1 1

G A F 0 1

H C A 0 1

I G H 1 1

From the above state table, A and D generate exactly same next state and same

output for every possible set of inputs. The state A and D go to next states D and C and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state D can be removed

and replaced by A. Similarly, C and F generate exactly same next state and same

output for every possible set of inputs. The state C and F go to next states H and D and

have outputs 1 and 1 for x=0 and x=1 respectively. Therefore state F can be removed

and replaced by C.

The reduced state table-1 is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

A A C 0 1

B E A 1 1

C H A 1 1

E B G 0 1

G A C 0 1

H C A 0 1

I G H 1 1

Reduced state table-1

From the above reduced state table-1, A and G generate exactly same next state
and same output for every possible set of inputs. The state A and G go to next states
A and C and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state G can
be removed and replaced by A. The final reduced state table-2 is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

A A C 0 1

B E A 1 1

C H A 1 1

E B A 0 1

H C A 0 1

I A H 1 1

Reduced state table-2

Thus 9 states are reduced into 6 states.

4. Reduce the following state diagram.

www.Poriyaan.in EnggTree.com

Downloaded from E5n0ggTree.com

Soln:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

State table

From the above state table e and g generate exactly same next state and same

output for every possible set of inputs. The state e and g go to next states a and f and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state g can be removed

and replaced by e. The reduced state table-1 is shown below.

Present state Next state Output

 X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f e f 0 1

Reduced state table-1

Now states d and f are equivalent. Both states go to the same next state (e, f)

and have same output (0, 1). Therefore one state can be removed; f is replaced by d.

The final reduced state table-2 is shown below.

Present state Next state Output

 X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1
Reduced state table-2

Thus 7 states are reduced into 5 states.

The state diagram for the reduced state table-2 is,

http://www.poriyaan.in/

Reduced state diagram

3.11 DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUITS:

A synchronous sequential circuit is made up of number of Flip-Flops and

combinational gates. The design of circuit consists of choosing the Flip-Flops and then

finding a combinational gate structure together with the Flip-Flops. The number of

Flip-Flops is determined from the number of states needed in the circuit. The

combinational circuit is derived from the state table.

3.11.1 Design procedure:

1. The given problem is determined with a state diagram.

2. From the state diagram, obtain the state table.

3. The number of states may be reduced by state reduction methods (if

applicable).

4. Assign binary values to each state (Binary Assignment) if the state

table contains letter symbols.

5. Determine the number of Flip-Flops and assign a letter symbol (A, B, C,…)

to each.

6. Choose the type of Flip-Flop (SR, JK, D, T) to be used.

7. From the state table, circuit excitation and output tables.

8. Using K-map or any other simplification method, derive the circuit output

functions and the Flip-Flop input functions.

9. Draw the logic diagram.

The type of Flip-Flop to be used may be included in the design specifications

or may depend what is available to the designer. Many digital systems are

constructed with JK Flip-Flops because they are the most versatile available. The

selection of inputs is given as follows.

Flip-Flop Application

JK
D

General Applications
Applications requiring transfer of
data

T (Ex: Shift Registers)
 Application involving
 complementation (Ex:
 Binary Counters)

3.11.2 Excitation Tables:
Before going to the design examples for the clocked synchronous sequential

circuits we revise Flip-Flop excitation tables.

Present
State

Next
Inputs

Qn Qn+1 S R

0 0 0 x
0 1 1 0
1 0 0 1

1 1 x 0

Excitation table for SR Flip-Flop

Present
State

Next
State

Inputs

Qn Qn+1 J K

0 0 0 x
0 1 1 x
1 0 x 1

1 1 x 0

Excitation table for JK Flip-Flop

Present
State

Next
State

Input

Qn Qn+1 T

0 0 0
0 1 1
1 0 1

1 1 0

Excitation table for T Flip-Flop

Present
State

Next
State

Input

Qn Qn+1 D

0 0 0
0 1 1
1 0 0

1 1 1

Excitation table for D Flip-Flop

www.Poriyaan.in
3.55

EnggTree.com
Synchronous Sequential Circuits

3.11.3 Problems

1. A sequential circuit has one input and one output. The state diagram is shown

below. Design the sequential circuit with a) D-Flip-Flops, b) T Flip-Flops, c) RS

Flip-Flops and d) JK Flip-Flops.

Solution:

State Table:

The state table for the state diagram is,

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

A B AB AB Y Y

0 0 00 10 0 1

0 1 11 00 0 0

1 0 10 01 1 0

1 1 00 10 1 0

State reduction:

As seen from the state table there is no equivalent states. Therefore,

no reduction in the state diagram.

The state table shows that circuit goes through four states, therefore we

require 2 Flip-Flops (number of states= 2m, where m= number of Flip-Flops). Since

two Flip-Flops are required first is denoted as A and second is denoted as B.

http://www.poriyaan.in/

Downloaded from E5n6ggTree.com

i) Design using D Flip-Flops:

Excitation table:

Using the excitation table for T Flip-Flop, we can determine the excitation

table for the

given circuit as,

Present State Next State Input

Qn Qn+1 D

0 0 0

0 1 1

1 0 0

1 1 1

Excitation table for D Flip-Flop

Present state Input Next state
 Flip-Flop

Inputs
Output

A

B X

A

B

 D
A

DB

Y

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1

0 1 0 1 1 1 1 0

0 1 1 0 0 0 0 0

1 0 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 1

1 1 1 1 0 1 0 0

K-map Simplification:

Circuit excitation table

www.Poriyaan.in
3.57

EnggTree.com
Synchronous Sequential Circuits

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

Logic diagram of given sequential circuit using D Flip-Flop

ii) Design using T Flip-Flops:

Using the excitation table for T Flip-Flop, we can determine the excitation

table for the given circuit as,

Present State Next State Input

Qn Qn+1 T

0 0 0

0 1 1

1 0 1

1 1 0

Excitation table for T Flip-Flop

http://www.poriyaan.in/

Downloaded from E5n8ggTree.com

Present state Input

Next state
 Flip-Flop

Inputs
Output

A B X A B TA TB Y

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1

0 1 0 1 1 1 0 0

0 1 1 0 0 0 1 0

1 0 0 1 0 0 0 1

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 1

1 1 1 0 0 1 0

Circuit excitation table

K-map Simplification:

Therefore, input functions for,

TA= B  x and

TB= AB+ AX+ BX

Circuit output function, Y = XA’B’+ X’A

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

www.Poriyaan.in
3.59

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E5n9ggTree.com

Logic diagram of given sequential circuit using T Flip-Flop

iii) Design using SR Flip-Flops:

Using the excitation table for RS Flip-Flop, we can determine the excitation

table for the given circuit as,

Present State Next State Inputs

Qn Qn+1 S R

0 0 0 x
0 1 1 0
1 0 0 1

1 1 x 0
Excitation table for SR Flip-Flop

Present
state Input Next state Flip-Flop Inputs Output

A B X A B SA RA SB RB Y

0 0 0 0 0 0 x 0 x 0

0 0 1 1 0 1 0 0 x 1

0 1 0 1 1 1 0 x 0 0

0 1 1 0 0 0 x 0 1 0

1 0 0 1 0 x 0

0 x 1

1 0 1 0 1 0 1 1 0 0

1 1 0 0 0 0 1 0 1 1

1 1 1 1 0 x 0 0 1 0

Circuit excitation table

http://www.poriyaan.in/

www.Poriyaan.in
3.60

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n0ggTree.com

K-map Simplification:

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

http://www.poriyaan.in/

www.Poriyaan.in
3.61

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n1ggTree.com

iii) Design using JK Flip-Flops:

Using the excitation table for JK Flip-Flop, we can determine the excitation

table for the given circuit as,

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Excitation table for JK Flip-Flop

Present
state

Input Next state Flip-Flop Inputs Output

A B X A B JA KA JB KB Y

0 0 0 0 0 0 x 0 x 0

0 0 1 1 0 1 x 0 x 1

0 1 0 1 1 1 x x 0 0

0 1 1 0 0 0 x x 1 0

1 0 0 1 0 x 0 0 x 1

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 1

1 1 1 1 0 x 0 x 1 0

Circuit excitation table

K-map Simplification:

http://www.poriyaan.in/

www.Poriyaan.in
3.62

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n2ggTree.com

The input functions for,

JA= BX’+ B’X JB= AX

=BX

KA= BX’+ B’X KB= A+ X

=BX

Circuit output function, Y= AX’+ A’B’X

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

Logic diagram of given sequential circuit using JK Flip-Flop

http://www.poriyaan.in/

www.Poriyaan.in
3.63

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n3ggTree.com

2. Design a clocked sequential machine using JK Flip-Flops for the state diagram

shown in the figure. Use state reduction if possible. Make proper state

assignment.

Soln:

State Table:

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c b 0 0

c a b 0 1

d a b 0 0

From the above state table a and d generate exactly same next state and same

output for every possible set of inputs. The state a and d go to next states a and b

and have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state d can be

removed and replaced by a. The final reduced state table is shown below.

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c b 0 0

c a b 0 1

Binary Assignment:

Reduced State table

Now each state is assigned with binary values. Since there are three states,

number of Flip-Flops required is two and 2 binary numbers are assigned to the states.

a= 00; b= 0; and c= 10

The reduced state diagram is drawn as,

http://www.poriyaan.in/

www.Poriyaan.in
3.64

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n4ggTree.com

Excitation Table:

Reduced State Diagram

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Excitation table for JK Flip-Flop

Input
Present

Next state Flip-Flop Inputs Output
state

X A B A B JA KA JB KB Y

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

1

 0

0

1

1

0

0

1

1

0

0

1

0

0

0

x

x

0

1

0

1

0

1

x

x

0

0

1

0

x

x

x

x

x

x

x

x

1

1

x

x

0

1

x

x

0

1

x

x

x

x

1

0

x

x

x

x

0

0

0

0

0

1

x

x

K-map Simplification:

http://www.poriyaan.in/

www.Poriyaan.in
3.65

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n5ggTree.com

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

3. Design a clocked sequential machine using T Flip-Flops for the following state

diagram. Use state reduction if possible. Also use straight binary state

assignment.

Soln:

State Table:

State table for the given state diagram is,

http://www.poriyaan.in/

www.Poriyaan.in
3.66

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n6ggTree.com

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b d c 0 0

c a b 1 0

d b a 1 1

Even though a and c are having same next states for input X=0 and X=1,

as the outputs are not same state reduction is not possible.

State Assignment:

Use straight binary assignments as a= 00, b= 01, c= 10 and d= 11, the

transition table is,

Input Present state Next state
Flip-Flop

Inputs
Output

X A B A B TA TB Y

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 0 0 0 1 0 1

0 1 1 0 1 1 0 1

1 0 0 0 1 0 1 0

1 0 1 1 0 1 1 0

1 1 0 0 1 1 1 0

1 1 1 0 0 1 1 1

K-map simplification:

http://www.poriyaan.in/

www.Poriyaan.in
3.67

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n7ggTree.com

Logic Diagram:

3.12 STATE ASSIGNMENT:

In sequential circuits, the behavior of the circuit is defined in terms of its inputs,

present states, next states and outputs. To generate desired next state at particular

present state and inputs, it is necessary to have specific Flip-Flop inputs. These Flip-Flop

inputs are described by a set of Boolean functions called Flip-Flopinput functions.

To determine the Flip-Flop functions, it is necessary to represent states in the state

diagram using binary values instead of alphabets. This procedure is known as state

assignment.

Reduced state diagram with binary states

http://www.poriyaan.in/

www.Poriyaan.in
3.68

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n8ggTree.com

3.15.1 Rules for state assignments

There are two basic rules for making state assignments.

Rule 1:

States having the same NEXT STATES for a given input condition should

have assignments which can be grouped into logically adjacent cells in a K-map.

Rule 2:

States that are the NEXT STATES of a single state should have assignment

which can be grouped into logically adjacent cells in a K-map.

Present state
Next state Output

 X= 0 X= 1 X= 0 X= 1

00 01 10 0 0

01 11 10 1 0

10 10 11 0 1

11 00 11 0 0

State table with assignment states

3.15.2 State Assignment Problem:

1. Design a sequential circuit for a state diagram shown below. Use state

assignment rules for assigning states and compare the required combinational

circuit with random state assignment.

Using random state assignment we assign,

a= 000, b= 001, c= 010, d= 011 and e= 100.

http://www.poriyaan.in/

www.Poriyaan.in
3.69

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E6n9ggTree.com

The excitation table with these assignments is given as,

Present state Input Next state Output

An Bn Cn X An+1 Bn+1 Cn+1 Z

0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 1 1 0

0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 x x x x
1 0 1 1 x x x x
1 1 0 0 x x x x
1 1 0 1 x x x x
1 1 1 0 x x x x

1 1 1 1 x x x x

K-map Simplification:

http://www.poriyaan.in/

www.Poriyaan.in
3.70

EnggTree.com
Synchronous Sequential Circuits

Downloaded from E7n0ggTree.com

The random assignments require:

7 three input AND functions
1 two input AND function
4 two input OR functions

12 gates with 31 inputs

Now, we will apply the state assignment rules and compare the results.

State diagram after applying Rules 1 and 2

Rule 1 says that: e and d must be adjacent, and

b and c must be adjacent.

Rule 2 says that: e and d must be adjacent, and

b and c must be adjacent.

Applying Rule 1, Rule 2 to the state diagram we get the state assignment as,

Present state Input Next state Output

An Bn Cn X An+1 Bn+1 Cn+1 Z

0 0 0 0 0 0 1 0
0 0 0 1 0 1 1 0
0 0 1 0 1 0 1 0
0 0 1 1 1 1 1 0
0 1 0 0 x x x x
0 1 0 1 x x x x
0 1 1 0 1 1 1 0
0 1 1 1 1 0 1 0
1 0 0 0 x x x x

1 0 0 1 x x x x
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1
1 1 0 0 x x x x
1 1 0 1 x x x x

1 1 1 0 0 0 0 1

1 1 1 1 0 0 0 0

http://www.poriyaan.in/

K-map Simplification:

The state assignments using Rule 1 and 2 require:

4 three input AND functions

1 two input AND function

2 two input OR functions

7 gates with 18 inputs

Thus by simply applying Rules 1 and 2 good results have been achieved.

3.14 SYNCHRONOUS COUNTERS

Flip-Flops can be connected together to perform counting operations. Such a

group of Flip- Flops is a counter. The number of Flip-Flops used and the way in which

they are connected determine the number of states (called the modulus) and also the

specific sequence of states that the counter goes through during each complete cycle.

Counters are classified into two broad categories according to the way they are

clocked:

 Asynchronous counters,

 Synchronous counters.

In asynchronous (ripple) counters, the first Flip-Flop is clocked by the external

clock pulse and then each successive Flip-Flop is clocked by the output of the

preceding Flip-Flop.

In synchronous counters, the clock input is connected to all of the Flip-Flops so

that they are clocked simultaneously. Within each of these two categories, counters

are classified primarily by the type of sequence, the number of states, or the number

of Flip-Flops in the counter.

The term ‘synchronous’ refers to events that have a fixed time relationship

with each other. In synchronous counter, the clock pulses are applied to all Flip-

Flops simultaneously. Hence there is minimum propagation delay.

S.No Asynchronous (ripple) counter Synchronous counter

1 All the Flip-Flops are not

clocked simultaneously.

All the Flip-Flops are clocked

simultaneously.

2 The delay times of all Flip-

Flops are added. Therefore

there is considerable

propagation delay.

There is minimum propagation delay.

3 Speed of operation is low Speed of operation is high.

4 Logic circuit is very simple Design involves complex logic circuit

 even for more number of states. as number of state increases.

5 Minimum numbers of logic

devices are needed.

The number of logic devices is more

than ripple counters.

6 Cheaper than synchronous

counters.

Costlier than ripple counters.

3.14.1 2-Bit Synchronous Binary Counter

In this counter the clock signal is connected in parallel to clock inputs of both the

Flip-Flops (FF0 and FF1). The output of FF0 is connected to J1 and K1 inputs of the second

Flip-Flop (FF1).

2-Bit Synchronous Binary Counter

Assume that the counter is initially in the binary 0 state: i.e., both Flip-Flops

are RESET. When the positive edge of the first clock pulse is applied, FF0 will toggle

because J0= k0= 1, whereas FF1 output will remain 0 because J1= k1= 0. After the first

clock pulse Q0=1 and Q1=0.

When the leading edge of CLK2 occurs, FF0 will toggle and Q0 will go LOW. Since

FF1 has a HIGH (Q0 = 1) on its J1 and K1 inputs at the triggering edge of this clock pulse,

the Flip-Flop toggles and Q1 goes HIGH. Thus, after CLK2, Q0 = 0 andQ1 = 1.

When the leading edge of CLK3 occurs, FF0 again toggles to the SET state (Q0

= 1), and FF1 remains SET (Q1 = 1) because its J1 and K1 inputs are both LOW (Q0 =

0). After this triggering edge, Q0 = 1 and Q1 = 1.

Finally, at the leading edge of CLK4, Q0 and Q1 go LOW because they both have

a toggle condition on their J1 and K1 inputs. The counter has now recycled to its

original state, Q0 = Q1 = 0.

Timing diagram

3.14.2 3-Bit Synchronous Binary Counter

A 3 bit synchronous binary counter is constructed with three JK Flip-Flops

and an AND gate. The output of FF0 (Q0) changes on each clock pulse as the counter

progresses from its original state to its final state and then back to its original state.

To produce this operation, FF0 must be held in the toggle mode by constant HIGH,

on its J0 and K0 inputs.

3-Bit Synchronous Binary Counter

The output of FF1 (Q1) goes to the opposite state following each time Q0= 1.

This change occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes the

counter to recycle. To produce this operation, Q0 is connected to the J1 and K1 inputs

of FF1. When Q0= 1 and a clock pulse occurs, FF1 is in the toggle mode and therefore

changes state. When Q0= 0, FF1 is in the no-change mode and remains in its present

state.

The output of FF2 (Q2) changes state both times; it is preceded by the unique

condition in which both Q0 and Q1 are HIGH. This condition is detected by the AND

gate and applied to the J2 and K2 inputs of FF3. Whenever both outputs Q0= Q1= 1,

the output of the AND gate makes the J2= K2= 1 and FF2 toggles on the following clock

pulse. Otherwise, the J2 and K2 inputs of FF2 are held LOW by the AND gate output,

FF2 does not change state.

CLOCK Pulse Q2 Q1 Q0

Initially 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

8 (recycles) 0 0 0

Timing diagram

3.14.3 4-Bit Synchronous Binary Counter

This particular counter is implemented with negative edge-triggered Flip-

Flops. The reasoning behind the J and K input control for the first three Flip- Flops is

the same as previously discussed for the 3-bit counter. For the fourth stage, the Flip-

Flop has to change the state when Q0= Q1= Q2= 1. This condition is decoded by AND

gate G3.

4-Bit Synchronous Binary Counter

Therefore, when Q0= Q1= Q2= 1, Flip-Flop FF3 toggles and for all other times it

is in a no-change condition. Points where the AND gate outputs are HIGH are

indicated by the shaded areas.

Timing diagram

3.14.4 4-Bit Synchronous Decade Counter: (BCD Counter):

BCD decade counter has a sequence from 0000 to 1001 (9). After 1001 state it

must recycle back to 0000 state. This counter requires four Flip-Flops and AND/OR

logic as shown below.

4-Bit Synchronous Decade Counter

CLOCK Pulse Q3 Q2 Q1 Q0

Initially

1
2
3

4
5
6
7
8
9

10(recycles)

0
0
0
0

0
0
0
0
1
1
0

0
0
0
0

1
1
1
1
0
0
0

0
0
1
1

0
0
1
1
0
0
0

0
1
0
1

0
1
0
1
0
1
0

 First, notice that FF0 (Q0) toggles on each clock pulse, so the logic equation

for its J0 and K0 inputs is

J0= K0= 1

This equation is implemented by connecting J0 and K0 to a constant HIGH level.

 Next, notice from table, that FF1 (Q1) changes on the next clock pulse each

time Q0 = 1 and Q3 = 0, so the logic equation for the J1 and K1 inputs is

J1= K1= Q0Q3’

This equation is implemented by ANDing Q0 and Q3 and connecting the gate

output to the J1 and K1 inputs of FFl.

 Flip-Flop 2 (Q2) changes on the next clock pulse each time both Q0 = Q1 =

1. This requires an input logic equation as follows:

J2= K2= Q0Q1

This equation is implemented by ANDing Q0 and Q1 and connecting the gate

output to the J2 and K2 inputs of FF3.

 Finally, FF3 (Q3) changes to the opposite state on the next clock pulse each time Q0

= 1, Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q1 = 1 (state 9).The equation

for this is as follows:

J3= K3= Q0Q1Q2+ Q0Q3

This function is implemented with the AND/OR logic connected to the J3 and

K3 inputs of FF3.

Timing diagram

3.14.5 Synchronous UP/DOWN Counter

An up/down counter is a bidirectional counter, capable of progressing in

either direction through a certain sequence. A 3-bit binary counter that advances

upward through its sequence (0, 1, 2, 3, 4, 5, 6, 7) and then can be reversed so that it

goes through the sequence in the opposite direction (7, 6, 5, 4, 3, 2, 1,0) is an

illustration of up/down sequential operation.

The complete up/down sequence for a 3-bit binary counter is shown in table

below. The arrows indicate the state-to-state movement of the counter for both its UP

and its DOWN modes of operation. An examination of Q0 for both the up and down

sequences shows that FF0 toggles on each clock pulse. Thus, the J0 and K0 inputs of FF0

are,

J0= K0= 1

To form a synchronous UP/DOWN counter, the control input (UP/DOWN)is

used to allow either the normal output or the inverted output of one Flip-Flop to the

J and K inputs of the next Flip-Flop. When UP/DOWN= 1, the MOD 8 counter will count

from 000 to 111 and UP/DOWN= 0, it will count from 111 to 000.

When UP/DOWN= 1, it will enable AND gates 1 and 3 and disable AND gates 2

and 4. This allows the Q0 and Q1 outputs through the AND gates to the J and K inputs

of the following Flip-Flops, so the counter counts up as pulses are applied.

When UP/DOWN= 0, the reverse action takes place.

J1= K1= (Q0.UP)+ (Q0’.DOWN)

J2= K2= (Q0. Q1.UP)+ (Q0’.Q1’.DOWN)

3-bit UP/DOWN Synchronous Counter

3.14.6 MODULUS-N-COUNTERS

The counter with ‘n’ Flip-Flops has maximum MOD number 2n. Find the

number of Flip-Flops (n) required for the desired MOD number (N) using the

equation,

2n ≥ N

(i) For example, a 3 bit binary counter is a MOD 8 counter. The basic counter can

be modified to produce MOD numbers less than 2n by allowing the counter to

skin those are normally part of counting sequence.

n= 3

N= 8

2n = 23= 8= N

(ii) MOD 5 Counter:

2n= N

2n= 5

22= 4 less than N.

23= 8 > N(5)

Therefore, 3 Flip-Flops are required.

(iii) MOD 10 Counter:

2n= N= 10

23= 8 less than N.

24= 16 > N(10).

To construct any MOD-N counter, the following methods can be used.

1. Find the number of Flip-Flops (n) required for the desired MOD number

(N) using the equation,

2n ≥ N.

2. Connect all the Flip-Flops as a required counter.

3. Find the binary number for N.

4. Connect all Flip-Flop outputs for which Q= 1 when the count is N, as inputs

to NAND gate.

5. Connect the NAND gate output to the CLR input of each Flip-Flop.

When the counter reaches Nth state, the output of the NAND gate goes LOW,

resetting all Flip-Flops to 0. Therefore the counter counts from 0 through N-1.

For example, MOD-10 counter reaches state 10 (1010). i.e., Q3Q2Q1Q0= 1 0 1 0. The

outputs Q3 and Q1 are connected to the NAND gate and the output of the NAND gate

goes LOW and resetting all Flip-Flops to zero. Therefore MOD-10 counter counts from

0000 to 1001. And then recycles to the zero value.

The MOD-10 counter circuit is shown below.

MOD-10 (Decade) Counter

3.15 SHIFT REGISTERS:

A register is simply a group of Flip-Flops that can be used to store a binary

number. There must be one Flip-Flop for each bit in the binary number. For instance,

a register used to store an 8-bit binary number must have 8 Flip-Flops.

The Flip-Flops must be connected such that the binary number can be entered

(shifted) into the register and possibly shifted out. A group of Flip-Flops connected to

provide either or both of these functions is called a shift register.

The bits in a binary number (data) can be removed from one place to another

in either of two ways. The first method involves shifting the data one bit at a time in

a serial fashion, beginning with either the most significant bit (MSB) or the least

significant bit (LSB). This technique is referred to as serial shifting. The second

method involves shifting all the data bits simultaneously and is referred to as parallel

shifting.

There are two ways to shift into a register (serial or parallel) and similarly two

ways to shift the data out of the register. This leads to the construction of four basic

register types—

i. Serial in- serial out,

ii. Serial in- parallel out,

iii. Parallel in- serial out,

iv. Parallel in- parallel out.

(i) Serial in- serial out (iii) Parallel in- serial out

(iii) Serial in- parallel out (iv) Parallel in- parallel out

3.15.1 Serial-In Serial-Out Shift Register:

The serial in/serial out shift register accepts data serially, i.e., one bit at a time
on a single line. It produces the stored information on its output also in serial form.

Serial-In Serial-Out Shift Register

The entry of the four bits 1010 into the register is illustrated below, beginning with

the right-most bit. The register is initially clear. The 0 is put onto the data input line,

making D=0 for FF0. When the first clock pulse is applied, FF0 is reset, thus storing the 0.

Next the second bit, which is a 1, is applied to the data input, making D=1 for

FF0 and D=0 for FF1 because the D input of FF1 is connected to the Q0 output. When

the second clock pulse occurs, the 1 on the data input is shifted into FF0, causing FF0

to set; and the 0 that was in FF0 is shifted into FFl.

The third bit, a 0, is now put onto the data-input line, and a clock pulse is

applied. The 0 is entered into FF0, the 1 stored in FF0 is shifted into FFl, and the 0

stored in FF1 is shifted into FF2.

The last bit, a 1, is now applied to the data input, and a clock pulse is applied. This

time the 1 is entered into FF0, the 0 stored in FF0 is shifted into FFl, the 1 storedin FF1

is shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completesthe serial

entry of the four bits into the shift register, where they can be stored for any length of

time as long as the Flip-Flops have dc power.

Four bits (1010) being entered serially into the register

To get the data out of the register, the bits must be shifted out serially and taken

off the Q3 output. After CLK4, the right-most bit, 0, appears on the Q3 output.

When clock pulse CLK5 is applied, the second bit appears on the Q3 output.

Clock pulse CLK6 shifts the third bit to the output, and CLK7 shifts the fourth bit to

the output. While the original four bits are being shifted out, more bits can be shifted

in. All zeros are shown being shifted out, more bits can be shifted in.

Four bits (1010) being entered serially-shifted out of the register and replaced by all zeros

3.15.2 Serial-In Parallel-Out Shift Register:

In this shift register, data bits are entered into the register in the same as serial-

in serial-out shift register. But the output is taken in parallel. Once the data are stored,

each bit appears on its respective output line and all bits are available simultaneously

instead of on a bit-by-bit.

Serial-In parallel-Out Shift Register

Four bits (1111) being serially entered into the register

3.15.3 Parallel-In Serial-Out Shift Register:

In this type, the bits are entered in parallel i.e., simultaneously into their

respective stages on parallel lines.

A 4-bit parallel-in serial-out shift register is illustrated below. There are four

data input lines, X0, X1, X2 and X3 for entering data in parallel into the register. SHIFT/

LOAD input is the control input, which allows four bits of data to load in parallel into

the register.

When SHIFT/LOAD is LOW, gates G1, G2, G3 and G4 are enabled, allowing each

data bit to be applied to the D input of its respective Flip-Flop. When a clock pulse is

applied, the Flip-Flops with D = 1 will set and those with D = 0 will reset, thereby

storing all four bits simultaneously.

Parallel-In Serial-Out Shift Register

When SHIFT/LOAD is HIGH, gates G1, G2, G3 and G4 are disabled and gates G5,

G6 and G7 are enabled, allowing the data bits to shift right from one stage to the next.

The OR gates allow either the normal shifting operation or the parallel data- entry

operation, depending on which AND gates are enabled by the level on the

SHIFT/LOAD input.

3.15.4 Parallel-In Parallel-Out Shift Register:

In this type, there is simultaneous entry of all data bits and the bits appear on

parallel outputs simultaneously.

Parallel-In Parallel-Out Shift Register

3.15.5 UNIVERSAL SHIFT REGISTERS

If the register has shift and parallel load capabilities, then it is called a shift

register with parallel load or universal shift register. Shift register can be used for

converting serial data to parallel data, and vice-versa. If a parallel load capability is

added to a shift register, the data entered in parallel can be taken out in serial fashion

by shifting the data stored in the register.

The functions of universal shift register are:

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

3. A shift-right control to enable the shift right operation and the serial input

and output lines associated with the shift right.

4. A shift-left control to enable the shift left operation and the serial input and

output lines associated with the shift left.

5. A parallel-load control to enable a parallel transfer and the n input lines

associated with the parallel transfer.

6. ‘n’ parallel output lines.

7. A control line that leaves the information in the register unchanged

even though the clock pulses re continuously applied.

It consists of four D-Flip-Flops and four 4 input multiplexers (MUX). S0 and S1

are the two selection inputs connected to all the four multiplexers. These two

selection inputs are used to select one of the four inputs of each multiplexer.

The input 0 in each MUX is selected when S1S0= 00 and input 1 is selected when

S1S0= 01. Similarly inputs 2 and 3 are selected when S1S0= 10 and S1S0= 11

respectively. The inputs S1 and S0 control the mode of the operation of the register.

4-Bit Universal Shift Register

When S1S0= 00, the present value of the register is applied to the D-inputs of the

Flip-Flops. This is done by connecting the output of each Flip-Flop to the 0 input of

the respective multiplexer. The next clock pulse transfers into each Flip-Flop, the

binary value is held previously, and hence no change of state occurs.

When S1S0= 01, terminal 1 of the multiplexer inputs has a path to the D inputs of

the Flip-Flops. This causes a shift-right operation with the lefter serial input

transferred into Flip-Flop FF3.

When S1S0= 10, a shift-left operation results with the right serial input going into

Flip-Flop FF1.

Finally when S1S0= 11, the binary information on the parallel input lines (I1, I2,

I3 and I4) are transferred into the register simultaneously during the next clock pulse.

The function table of bi-directional shift register with parallel inputs and parallel

outputs is shown below.

Mode Control
Operation

S1 S0

0 0 No change

0 1 Shift-right

1 0 Shift-left

1 1 Parallel load

3.15.6 BI-DIRECTION SHIFT REGISTERS:

A bidirectional shift register is one in which the data can be shifted either left

or right. It can be implemented by using gating logic that enables the transfer of a

data bit from one stage to the next stage to the right or to the left depending on the

level of a control line.

A 4-bit bidirectional shift register is shown below. A HIGH on the RIGHT/LEFT

control input allows data bits inside the register to be shifted to the right, and a LOW

enables data bits inside the register to be shifted to the left.

When the RIGHT/LEFT control input is HIGH, gates G1, G2, G3 and G4 are

enabled, and the state of the Q output of each Flip-Flop is passed through to the D

input of the following Flip-Flop. When a clock pulse occurs, the data bits are shifted

one place to the right.

When the RIGHT/LEFT control input is LOW, gates G5, G6, G7 and G8 are

enabled, and the Q output of each Flip-Flop is passed through to the D input of the

preceding Flip-Flop. When a clock pulse occurs, the data bits are then shifted one

place to the left.

4-bit bi-directional shift register

UNIT IV
ASYNCHRONOUS SEQUENTIAL CIRCUITS

4.1 INTRODUCTION

A sequential circuit is specified by a time sequence of inputs, outputs and

internal states. In synchronous sequential circuits, the output changes whenever a

clock pulse is applied. The memory elements are clocked flip-flops.

Asynchronous sequential circuits do not use clock pulses. The memory

elements in asynchronous sequential circuits are either unclocked flip-flops (Latches)or

time-delay elements.

S.No Synchronous sequential circuits Asynchronous sequential circuits

1

Memory elements are clocked flip-

flops

Memory elements are either

unclocked flip-flops or time delay

elements.

2

The change in input signals can

affect memory element upon

activation of clock signal.

The change in input signals can

affect memory element at any

instant of time.

3

The maximum operating speed of

clock depends on time delays

involved. Therefore synchronous

circuits can operate slower than

asynchronous.

Because of the absence of clock, it

can operate faster than synchronous

circuits.

4 Easier to design More difficult to design

1

Block diagram of Asynchronous sequential circuits

The block diagram of asynchronous sequential circuit is shown above. It

consists of a combinational circuit and delay elements connected to form feedback

loops. There are ‘n’ input variables, ‘m’ output variables, and ‘k’ internal states.

The delay elements provide short term memory for the sequential circuit. The

present-state and next-state variables in asynchronous sequential circuits are called

secondary variables and excitation variables, respectively.

When an input variable changes in value, the ‘y’ secondary variable does not

change instantaneously. It takes a certain amount of time for the signal to propagate

from the input terminals through the combinational circuit to the ‘Y’ excitation

variables where the new values are generated for the next state. These values

propagate through the delay elements and become the new present state for the

secondary variables.

In steady-state condition, excitation and secondary variables are same, but during

transition they are different.

To ensure proper operation, it is necessary for asynchronous sequential

circuits to attain a stable state before the input is changed to a new value. Because of

unequal delays in wires and combinational circuits, it is impossible to have two or

more input variable change at exactly same instant. Therefore, simultaneous changes

of two or more input variables are avoided.

Only one input variable is allowed to change at any one time and the time

between input changes is kept longer than the time it takes the circuit to reach stable

state.

Types:

According to how input variables are to be considered, there are two types

 Fundamental mode circuit

 Pulse mode circuit.

Fundamental mode circuit assumes that:

The input variables change only when the circuit is stable.

 Only one input variable can change at a given time.

Inputs are levels (0, 1) and not pulses.

Pulse mode circuit assumes that:

 The input variables are pulses (True, False) instead of levels.

The width of the pulses is long enough for the circuit to respond to the input.

 The pulse width must not be so long that it is still present after the new state

is reached.

4.2 Analysis of Fundamental Mode Circuits

The analysis of asynchronous sequential circuits consists of obtaining a table

or a diagram that describes the sequence of internal states and outputs as a function

of changes in the input variables.

4.2.1 Analysis procedure

The procedure for obtaining a transition table from the given circuit diagram

is as follows.

1. Determine all feedback loops in the circuit.

2. Designate the output of each feedback loop with variable Y1 and its

corresponding inputs y1, y2,….yk, where k is the number of feedback loops in

the circuit.

3. Derive the Boolean functions of all Y’s as a function of the external inputs

and the y’s.

4. Plot each Y function in a map, using y variables for the rows and the external

inputs for the columns.

5. Combine all the maps into one table showing the value of Y= Y1, Y2,….Yk

inside each square.

6. Circle all stable states where Y=y. The resulting map is the transition table.

4.2.2 Problems

1. An asynchronous sequential circuit is described by the following excitation and

output function,

Y= x1x2+ (x1+x2) y

Z= Y

a) Draw the logic diagram of the circuit.

b) Derive the transition table, flow table and output map.

c) Describe the behavior of the circuit.

Soln:

i) The logic diagram is shown as,

Logic diagram

ii)

y x1 x2 x1x2 (x1+x2)y Y= x1x2+ (x1+x2)y Z= Y

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 1 0 1 1 1

1 1 0 0 1 1 1

1 1 1 1 1 1 1

Transition table:

Output map:

Output is mapped for all stable states. For unstable states output is

mapped unspecified.

Flow table:

Assign a= 0; b= 1

iii)

The circuit gives carry output of the full adder circuit.

2. Design an asynchronous sequential circuit that has two internal states and one

output. The excitation and output function describing the circuit are as follows:

Y1= x1x2+ x1y2+ x2y1

Y2= x2+ x1y1y2+ x1y1

Z= x2+ y1.

a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

Soln:

i) The logic diagram is shown as,

Logic Diagram

ii)

1
 y

2
 y

1
 x

2
 x

1

xx
2

1

yx
2

2
yx

1

1
y 1

xy
2

1
yx

1

1
 Y

2
 Y

Z=
x2

+

1
 y

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 1 1

0 1 1 0 0 1 0 0 0 1 0 0

0 1 1 1 1 1 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 1 1 1

1 0 1 0 0 0 0 0 1 0 1 1

1 0 1 1 1 0 1 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1

1 1 0 1 0 0 1 0 0 1 1 1

1 1 1 0 0 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

Transition table and Output map

Transition table Output map

Primitive Flow table

3. An asynchronous sequential circuit is described by the excitation and output

functions,

Y= x1x2’+ (x1+x2’) y

Z= Y

a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

Soln:

Logic diagram

ii)

y x1 x2 x2’ x1x2’ (x1+x2’)y Y= x1x2’+ (x1+x2’)y Z= Y

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 1 1 0 1 1

0 1 1 0 0 0 0 0

1 0 0 1 0 1 1 1

1 0 1 0 0 0 0 0

1 1 0 1 1 1 1 1

1 1 1 0 0 1 1 1

Transition table:

Output map:

Transition Table

Output is mapped for all stable states. For unstable states output is

mapped unspecified.

Output map

Flow table:

Assign a= 0; b= 1

4. An asynchronous sequential circuit is described by the excitation and output

functions, B= (A1’B2) b+ (A1+B2) C= B

a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

Soln:

Logic Diagram

ii)

b A1 B2 A1’ (A1’B2)b A1+B2 B= (A1’B2) b+ (A1+B2) C= B

0 0 0 1 0 0 0 0

0 0 1 1 0 1 1 1

0 1 0 0 0 1 1 1

0 1 1 0 0 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 1 1 1

Transition table

Output map

Output is mapped for all stable states.

Flow table

Assign a= 0; b= 1

W
1

1

5. An asynchronous sequential circuit is described by the excitation and output

functions,

X= (Y1Z1’W2) x + (Y1’Z1W2’)

S=X’

a) Draw the logic diagram of the circuit

b) Derive the translation table and output map

Soln:

x W
 2

W
 2

 ’

Y
 1

Y
 1

 ’

Z
 1

Z
 1

 ’

(Y

 Z
 ’

2
)

 x

Y
 1

’
Z

1

X

S
=

 X
’

0 0 1 0 1 0 1 0 0 0 1

0 0 1 0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 0 0 0 1

0 0 1 1 0 1 0 0 0 0 1

0 1 0 0 1 0 1 0 0 0 1

0 1 0 0 1 1 0 0 0 0 1

0 1 0 1 0 0 1 0 0 0 1

0 1 0 1 0 1 0 0 0 0 1

1 0 1 0 1 0 1 0 0 0 1

1 0 1 0 1 1 0 0 1 1 0

1 0 1 1 0 0 1 0 0 0 1

1 0 1 1 0 1 0 0 0 0 1

1 1 0 0 1 0 1 0 0 0 1

1 1 0 0 1 1 0 0 0 0 1

1 1 0 1 0 0 1 1 0 1 0

1 1 0 1 0 1 0 0 0 0 1

Transition table and Output map:

Transition table Output map

4.3 Analysis of Pulse Mode Circuits

Pulse mode asynchronous sequential circuits rely on the input pulses rather

than levels. They allow only one input variable to change at a time. They can be

implemented by employing a SR latch.

The procedure for analyzing an asynchronous sequential circuit with SR

latches can be summarized as follows:

1. Label each latch output with Yi and its external feedback path (if any) with

yi for

i = 1,2 ,..,, k.

2. Derive the Boolean functions for the Si and Ri inputs in each latch.

3. Check whether SR = 0 for each NOR latch or whether S'R' = 0 for each NAND

latch. If either of these condition is not satisfied, there is a possibility that the

circuit may not operate properly.

4. Evaluate Y = S + R’y for each NOR latch or Y = S' + Ry for each NAND latch.

5. Construct a map with the y’s representing the rows and the x inputs

representing the columns.

6. Plot the value of Y= Y1Y2 ……Yk in the map.

7. Circle all stable states such that Y = y. The resulting map is the transition

table.

The analysis of a circuit with latches will be demonstrated by means of the

below example.

1. Derive the transition table for the pulse mode asynchronous sequential circuit

shown below.

Example of a circuit with SR latches

Soln:

There are two inputs x1 and x2 and two external feedback loops giving rise

to the secondary variables y1 and y2.

Step 1:

The Boolean functions for the S and R inputs in each latch are:

S1= x1y2 S2= x1x2

R1= x1’x2’ R2= x2’y1

Step 2:

Check whether the conditions SR= 0 is satisfied to ensure proper operation of the

circuit.

S1R1= x1y2 x1’x2’ = 0

S2R2= x1x2 x2’y1 = 0

The result is 0 because x1x1’ = x2x2’ = 0

Step 3:

Evaluate Y1 and Y2. The excitation functions are derived from the relation Y= S+

R’y. Y1= S1+ R1’y1 = x1y2 +(x1’x2’)’ y1

= x1y2 +(x1+ x2) y1 = x1y2 +x1y1+

x2y1 Y2= S2+ R2’y2 = x1x2+ (x2’y1)’y2

= x1x2+ (x2+ y1’) y2 = x1x2+ x2y2+ y1’y2

y1 y2 x1 x2 x1y2 x1y1 x2y1 x1x2 x2y2 y1’y2 Y1 Y2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 1

0 1 0 1 0 0 0 0 1 1 0 1

0 1 1 0 1 0 0 0 0 1 1 1

0 1 1 1 1 0 0 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 1 0

1

1

0

0

1

1

0

1

0

0

1

1

0

1

0

1

0

0

0

0

1

1

0

1

1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 1 0 1 1

1 1 1 0 1 1 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 0 1 1

Step 4:

Step 5:

Maps for Y1 and Y2.

Transition table

4.4 RACES:

A race condition is said to exist in an asynchronous sequential circuit when

two or more binary state variables change value in response to a change in an input

variable.

Races are classified as:

i. Non-critical races

ii. Critical races.

Non-critical races:

If the final stable state that the circuit reaches does not depend on the order in

which the state variables change, the race is called a non-critical race.

If a circuit, whose transition table (a) starts with the total stable state y1y2x=

000 and then change the input from 0 to 1. The state variables must then change from

00 to 11, which define a race condition.

The possible transitions are:

00 11

00 01 11

00 10 11

In all cases, the final state is the same, which results in a non-critical condition. In (a),

the final state is (y1y2x= 111), and in (b), it is (y1y2x= 011).

Examples of Non-critical Races

Critical races:

A race becomes critical if the correct next state is not reached during a state

transition. If it is possible to end up in two or more different stable states, depending

on the order in which the state variables change, then it is a critical race. For proper

operation, critical races must be avoided.

The below transition table illustrates critical race condition. The transition

table (a) starts in stable state (y1y2x= 000), and then change the input from 0 to 1. The

state variables must then change from 00 to 11. If they change simultaneously, the

final total stable state is 111. In the transition table (a), if, because of unequal

propagation delay, Y2 changes to 1 before Y1 does, then the circuit goes to the total

stable state 011 and remains there. If, however, Y1 changes first, the internal state

becomes 10 and the circuit will remain in the stable total state 101.

Hence, the race is critical because the circuit goes to different stable states,

depending on the order in which the state variables change.

Examples of Critical Races

4.5 CYCLES

Races can be avoided by directing the circuit through intermediate

unstable states with a unique state-variable change. When a circuit goes through a

unique sequence of unstable states, it is said to have a cycle.

Again, we start with y1y2 = 00 and change the input from 0 to 1. The transition table

(a) gives a unique sequence that terminates in a total stable state 101. The tablein (b)

shows that even though the state variables change from 00 to 11, the cycleprovides a

unique transition from 00 to 01 and then to 11, Care must be taken when using a cycle

that terminates with a stable state. If a cycle does not terminate with a

stable state, the circuit will keep going from one unstable state to another, making the

entire circuit unstable. This is demonstrated in the transition table (c).

Debounce Circuit:

Examples of Cycles

Input binary information in binary information can be generated manually be

means of mechanical switches. One position of the switch provides a voltage equivalent

to logic 1, and the other position provides a second voltage equivalent to logic 0.

Mechanical switches are also used to start, stop, or reset the digital system. A common

characteristic of a mechanical switch is that when the arm is thrown fromone position to

the other the switch contact vibrates or bounces several times before coming to a final

rest. In a typical switch, the contact bounce may take several milliseconds to die out,

causing the signal to oscillate between 1 and 0 because the switch contact is vibrating.

A debounce circuit is a circuit which removes the series of pulses that result

from a contact bounce and produces a single smooth transition of the binary signal

from 0 to 1 or from 1 to 0. One such circuit consists of a single-pole, double-throw

switch connected to an SR latch, as shown below. The center contact is connected to

ground that provides a signal equivalent to logic 0. When one of the two contacts, A

or B, is not connected to ground through the switch, it behaves like a logic-1 signal.

When the switch is thrown from position A to position B and back, the outputs of the

latch produce a single pulse as shown, negative for Q and positive for Q'. The switch

is usually a push button whose contact rests in position A. When the pushbutton is

depressed, it goes to position B and when released, it returns to position A.

Debounce Circuit

The operation of the debounce circuit is as follows: When the switch resets in

position A, we have the condition S = 0, R = 1 and Q = 1, Q' = 0. When the switch is

moved to position B, the ground connection causes R to go to 0, while S becomes a 1

because contact A is open. This condition in turn causes output Q to go to 0 and Q' to

go to 1. After the switch makes an initial contact with B, it bounces several times. The

output of the latch will be unaffected by the contact bounce because Q' remains 1 (and

Q remains 0) whether R is equal to 0 (contact with ground) or equal to 1 (no contact

with ground). When the switch returns to position A, S becomes 0 and Q returns to

1. The output again will exhibit a smooth transition, even if there is a

contact bounce in position A.

4.6 DESIGN OF FUNDAMENTAL MODE SEQUENTIAL CIRCUITS

The design of an asynchronous sequential circuit starts from the statement of

the problem and concludes in a logic diagram. There are a number of design steps

that must be carried out in order to minimize the circuit complexity and to produce a

stable circuit without critical races.

The design steps are as follows:

1. State the design specifications.

2. Obtain a primitive flow table from the given design specifications.

3. Reduce the flow table by merging rows in the primitive flow table.

4. Assign binary state variables to each row of the reduced flow table to obtain the

transition table. The procedure of state assignment eliminates any possible critical

races.

5. Assign output values to the dashes associated with the unstable states to

obtain the output maps.

6. Simplify the Boolean functions of the excitation and output variables and

draw the logic diagram.

1. Design a gated latch circuit with inputs, G (gate) and D (data), and one output, Q.

Binary information present at the D input is transferred to the Q output when G is

equal to 1. The Q output will follow the D input as long as G= 1. When G goesto 0,

the information that was present at the D input at the time of transition occurred

is retained at the Q output. The gated latch is a memory element that accepts the

value of D when G= 1 and retains this value after G goes to 0, a change in D does not

change the value of the output Q.

Soln:

Step 1:

From the design specifications, we know that Q= 0 if DG= 01

and Q= 1 if DG= 11

because D must be equal to Q when G= 1.

When G goes to 0, the output depends on the last value of D. Thus, if the transition

is from 01 to 00 to 10, then Q must remain 0 because D is 0 at the time ofthe transition

from 1 to 0 in G.

If the transition of DG is from 11 to 10 to 00, then Q must remain 1. This

information results in six different total states, as shown in the table.

State
 Inputs Output

Comments
D G Q

a 0 1 0 D= Q because G= 1

b 1 1 1 D= Q because G= 1

c 0 0 0 After state a or d

d 1 0 0 After state c

e 1 0 1 After state b or f

f 0 0 1 After state e

Step 2: A primitive flow is a flow table with only one stable total state in each row.

It has one row for each state and one column for each input combination.

Step 3:

Primitive flow table

The primitive flow table has only stable state in each row. The table can be

reduced to a smaller number of rows if two or more stable states are placed in the

same row of the flow table. The grouping of stable states from separate rows into one

common row is called merging.

States that are candidates for merging

Thus, the three rows a, c, and d can be merged into one row. The second row

of the reduced table results from the merging of rows b, e, and f of the primitive flow

table.

Reduced table- 1

The states c & d are replaced by state a, and states e & f are replaced by state b

Step 4:

Reduced table- 2

Assign distinct binary value to each state. This assignment converts the flow

table into a transition table. A binary state assignment must be made to ensure that

the circuit will be free of critical races.

Assign 0 to state a, and 1 to state b in the reduced state table.

Transition table and output map

Step 5:

Gated-Latch Logic diagram

The diagram can be implemented also by means of an SR latch. Obtain the

Boolean function for S and R inputs.

y Y S R

0 0 0 x
0 1 1 0
1 0 0 1

1 1 x 0
SR Latch excitation table

From the information given in the transition table and from the latch

excitation table conditions, we can obtain the maps for the S and R inputs of the latch.

Maps for S and R

The logic diagram consists of an SR latch using NOR latch and the gates

required to implement the S and R Boolean functions. With a NAND latch, we must

use the complemented values for S and R.

S’ = (DG)’ and R’ = (D’G)’

Logic diagram with NOR latch Logic diagram with NAND latch

2. Design a negative-edge triggered T flip-flop. The circuit has two inputs, T (toggle)

and G (clock), and one output, Q. the output state is complemented if T= 1 and the

clock changes from 1 to 0 (negative-edge triggering). Otherwise, underany other

input condition, the output Q remains unchanged.

Step 1:

Starting with the input condition TC= 11 and assign it to a. The circuit goes to state

b and output Q complements from 0 to 1 when C changes from 1 to 0 while T remains a 1.

Another change in the output occurs when the circuit changes from state c to

state d. In this case, T=1, C changes from 1 to 0, and the output Q complements from

1 to 0. The other four states in the table do not change the output, because T is equal

to 0. If Q is initially 0, it stays at 0, and if initially at 1, it stays at 1 even though the

clock input changes.

State
 Inputs Output

Comments
T G Q

a 1 1 0 Initial output is 0

b 1 0 1 After state a

c 1 1 1 Initial output is 1

d 1 0 0 After state c

e 0 0 0 After state d or f

f 0 1 0 After state e or a

g 0 0 1 After state b or h

h 0 1 1 After state g or c
Specifications of total states

Step 2: Merging of the flow table

The information for the primitive flow table can be obtained directly from the

condition listed in the above table. We first fill in one square in each row belonging

to stable state in that row as listed in the table.

Then we enter dashes in those squares whose input differs by two variables

from the input corresponding to the stable state.

The unstable conditions are then determined by utilizing the information

listed under the comments in the above table.

Step 3: Compatible pairs

Primitive flow table

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

Implication table

The implication table is used to find the compatible states. The only difference

is that when comparing rows, we are at liberty to adjust the dashes to fit any desired

condition. The two states are compatible if in every column of the corresponding

rows in the primitive flow table, there are identical or compatible pairs and if there is

no conflict in the output values.

A check mark () designates a square whose pair of states is compatible. Those

states that are not compatible are marked with a cross (x). The remaining squares are

recorded with the implied pairs that need further investigation.

The squares that contain the check marks define the compatible pairs: (a,

f) (b, g) (b, h) (c, h) (d, e) (d, f) (e, f) (g, h)

Step 4: Maximal compatibles

Having found all the compatible pairs, the next step is to find larger set of

states that are compatible. The maximal compatible is a group of compatibles that

contain all the possible combinations of compatible states. The maximal compatible

can be obtained from a merger diagram.

The merger diagram is a graph in which each state is represented by a dot

placed along the circumference of a circle. Lines are drawn between any two

corresponding dots that form a compatible pair. All possible compatibles can be

obtained from the merger diagram by observing the geometrical patterns in

which states are connected to each other.

 A line represents a compatible pair

 A triangle constitutes a compatible with three states

 An n-state compatible is represented in the merger diagram by an n-sided

polygon with all its diagonals connected.

Merger Diagram

The merger diagram is obtained from the list of compatible pairs derived from

the implication table. There are eight straight lines connecting the dots, one foreach

compatible pair. The lines form a geometrical pattern consisting of two triangles

connecting (b, g, h) & (d, e, f) and two lines (a, f) & (c, h). The maximal compatibles

are:

(a, f) (b, g, h) (c, h) (d, e, f)

Reduced Flow table

The reduced flow table is drawn. The compatible states are merged into one row

that retains the original letter symbols of the states. The four compatible set of states

are used to merge the flow table into four rows.

Final Reduced Flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol f is replaced by a; g & h are replaced by b, and similarly for

the other two rows.

Step 5: State Assignment and Transition table

Find the race-free binary assignment for the four stable states in the reduced

flow table. Assign a= 00, b= 01, c= 11 and d= 10.

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

Transition Table and Output Map

Transition table Output map Q= y2

Logic Diagram:

Maps for Latch Inputs

3. Develop a state diagram and primitive flow table for a logic system that has two

inputs, X and Y, and a single output X, which is to behave in the following manner.

Initially, both inputs and output are equal to 0. Whenever X= 1 and Y= 0, the Z

becomes 1 and whenever X= 0 and Y= 1, the Z becomes 0. When inputs are zero,

i.e. X= Y= 0 or inputs are one, i.e. X= Y= 1, the output Z does not change; it remains

in the previous state. The logic system has edge triggered inputs withouthaving a

clock. The logic system changes state on the rising edges of the two inputs. Static

input values are not to have any effect in changing the Z

output.

Soln:

The conditions given are,

 Initially both inputs X and Y are 0.

When X= 1, Y= 0; Z= 1

 When X= 0, Y= 1; Z= 0

When X= Y= 0 or X= Y= 1, then Z does not change, it remains in the previous

state.

Step 1:

The above state transitions are represented in the state diagram as,

State diagram

Step 2:

A primitive flow table is constructed from the state diagram. The primitive

flow table has one row for each state and one column for each input combination.

Only one stable state exists for each row in the table. The stable state can be easily

identified from the state diagram. For example, state A is stable with output 0 when

inputs are 00, state C is stable with output 1 when inputs are 10 and so on.

We know that both inputs are not allowed to change simultaneously, so we can

enter dash marks in each row that differs in two or more variables from the input

variables associated with the stable state. For example, the first row in the flowtable

shows a stable state with an input of 00. Since only one input can change at anygiven

time, it can change to 01 or 10, but not to 11. Therefore we can enter two dashes in

the 11 column of row A.

The remaining places in the primitive flow table can be filled by observing

state diagram. For example, state B is the next state for present state A when input

combination is 01; similarly state C is the next state for present state A when input

combination is 10.

Step 3:

Primitive flow table

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

The squares that contain the check marks () define the compatible pairs:

(A, B) (A, D) (A, F) (B, D) (C, E) (C, F) (D, E) (E, F)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived

from the implication table. There are eight straight lines connecting the dots, one for

each compatible pair. The lines form a geometrical pattern consisting of two triangles

connecting (A, B, D) & (C, E, F) and two lines (A, F) & (D, E). The maximal

compatibles are:

(A, B, D) (C, E, F) (A, F) (D, E)

Closed covering condition:

Merger diagram

The condition that must be satisfied for merging rows is that the set of chosen

compatibles must cover all the states and must be closed. The set will cover all the states if

it includes all the states of the original state table. The closure condition is

satisfied if there are no implied states or if the implied states are included within the

set. A closed set of compatibles that covers all the states is called a closed covering.

If we remove (A, F) and (D, E), we are left with a set of two compatibles:

(A, B, D) (C, E, F)

All six states from the primitive flow table are included in this set. Thus, the set

satisfies the covering condition.

The reduced flow table is drawn as below.

Reduced flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B & D is replaced by A; E & F are replaced by C.

Step 5:

Find the race-free binary assignment for the four stable states in the reduced

flow table. Assign A= 0 and C= 1

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

Transition table and output map

Step 6:

Gated-Latch Logic diagram

4. Design a circuit with inputs X and Y to give an output Z= 1 when XY= 11 but

only if X becomes 1 before Y, by drawing total state diagram, primitive flow

table and output map in which transient state is included.

Soln:

Step 1:

The state diagram can be drawn as,

State table

Step 2:

A primitive flow table is constructed from the state table as,

Primitive flow table

Step 3:

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

Implication table

The squares that contain the check marks () define the compatible pairs:

(A, B) (A, C) (A, D) (A, E) (B, D) (C, E)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived

from the implication table. There are six straight lines connecting the dots, one for

each compatible pair. The lines form a geometrical pattern consisting of one triangle

connecting (A, B, D) & a line (C, E). The maximal compatibles are:

(A, B, D) (C, E)

Merger diagram

The reduced flow table is drawn as below.

Reduced flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B & D is replaced by A; E is replaced by C.

Transition table

5. Design a circuit with primary inputs A and B to give an output Z equal to 1 when A

becomes 1 if B is already 1. Once Z= 1 it will remain so until A goes to 0. Draw

the total state diagram, primitive flow table for designing this circuit.

Soln:

Step 1:

The state diagram can be drawn as,

Step 2:

State diagram

A primitive flow table is constructed from the state table as,

Primitive flow table

6. Design an asynchronous sequential circuit that has two inputs X2 and X1 and one

output Z. When X1= 0, the output Z is 0. The first change in X2 that occurs while X1

is 1 will cause output Z to be 1. The output Z will remain 1 until X1 returns to 0.

Soln:

Step 1:

Step 2:

Step 3:

The state diagram can be drawn as,

State diagram

A primitive flow table is constructed from the state table as,

Primitive flow table

The rows in the primitive flow table are merged by obtaining all compatible

pairs of states. This is done by means of the implication table.

Implication table

The squares that contain the check marks () define the compatible pairs:

(A, B) (A, C) (C, E) (D, F)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived

from the implication table. There are four straight lines connecting the dots, one for

each compatible pair. It consists of four lines (A, B), (A, C), (C, E) and (D, F).

The maximal compatibles are:

Merger diagram

(A, B) (C, E) (D, F)

This set of maximal compatible covers all the original states resulting in the reduced

flow table.

The reduced flow table is drawn as below.

Flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B is replaced by A; E is replaced by C and F is replaced by D.

Step 5:

Reduced Flow table

Find the race-free binary assignment for the four stable states in the

reduced flow table. Assign A= S0, C= S1 and D= S2.

Now, if we assign S0= 00, S1 = 01 and S2 = 10, then we need one more state S3=

11 to prevent critical race during transition of S0 S1 or S2 S1. By introducing S3

the transitions S1 S2 and S2 S1 are routed through S4.

Thus after state assignment the flow table can be given as,

Flow table with state assignment

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

K- Map simplification:

Logic Diagram:

7. Obtain a primitive flow table for a circuit with two inputs x1 and x2 and

two outputs z1 and z2 that satisfies the following four conditions.

i. When x1x2 = 00, output z1z2 = 00.

ii. When x1= 1 and x2 changes from 0 to 1, the output z1z2 = 01.

iii. When x2= 1 and x1 changes from 0 to 1, the output z1z2 = 10.

iv. Otherwise the output does not change.

Soln:

The state diagram can be drawn as,

State diagram

Step 2: A primitive flow table is constructed from the state table as,

Primitive flow table

4.7 HAZARDS

Hazards are unwanted switching transients that may appear at the output of a

circuit because different paths exhibit different propagation delays.

Hazards occur in combinational circuits, where they may cause a temporary

false-output value. When this condition occurs in asynchronous sequential circuits, it

may result in a transition to a wrong stable state.

Hazards in Combinational Circuits:

A hazard is a condition where a single variable change produces a momentary

output change when no output change should occur.

Types of Hazards:

 Static hazard

 Dynamic hazard

4.7.1 Static Hazard

In digital systems, there are only two possible outputs, a ‘0’ or a ‘1’. The hazard

may produce a wrong ‘0’ or a wrong ‘1’. Based on these observations, there are three

types,

Static- 0 hazard,

 Static- 1 hazard,

Static- 0 hazard:

When the output of the circuit is to remain at 0, and a momentary 1 output is

possible during the transmission between the two inputs, then the hazard is called a

static 0-hazard.

Static- 1 hazard:

When the output of the circuit is to remain at 1, and a momentary 0 output is

possible during the transmission between the two inputs, then the hazard is called a

static 1-hazard.

The below circuit demonstrates the occurrence of a static 1-hazard. Assume

that all three inputs are initially equal to 1 i.e., X1X2X3= 111. This causes the output of

the gate 1 to be 1, that of gate 2 to be 0, and the output of the circuit to be equal to 1.

Now consider a change of X2 from 1 to 0 i.e., X1X2X3= 101. The output of gate 1 changes

to 0 and that of gate 2 changes to 1, leaving the output at 1. The output may

momentarily go to 0 if the propagation delay through the inverter is taken into

consideration.

The delay in the inverter may cause the output of gate 1 to change to 0 before

the output of gate 2 changes to 1. In that case, both inputs of gate 3 are momentarily

equal to 0, causing the output to go to 0 for the short interval of time that the input

signal from X2 is delayed while it is propagating through the inverter circuit.

Thus, a static 1-hazard exists during the transition between the input states

X1X2X3= 111 and X1X2X3= 101.

Circuit with static-1 hazard

Now consider the below network, and assume that the inverter has an

appreciably greater propagation delay time than the other gates. In this case there is

a static 0-hazard in the transition between the input states X1X2X3= 000 and X1X2X3=

010 since it is possible for a logic-1 signal to appear at both input terminals of the

AND gate for a short duration.

The delay in the inverter may cause the output of gate 1 to change to 1 before

the output of gate 2 changes to 0. In that case, both inputs of gate 3 are momentarily

equal to 0, causing the output to go to 1 for the short interval of time that the input

signal from X2 is delayed while it is propagating through the inverter circuit.

Thus, a static 0-hazard exists during the transition between the input states

X1X2X3= 000 and X1X2X3= 010.

Circuit with static-0 hazard

A hazard can be detected by inspection of the map of the particular circuit. To

illustrate, consider the map in the circuit with static 0-hazard, which is a plot of the

function implemented. The change in X2 from 1 to 0 moves the circuit from minterm

111 to minterm 101. The hazard exists because the change in input results in a

different product term covering the two minterrns.

Maps demonstrating a Hazard and its Removal

The minterm 111 is covered by the product term implemented in gate 1 and

minterm 101 is covered by the product term implemented in gate 2. Whenever the

circuit must move from one product term to another, there is a possibility of a

momentary interval when neither term is equal to 1, giving rise to an undesirable 0

output.

The remedy for eliminating a hazard is to enclose the two minterms in

question with another product term that overlaps both groupings. This situation is

shown in the map above, where the two terms that causes the hazard are combined into

one product term. The hazard- free circuit obtained by this combinational is shown below.

Hazard-free Circuit

The extra gate in the circuit generates the product term X1X4. The hazards in

combinational circuits can be removed by covering any two minterms that may

produce a hazard with a product term common to both. The removal of hazards

requires the addition of redundant gates to the circuit.

4.7.2 Dynamic Hazard

A dynamic hazard is defined as a transient change occurring three or more times

at an output terminal of a logic network when the output is supposed to change only

once during a transition between two input states differing in the valueof one variable.

Now consider the input states X1X2X3= 000 and X1X2X3= 100. For the first input

state, the steady state output is 0; while for the second input state, the steady state

output is 1. To facilitate the discussion of the transient behavior of this network,

assume there are no propagation delays through gates G3 and G5 and that the

propagation delays of the other three gates are such that G1 can switch faster than G2

and G2 can switch faster than G4.

Circuit with Dynamic hazard

When X1 changes from 0 to 1, the change propagates through gate G1 before

gate G2 with the net effect that the inputs to gate G3 are simultaneously 1 and the

network output changes from 0 to 1. Then, when X1 change propagates through gate

G2, the lower input to gate G3 becomes 0 and the network output changes back to 0.

Finally, when the X1= 1 signal propagates through gate G4, the lower input to gate

G5 becomes 1 and the network output again changes to 1. It is therefore seen that during

the change of X1 variable from 0 to 1 the output undergoes the sequence,

0 1 0 1, which results in three changes when it should have undergoneonly

a single change.

4.7.3 Essential Hazard

An essential hazard is caused by unequal delays along two or more paths that

originate from the same input. An excessive delay through an inverter circuit in

comparison to the delay associated with the feedback path may cause such a hazard.

Essential hazards elimination:

Essential hazards can be eliminated by adjusting the amount of delays in the

affected path. To avoid essential hazards, each feedback loop must be handled with

individual care to ensure that the delay in the feedback path is long enough compared

with delays of other signals that originate from the input terminals.

4.8 Design Of Hazard Free Circuits

1. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (1, 3, 6, 7, 13, 15)

Soln:

a) K-map Implementation and grouping

F=A’B’D+ A’BC+ ABD

b) Hazard- free realization

The first additional product term A’CD, overlapping two groups (group 1 &

2) and the second additional product term, BCD, overlapping the two groups

(group 2 & 3).

F=A’B’D+ A’BC+ ABD+ A’CD+ BCD

2. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 2, 6, 7, 8, 10, 12).

Soln:

a) K-map Implementation and grouping

F= B’D’+ A’BC+ AC’D’

b) Hazard- free realization

The additional product term, A’CD’ overlapping two groups (group 1 & 2) for

hazard free realization. Group 1 and 3 are already overlapped hence they do not

require additional minterm for grouping.

F= B’D’+ A’BC+ AC’D’+ A’CD’

3. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (1, 3, 4, 5, 6, 7, 9, 11, 15).

a) K-map Implementation and grouping

F= CD+ A’B+ B’D

b) Hazard- free realization

The additional product term, A’D overlapping two groups (group 2 & 3) for

hazard free realization. Group 1 and 2 are already overlapped hence they do not

require additional minterm for grouping.

F= CD+ A’B+ B’D+ A’D

4. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 2, 4, 5, 6, 7, 8, 10, 11, 15).

Soln:

a) K-map Implementation and grouping

F= B’D’+ A’B+ ACD

b) Hazard- free realization

F= B’D’+ A’B+ ACD+ A’C’D’+ BCD+ AB’C

5. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 1, 5, 6, 7, 9, 11).

a) K-map Implementation and grouping

F= AB’D+ A’BC+ A’BD+ A’B’C’

b) Hazard- free realization:

F= AB’D+ A’BC+ A’BD+ A’B’C’+ A’C’D+ B’C’D

UNIT V LOGIC FAMILIES AND
PROGRAMMABLE LOGIC DEVICES

5.1 INTRODUCTION

A memory unit is a collection of storage cells with associated circuits needed

to transfer information in and out of the device. The binary information is transferred for

storage and from which information is available when needed for processing. When data

processing takes place, information from the memory is transferred to selected registers

in the processing unit. Intermediate and final results obtained in the processing unit are

transferred back to be stored in memory.

5.2 Units of Binary Data: Bits, Bytes, Nibbles and Words

As a rule, memories store data in units that have from one to eight bits. The

smallest unit of binary data is the bit. In many applications, data are handled in an 8-

bit unit called a byte or in multiples of 8-bit units. The byte can be split into two 4-bit

units that are called nibbles. A complete unit of information is called a word and

generally consists of one or more bytes. Some memories store data in 9-bit groups; a

9-bit group consists of a byte plus a parity bit.

5.3 Basic Semiconductor Memory Array

Each storage element in a memory can retain either a 1 or a 0 and is called a cell.

Memories are made up of arrays of cells, as illustrated in Figure below using 64 cells as an

example. Each block in the memory array represents one storage cell, andits location can

be identified by specifying a row and a column.

A 64-cell memory array organized in three different ways

5.4 Memory Address and Capacity

The location of a unit of data in a memory array is called its address. For

example, in Figure (a), the address of a bit in the 3-dimensional array is specified by

the row and column. In Figure (b), the address of a byte is specified only by the row

in the 2-dimensional array. So, as you can see, the address depends on how the

memory is organized into units of data. Personal computers have random-access

memories organized in bytes. This means that the smallest group of bits that can be

addressed is eight.

Examples of memory address

The capacity of a memory is the total number of data units that can be stored.

For example, in the bit-organized memory array in Figure (a), the capacity is 64 bits.

In the byte-organized memory array in Figure (b), the capacity is 8 bytes, which is

also 64 bits. Computer memories typically have 256 MB (megabyte) or more of

internal memory.

5.5 Basic Memory Operations

Since a memory stores binary data, data must be put into the memory and data

must be copied from the memory when needed. The write operation puts data into a

specified address in the memory, and the read operation copies data out of a specified

address in the memory. The addressing operation, which is part of both thewrite and

the read operations, selects the specified memory address.

Data units go into the memory during a write operation and come out of the

memory during a read operation on a set of lines called the data bus. As indicated in

Figure, the data bus is bidirectional, which means that data can go in either

directional (into the memory or out of the memory).

Block diagram of memory operation

For a write or a read operation, an address is selected by placing a binary code

representing the desired address on a set of lines called the address bus. The address code

is decoded internally and the appropriate address is selected. The number oflines in the

address bus depends on the capacity of the memory. For example, a 15-bit address code

can select 32,768 locations (215) in the memory; a 16-bit address code can select 65,536

locations (216) in the memory and so on.

Downloaded from E4nggTree.com

In personal computers a 32-bit address bus can select 4,294,967,296 locations

(232), expressed as 4GB.

5.5.1 Write Operation

To store a byte of data in the memory, a code held in the address register is placed

on the address bus. Once the address code is on the bus, the address decoder decodes the

address and selects the specified location in the memory. The memory then gets a write

command, and the data byte held in the data register is placed on the data bus and stored

in the selected memory address, thus completing the write operation. When a new data

byte is written into a memory address, the current data byte stored at that address is

overwritten (replaced with a new data byte).

Illustration of the Write operation

5.5.2 Read Operation

A code held in the address register is placed on the address bus. Once the address

code is on the bus, the address decoder decodes the address and selects the specified

location in the memory. The memory then gets a read command, and a "copy" of the data

byte that is stored in the selected memory address is placed on the data bus and loaded

into the data register, thus completing the read operation. Whena data byte is read from

a memory address, it also remains stored at that address. This is called nondestructive

read.

Illustration of the Read operation

5.6 Classification of Memories

There are two types of memories that are used in digital systems:

Random-Access Memory (RAM),

Read-Only Memory (ROM).

RAM (random-access memory) is a type of memory in which all addresses are

accessible in an equal amount of time and can be selected in any order for a read or write

operation. All RAMs have both read and write capability. Because RAMs losestored data

when the power is turned off, they are volatile memories.

ROM (read-only memory) is a type of memory in which data are stored permanently

or semi permanently. Data can be read from a ROM, but there is no write operation

as in the RAM. The ROM, like the RAM, is a random-access memorybut the term RAM

traditionally means a random-access read/write memory. Because ROMs retain stored

data even if power is turned off, they are nonvolatile memories.

Classification of memories

5.6.1 RANDOM-ACCESS MEMORIES (RAMS)

RAMs are read/write memories in which data can be written into or read

from any selected address in any sequence. When a data unit is written into a given

address in the RAM, the data unit previously stored at that address is replaced by

the new data unit. When a data unit is read from a given address in the RAM, the

data unit remains stored and is not erased by the read operation. This

nondestructive read operation can be viewed as copying the content of an address

while leaving the content intact.

A RAM is typically used for short-term data storage because it cannot retain

stored data when power is turned off.

The two categories of RAM are the static RAM (SRAM) and the dynamic RAM

(DRAM). Static RAMs generally use flip-flops as storage elements and can therefore

store data indefinitely as long as dc power is applied. Dynamic RAMs use capacitors as

storage elements and cannot retain data very long without the capacitors being

recharged by a process called refreshing. Both SRAMs and DRAMs will lose stored

data when dc power is removed and, therefore, are classified as volatile memories.

Data can be read much faster from SRAMs than from DRAMs. However, DRAMs

can store much more data than SRAMs for a given physical size and cost because the

DRAM cell is much simpler, and more cells can be crammed into a givenchip area than

in the SRAM.

5.6.1.1 Static RAM (SRAM)

Storage Cell:

All static RAMs are characterized by flip-flop memory cells. As long as dc

power is applied to a static memory cell, it can retain a 1 or 0 state indefinitely. If

power is removed, the stored data bit is lost.

The cell is selected by an active level on the Select line and a data bit (l or 0) is

written into the cell by placing it on the Data in line. A data bit is read by taking it off

the Data out line.

Basic SRAM Organization:

Basic Static Memory Cell Array

The memory cells in a SRAM are organized in rows and columns. All the cells

in a row share the same Row Select line. Each set of Data in and Data out lines go to

each cell in a given column and are connected to a single data line that serves as both

an input and output (Data I/O) through the data input and data output buffers.

SRAM chips can be organized in single bits, nibbles (4 bits), bytes (8 bits), or

multiple bytes (16, 24, 32 bits, etc.). The memory cell array is arranged in 256 rows

and 128 columns, each with 8 bits as shown below. There are actually 215 = 32,768

addresses and each address contains 8 bits. The capacity of this example memory is

32,768 bytes (typically expressed as 32 Kbytes).

Memory array configuration

Operation:

The SRAM works as follows. First, the chip select, CS, must be LOW for the

memory to operate. Eight of the fifteen address lines are decoded by the row decoder

to select one of the 256 rows. Seven of the fifteen address lines are decoded by the

column decoder to select one of the 128 8-bit columns.

Memory block diagram

Read:

In the READ mode, the write enable input, WE‘ is HIGH and the output

enable, OE‗ is LOW. The input tri state buffers are disabled by gate G1, and the

column output tristate buffers are enabled by gate G2. Therefore, the eight data bits

from the selected address are routed through the column I/O to the data lines (I/O1

through I/O7), which are acting as data output lines.

Write:

In the WRITE mode, WE‘ is LOW and OE‘ is HIGH. The input buffers are

enabled by gate G1, and the output buffers are disabled by gate G2. Therefore the

eight input data bits on the data lines are routed through the input data control and

the column I/O to the selected address and stored.

Read and Write Cycles:

For the read cycle shown in part (a), a valid address code is applied to the

address lines for a specified time interval called the read cycle time, tWC. Next, the

chip select (CS) and the output enable (DE) inputs go LOW. One time interval after

the DE input goes LOW; a valid data byte from the selected address appears on the

data lines. This time interval is called the output enable access time, tGQ. Two other

access times for the read cycle are the address access time, tAQ, measured from the

beginning of a valid address to the appearance of valid data on the data lines and the

chip enable access time, tEQ, measured from the HIGH-to-LOW transition of CS to

the appearance of valid data on the data lines.

During each read cycle, one unit of data, a byte in this case is read from the

memory.

For the write cycle shown in Figure (b), a valid address code is applied to the

address lines for a specified time interval called the write cycle time, tWE . Next, the

chip select (CS) and the write enable (WE) in puts go LOW. The required time interval

from the beginning of a valid address until the WE input goes LOW is called the

address setup time, t s(A). The time that the WE input must be LOW is the write pulse

width. The time that the input WE must remain LOW after valid data are applied to

the data inputs is designated t WD; the time that the valid input data must remain on

the data lines after the WE input goes HIGH is the data hold time, t h(D).

During each write cycle, one unit of data is written into the memory.

5.6.2 READ- ONLY MEMORIES (ROMS)

A ROM contains permanently or semi-permanently stored data, which can be

read from the memory but either cannot be changed at all or cannot be changed

without specialization equipment. A ROM stores data that are used repeatedly in

system applications, such as tables, conversions, or programmed instructions for

system initialization and operation. ROMs retain stored data when the power is OFF

and are therefore nonvolatile memories.

The ROMs are classified as follows:

i. Masked ROM (ROM)

ii. Programmed ROM (PROM)

iii. Erasable PROM (EPROM)

iv. Electrically Erasable PROM (EEPROM)

5.6.2.1 Masked ROM

The mask ROM is usually referred to simply as a ROM. It is permanently

programmed during the manufacturing process to provide widely used standard

functions, such as popular conversions, or to provide user-specified functions. Once

the memory is programmed, it cannot be changed.

Most IC ROMs utilize the presence or absence of a transistor connection at a

row/column junction to represent a 1 or a 0. The presence of a connection from a

row line to the gate of a transistor represents a 1 at that location because when the

row line is taken HIGH; all transistors with a gate connection to that row line turn on

and connect the HIGH (1) to the associated column lines.

ROM Cells

At row/column junctions where there are no gate connections, the column lines

remain LOW (0) when the row is addressed.

5.6.2.2 PROM (Programmable Read-Only Memory)

The PROM (Programmable Read-only memory), comes from the manufacturer

unprogrammed and are custom programmed in the field to meet the user‘s needs.

A PROM uses some type of fusing process to store bits, in which a memory link

is burned open or left intact to represent a 0 or a 1. The fusing process is irreversible;

once a PROM is programmed, it cannot be changed.

The fusible links are manufactured into the PROM between the source of each

cell's transistor and its column line. In the programming process, a sufficient current

is injected through the fusible link to bum it open to create a stored O. The link is left

intact for a stored 1. All drains are commonly connected to VDD.

PROM array with fusible links

Three basic fuse technologies used in PROMs are metal links, silicon links,

and pn junctions. A brief description of each of these follows.

1. Metal links are made of a material such as nichrome. Each bit in the memory

array is represented by a separate link. During programming, the link is either

"blown" open or left intact. This is done basically by first addressing a given cell

and then forcing a sufficient amount of current through the link to cause it to open.

When the fuse is intact, the memory cell is configured as a logic 1 and when fuse is

blown (open circuit) the memory cell is logic 0.

2. Silicon links are formed by narrow, notched strips of polycrystalline silicon.

Programming of these fuses requires melting of the links by passing a sufficient

amount of current through them. This amount of current causes a high temperature

at the fuse location that oxidizes the silicon and forms insulation

around the now-open link.

3. Shorted junction, or avalanche-induced migration, technology consists basically

of two pn junctions arranged back-to-back. During programming, one of thediode

junctions is avalanched, and the resulting voltage and heat causealuminum ions

to migrate and short the junction. The remaining junction is then used as a

forward- biased diode to represent a data bit.

5.6.2.3 EPROM (Erasable Programmable ROM)

An EPROM is an erasable PROM. Unlike an ordinary PROM, an EPROM can be

reprogrammed if an existing program in the memory array is erased first.

An EPROM uses an NMOSFET array with an isolated-gate structure. The isolated

transistor gate has no electrical connections and can store an electrical charge for

indefinite periods of time. The data bits in this type of array are represented by the

presence or absence of a stored gate charge. Erasure of a data bitis a process that removes

the gate charge.

Two basic types of erasable PROMs are the ultraviolet erasable PROM (UV

EPROM) and the electrically erasable PROM (EEPROM).

 UV EPROM:

You can recognize the UV EPROM device by the transparent quartz lid on the

package, as shown in Figure below. The isolated gate in the FET of an ultraviolet

EPROM is "floating" within an oxide insulating material. The programming process

causes electrons to be removed from the floating gate. Erasure is done by exposure of

the memory array chip to high-intensity ultraviolet radiation through the quartz

window on top of the package.

The positive charge stored on the gate is neutralized after several minutes to an

hour of exposure time. In EPROM‘s, it is not possible to erase selective information,

when erased the entire information is lost. The chip can be reprogrammed.

It is ideally suited for product development, college laboratories, etc.

Ultraviolet Erasable PROM

During programming, address and datas are applied to address and data pins

of the EPROM. The program pulse is applied to the program input of the EPROM.

The program pulse duration is around 50msec and its amplitude depends on EPROM

IC. It is typically 11.5V to 25V.

In EPROM, it is possible to program any location at any time- either

individually, sequentially or at random.

5.6.2.4 EEPROM (Electrically Erasable PROM)

The EEPROM (Electrically Erasable PROM), also uses MOS circuitry. Data is

stored as charge or no charge on an insulating layer, which is made very thin (< 200Å).

Therefore a voltage as low as 20- 25V can be used to move charges across the thin

barrier in either direction for programming or erasing ROM.

An electrically erasable PROM can be both erased and programmed with

electrical pulses. Since it can be both electrically written into and electrically erased,

the EEPROM can be rapidly programmed and erased in-circuit for reprogramming.

It allows selective erasing at the register level rather than erasing all the

information, since the information can be changed by using electrical signals.

It has chip erase mode by which the entire chip can be erased in 10 msec.

Hence EEPROM‘s are most expensive.

Advantages of RAM:

1. Fast operating speed (< 150 nsec),

2. Low power dissipation (< 1mW),

3. Economy,

4. Compatibility,

5. Non-destructive read-out.

Advantages of ROM:

1. Ease and speed of design,

2. Faster than MSI devices (PLD and FPGA)

3. The program that generates the ROM contents can easily be structured to

handle unusual or undefined cases,

4. A ROM‘s function is easily modified just by changing the stored pattern,

usually without changing any external connections,

5. More economical.

Disadvantages of ROM:

1. For functions more than 20 inputs, a ROM based circuit is impractical

because of the limit on ROM sizes that are available.

2. For simple to moderately complex functions, ROM based circuit may be

costly: consume more power; run slower.

Comparison between RAM and ROM:

S.No RAM ROM

1
RAMs have both read and write

capability.
ROMs have only read operation.

2 RAMs are volatile memories. ROMs are non-volatile memories.

3
They lose stored data when the

power is turned OFF.

They retain stored data even if power is

turned off.

4
RAMs are available in both

bipolar and MOS technologies.

RAMs are available in both bipolar and

MOS technologies.

5 Types: SRAM, DRAM, EEPROM Types: PROM, EPROM.

Comparison between SRAM and DRAM:

S.No Static RAM Dynamic RAM

1 It contains less memory cells

per unit area.

It contains more memory cells per unit area.

2 Its access time is less, hence

faster memories.

Its access time is greater than static RAM

3 It consists of number of flip-

flops. Each flip-flop stores

one bit.

It stores the data as a charge on the capacitor.

It consists of MOSFET and capacitor for each

cell.

4 Refreshing circuitry is not

required.

Refreshing circuitry is required to maintain

the charge on the capacitors every time after

every few milliseconds. Extra hardware is

required to control refreshing.

5 Cost is more Cost is less.

Comparison of Types of Memories:

Memory

type
Non- Volatile High Density

One- Transistor

cell

In-system

writability

SRAM No No No Yes

DRAM No Yes Yes Yes

ROM Yes Yes Yes No

EPROM Yes Yes Yes No

EEPROM Yes No No Yes

5.8 PROGRAMMABLE LOGIC DEVICES:

5.8.1 INTRODUCTION:

A combinational PLD is an integrated circuit with programmable gates divided

into an AND array and an OR array to provide an AND-OR sum of product

implementation. The PLD‘s can be reprogrammed in few seconds and hence gives

more flexibility to experiment with designs. Reprogramming feature of PLDs also

makes it possible to accept changes/modifications in the previously design circuits.

The advantages of using programmable logic devices are:

1. Reduced space requirements.

2. Reduced power requirements.

3. Design security.

4. Compact circuitry.

5. Short design cycle.

6. Low development cost.

7. Higher switching speed.

8. Low production cost for large-quantity production.

According to architecture, complexity and flexibility in programming in PLD‘s are

classified as—

 PROMs : Programmable Read Only memories,

 PLAs : Programmable Logic Arrays,

 PAL : Programmable Logic Array,

 FPGA : Field Programmable Gate Arrays,

 CPLDs : Complex Programmable Logic Devices.

Programmable Arrays:

All PLDs consists of programmable arrays. A programmable array isessentially

a grid of conductors that form rows and columns with a fusible link at each cross

point. Arrays can be either fixed or programmable.

The OR Array:

It consists of an array of OR gates connected to a programmable matrix with

fusible links at each cross point of a row and column, as shown in the figure below.

The array can be programmed by blowing fuses to eliminate selected variables from

the output functions. For each input to an OR gate, only one fuse is left intact in order

to connect the desired variable to the gate input. Once the fuse is blown, it cannot be

reconnected.

Another method of programming a PLD is the antifuse, which is the opposite of the

fuse. Instead of a fusible link being broken or opened to program a variable, a

normally open contact is shorted by ―melting‖ the antifuse material to form a

connection.

An example of a basic programmable OR array

The AND Array:

This type of array consists of AND gates connected to a programmable matrix

with fusible links at each cross points, as shown in the figure below. Like the OR array,

the AND array can be programmed by blowing fuses to eliminate selected variables

from the output functions. For each input to an AND gate, only one fuse is left intact

in order to connect the desired variable to the gate input. Also, like the ORarray, the

AND array with fusible links or with antifuses is one-time programmable.

An example of a basic programmable AND array

5.8.2 Classification of PLDs

There are three major types of combinational PLDs and they differ in

the placement of the programmable connections in the AND-OR array. The

configuration of the three PLDs is shown below.

1. Programmable Read-Only Memory (PROM):

A PROM consists of a set of fixed (non-programmable) AND array

constructed

as a decoder and a programmable OR array. The programmable OR gates

implement the Boolean functions in sum of minterms.

(a) Programmable read- only memory (PROM)

2. Programmable Logic Array (PLA):

A PLA consists of a programmable AND array and a programmable OR

array.

The product terms in the AND array may be shared by any OR gate to provide

the required sum of product implementation.

The PLA is developed to overcome some of the limitations of the PROM. The

PLA is also called an FPLA (Field Programmable Logic Array) because the user in the

field, not the manufacturer, programs it.

Programmable Logic Array (PLA)

3. Programmable Array Logic (PAL):

The basic PAL consists of a programmable AND array and a fixed OR array.

The AND gates are programmed to provide the product terms for the Boolean

functions, which are logically summed in each OR gate.

It is developed to overcome certain disadvantages of the PLA, such as longer

delays due to the additional fusible links that result from using two programmable

arrays and more circuit complexity.

Programmable Array Logic (PAL)

Array logic Symbols:

PLDs have hundreds of gates interconnected through hundreds of

electronic fuses. It is sometimes convenient to draw the internal logic of such

device in a compact form referred to as array logic.

5.8.3 PROGRAMMABLE ROM:

PROMs are used for code conversions, generating bit patterns for characters

and as look-up tables for arithmetic functions.

As a PLD, PROM consists of a fixed AND-array and a programmable OR array.

The AND array is an n-to-2n decoder and the OR array is simply a collection of

programmable OR gates. The OR array is also called the memory array. The decoder

serves as a minterm generator. The n-variable minterms appear on the 2n lines at the

decoder output. The 2n outputs are connected to each of the ‗m‘ gates in the OR array

via programmable fusible links.

2n x m PROM

5.8.4 Implementation of Combinational Logic Circuit using PROM

1. Using PROM realize the following expression

F1 (A, B, C) = ∑m (0, 1, 3, 5, 7)

F2 (A, B, C) = ∑m (1, 2, 5, 6)

Step1: Truth table for the given function

A B C F1 F2

0 0 0 1 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 1

1 1 1 1 0

Step 2: PROM diagram

2. Design a combinational circuit using PROM. The circuit accepts 3-bit binary and

generates its equivalent Excess-3 code.

Step1: Truth table for the given function

B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 1 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 0 0

1 1 0 1 0 0 1

1 1 1 1 0 1 0

Step 2: PROM diagram

5.8.5 PROGRAMMABLE LOGIC ARRAY: (PLA)

The PLA is similar to the PROM in concept except that the PLA does not provide

full coding of the variables and does not generate all the minterms.

The decoder is replaced by an array of AND gates that can be programmed to

generate any product term of the input variables. The product term are then

connected to OR gates to provide the sum of products for the required Boolean

functions. The AND gates and OR gates inside the PLA are initially fabricated with

fuses among them. The specific boolean functions are implemented in sum of

products form by blowing the appropriate fuses and leaving the desired connections.

PLA block diagram

The block diagram of the PLA is shown above. It consists of ‗n‘ inputs, ‗m‘ outputs,

‗k‘ product terms and ‗m‘ sum terms. The product terms constitute a group of ‗k‘ AND

gates and the sum terms constitute a group of ‗m‘ OR gates. Fuses are inserted between all

‗n‘ inputs and their complement values to each of the AND gates. Fuses are also provided

between the outputs of the AND gate and the inputs of the OR gates.

Another set of fuses in the output inverters allow the output function to be generated

either in the AND-OR form or in the AND-OR-INVERT form. With the inverter fuse in place,

the inverter is bypassed, giving an AND-OR implementation. With the fuse blown, the inverter

becomes part of the circuit and the function is implemented in the AND-OR- INVERT form.

5.8.6 Implementation of Combinational Logic Circuit using PLA

1. Implement the combinational circuit with a PLA having 3 inputs, 4

product terms and 2 outputs for the functions.

F1 (A, B, C) = ∑m (0, 1, 2, 4)

F2 (A, B, C) = ∑m (0, 5, 6, 7)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 1 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

Downloaded from E30nggTree.com

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

Step 2: K-map Simplification

With this simplification, total number of product term is 6. But we require only 4

product terms. Therefore find out F1‘ and F2‘.

Now select, F1‘ and F2, the product terms are AC, AB, BC and A‘B‘C‘

Step 3: PLA Program table:

Product

term

Input
s

Outputs

A B C F1 (C) F2 (T)

AB 1 1 1 - 1 1

AC 2 1 - 1 1 1

BC 3 - 1 1 1 -

A‘B‘C‘ 4 0 0 0 - 1

In the PLA program table, first column lists the product terms numerically as

1, 2, 3, and 5. The second column (Inputs) specifies the required paths between the

AND gates and the inputs. For each product term, the inputs are marked with 1, 0,

or - (dash). If a variable in the product form appears in its normal form, the

corresponding input variable is marked with a 1. If it appears complemented, the

corresponding input variable is marked with a 0. If the variable is absent in the

product term, it is marked with a dash (-). The third column (output) specifies the

path between the AND gates and the OR gates. The output variables are marked with

1‘s for all those product terms that formulate the required function.

Step 4: PLA Diagram

The PLA diagram uses the array logic symbols for complex symbols. Each input

and its complement is connected to the inputs of each AND gate as indicatedby the

intersections between the vertical and horizontal lines. The output of the AND gate are

connected to the inputs of each OR gate. The output of the OR gate goes toan EX-OR gate

where the other input can be programmed to receive a signal equal to either logic 1 or 0.

The output is inverted when the EX-OR input is connected to 1 ie., (x 1= x’).

The output does not change when the EX-OR input is connected to 0 ie., (x 0= x).

2. Implement the combinational circuit with a PLA having 3 inputs, 4

product terms and 2 outputs for the functions.

F1 (A, B, C) = ∑m (3, 5, 6, 7)

F2 (A, B, C) = ∑m (0, 2, 4, 7)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Step 2: K-map Simplification

With this simplification, total number of product term is 6. But we require only 4

product terms. Therefore find out F1‘ and F2‘.

Now select, F1‘ and F2, the product terms are B’C’, A’C’, A’B’ and

ABC. Step 3: PLA Program table

Product

term

Input
s

Outputs

A B C F1 (C) F2 (T)

B‘C‘

A‘C‘

A‘B‘

ABC

1 - 0 0 1 1

2 0 - 0 1 1

3 0 0 - 1 -

4 1 1 1 - 1

Step 4: PLA Diagram

3. Implement the following functions using PLA.

F1 (A, B, C) = ∑m (1, 2, 4, 6)

F2 (A, B, C) = ∑m (0, 1, 6, 7)

F3 (A, B, C) = ∑m (2, 6)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2 F3

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 1 0 1

0 1 1 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 0 1 0

Step 2: K-map Simplification

Downloaded from E35nggTree.com

Step 3: PLA Program table

Product

term

 Input
s

Outputs

 A B C F1 (T) F2 (T) F3 (T)

A‘B‘C

AC‘

BC‘

A‘B‘

AB

1 0 0 1 1 - -

2 1 - 0 1 - -

3 - 1 0 1 - 1

4 0 0 - - 1 -

5 1 1 - - 1 -

Step 4: PLA Diagram

4. A combinational circuit is designed by the function

F1 (A, B, C) = ∑m (3, 5, 7)

F2 (A, B, C) = ∑m (4, 5, 7)

www.Poriyaan.in
5.36

EnggTree.com
Programmable Logic Devices, Memory

Downloaded from E36nggTree.com

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Step 2: K-map Simplification

Step 3: PLA Program table

Product

term

Input
s

Outputs

A B C F1 (C) F2 (T)

AC

BC

AB‘

1 1 - 1 1 1

2 - 1 1 1 -

3 1 0 - - 1

Step 4: PLA Diagram

http://www.poriyaan.in/

5. A combinational circuit is defined by the

functions, F1 (A, B, C) = ∑m (1, 3, 5)

F2 (A, B, C) = ∑m (5, 6, 7)

Implement the circuit with a PLA having 3 inputs, 3 product terms and 2

outputs.

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 1

1 1 1 0 1

Step 2: K-map Simplification

With this simplification, total number of product term is 5. But we require only 3

product terms. Therefore find out F1‘ and F2‘.

Now select, F1‘ and F2, the product terms are AC, AB and C’.

Step 3: PLA Program table

Product

term

Input
s Outputs

A B C F1 (C) F2 (T)

AB

C‘

AC

1 1 1 - 1 1

2 - - 0 1 -

3 1 - 1 - 1

Step 4: PLA Diagram

Downloaded from E39nggTree.com

6. A combinational circuit is defined by the

functions, F1 (A, B, C) = ∑m (0, 1, 3, 4)

F2 (A, B, C) = ∑m (1, 2, 3, 4, 5)

Implement the circuit with a PLA having 3 inputs, 4 product terms and 2

outputs.

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 1 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 1

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 0 0

Step 2: K-map Simplification

The product terms are B’C’, A’C, AB’ and A’B.

Step 3: PLA Program table

Product
term

Input
s Outputs

A B C F1 (T) F2 (T)

B‘C‘

A‘C

AB‘
A‘B

1 - 0 0 1 -

2 0 - 1 1 1

3 1 0 - - 1

4 0 1 - - 1

Step 4: PLA Diagram

7. A combinational logic circuit is defined by the function,

F (A, B, C, D) = ∑m (3, 4, 5, 7, 10, 14, 15)

G (A, B, C, D) = ∑m (1, 5, 7, 11, 15)

Implement the circuit with a PLA having 4 inputs, 6 product terms and 2 outputs.

Solution:

Step 1: Truth table for the given functions

A B C D F G

0 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 0 1 1 1

0 1 1 0 0 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 1 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 1 0

1 1 1 1 1 1

Step 2: K-map Simplification

The product terms are A‘BC‘, A‘CD, BCD, ACD‘, A‘C‘D, ACD

Step 3: PLA Program table

 Product
term

 Inputs Outputs

A B C D F (T) G (T)

A‘BC‘

A‘CD

BCD
ACD‘

A‘C‘D

ACD

1 0 1 0 - 1 -

2 0 - 1 1 1 -

3 - 1 1 1 1 1

4 1 - 1 0 1 -

5 0 - 0 1 - 1

6 1 - 1 1 - 1

Step 4: PLA Diagram

8. Design a BCD to Excess-3 code converter and implement using suitable PLA.

Solution:

Step 1: Truth table of BCD to Excess-3 converter is shown below,

Decimal
BCD code Excess-3 code

 B3 B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

Step 2: K-map Simplification

The product terms are B3, B2B0, B2B1, B2B1’B0’, B2’B0, B2’B1, B1’B0’, B1B0, B0’

Downloaded from E44nggTree.com

Step 3: PLA Program table

 Product

terms

 Inputs Outputs

 B3 B2 B1 B0 E3 (T) E2 (T) E1 (T) E0 (T)

B3

B2B0

B2B1

B2B1‘B0‘

B2‘B0

B2‘B1

B1‘B0‘

B1B0

B0‘

1 1 - - - 1 - - -

2 - 1 - 1 1 - - -

3 - 1 1 - 1 - - -

4 - 1 0 0 - 1 - -

5 - 0 - 1 - 1 - -

6 - 0 1 - - 1 - -

7 - - 0 0 - - 1 -

8 - - 1 1 - - 1 -

9 - - - 0 - - - 1

Step 4: PLA Diagram

Comparison between PROM, PLA, and PAL:

S.No PROM PLA PAL

1

AND array is fixed

and OR array is

programmable

Both AND and OR

arrays are

programmable

OR array is fixed and

AND array is

programmable

2
Cheaper and simpler

to use
Costliest and complex Cheaper and simpler

3

All minterms are

decoded

AND array can be

programmed to get

desired minterms

AND array can be

programmed to get

desired minterms

 Only Boolean
Any Boolean

functions in SOP form

can be implemented

using PLA

 functions in standard Any Boolean functions

4 SOP form can be in SOP form can be

 implemented using implemented using PLA

 PROM

5. DIGITAL LOGIC FAMEInLgIgETSre

 Integrated circuits

Integrated Circuits are used for producing several different circuit configurations and

production technologies. The semiconductor chip consists of electronic components

used for constructing circuits. Integrated circuits are classified into

 Linear Integrated Circuits

 Digital Integrated Circuits

Both operate with continuous and discrete signals respectively and are used to

construct various electronic circuits.

There are different levels of Integration, based on the number of logic gates in a

single IC package.

 Small scale Integration (SSI)

These IC‟s contain fewer logic gates (0 to 10).The input and output pins can be

directly connected to the pins in the package.

 Medium Scale Integration (MSI)

These IC‟s have approximately around 10 to 1000 gates in one package, which

performs some specific functions.

(Ex: adders, multiplexers)

 Large Scale Integration (LSI)

These IC‟s contain thousands of gates in a single package.

(Ex: processors, memory chips and programmable logic devices)

 Very Large Scale Integrated Devices (VLSI)

These IC‟s contain hundreds of thousands of gates in a single package.

(Ex: memory arrays, computer chips)

agation Delay (or) Operating Speed:

ation delay is defined as the time taken by the output of a gate to re

s inputs have changed.

ation delay shown in the diagram has two propagation delay times

 Classification of Logic Families

Based on the circuit technology digital IC‟s are classified into various types

 RTL (Resistor Transistor Logic)

 DTL (Diode Transistor Logic)

 TTL (Transistor Transistor Logic)

 ECL (Emitter Coupled Logic)

 MOS (Metal Oxide Semiconductor Logic)

 Characteristics of Logic Families

The following are the important characteristics of digital IC‟s

 Propagation Delay (or) Operating Speed

 Voltage and Current parameters

 Power Dissipation

 Fan-in

 Fan-out

 Noise Margin

 Operating Temperature

 Power Supply Requirements

 Prop

Propag spond

when it

Propag

tPLH : Propagation delay time from low level(0) to high level(1)

tPHL : Propagation delay time from high level(1) to low level(0)

The delay in output is a measure of relative speed of logic circuits.

Average propagation delay PD avg = (tPLH + tPHL)/2

 Voltage and Current Parameters:

Digital logic gates have a certain range of voltage and current levels

corresponding to 0(low level)) and 1(high level)

 Voltage and current levels:

High level input voltage and current: The minimum input voltage recognised as logic

1(high level) by the logic gates (2V – 3V range) and the corresponding current is high

level input current.

Low level input voltage and current: The maximum input voltage recognised as logic

0(low level) by the logic gates (around 0.8V) and the corresponding current is low

level input current.

High level output voltage and current: The minimum voltage available at the output

corresponding to logic 1 and the corresponding current is high level output current.

Low level output voltage and current: The minimum voltage available at the output

corresponding to logic 0 and the corresponding current is low level output current.

 Power Dissipation:

Power dissipation is the measure of power consumed by the logic gate

when fully driven by all its inputs. It is expressed in milliwatts or nanowatts.

Average power dissipation Pdc avg =Vcc x Iavg

Vcc - DC supply voltage

Iavg – Average current taken from the supply

 Fan-in:

Fan-in is the number of inputs available in a gate

 Fan-out:

Fan-out is the number of similar logic gates that the output of a gate can drive

without affecting the normal operation.

 Noise Margin:

Noise margin is the maximum external noise voltage added to the input signal that

does not cause any undesirable change in the circuit operation.

 Operating Temperature:

All integrated circuits are semiconductor devices sensitive to temperature

 Operating range

 0ºC to +70º for consumer applications

 -55º to +125ºC for military applications

 Power Supply Requirements:

The amount of power required by the IC.

5.1 RESISTOR TRANSISTOR LOGIC (RTL)

 The following diagram shows the Resistor Transistor Logic (RTL) of NOR logic

function.

 Basic diagram of RTL NOR consists of transistor and resistors.

Here it is three input NOR gates logic diagram using RTL [i.e., A, B, C].

This follows the NOR gates truth table in its operation. i.e., whenever any one of the

input is “HIGH” then it produce low output (or) all inputs are low, it produces “Low”

output. This is similar to NOR logic truth table shown below.

 Operation:

When all inputs are zero (or) low, then output Q= 0.

Since, all these transistors Q1, Q2, Q3 are in OFF condition; its collector output is

high.

When any one of the input is high (ort all inputs are high, then its corresponding

transistor is going to ON condition. Also, it is connected with ground and collector

potential which is approximately zero.

Anyhow, the base current is practically independent of the emitter junction

characteristic. When the resistors increase the input resistance and reduce the

switching speed of the circuit. This reduces the rise and fall times of any input pulse.

In practice, this approach to increase the speed of an RTL is to connect a capacitor

called a speed-up capacitor which is parallel to resistance connected in base.

 Operation Table

 Drawbacks:

In this logic family, some disadvantages are there, they are:

(i) It reduces current-hogging by load transistors, which is purely because of

mismatch of junction voltages. Hence it permits large fan-out.

(ii) One more problem is that load transistor in a RTL gate are driven heavily into

saturation. Hence it results in long-turn-off delays.

 Characteristics of RTL Family

1. Speed of operation is low, i.e., Propagation delay is of the order 500 ns. Hence it

cannot operate the system speed above 4 MHz.

2. For switching delay of 50 ns, the fan-in is 4 (or) 5 and fan-out is 4.

3. Because of Base resistor in transistor, the power dissipation is more. This can be

reduced by introducing DCTL (Direct coupled transistor logic).

4. It is highly sensitive to temperature.

5. Poor in nose immunity

5.2 DIODE TRANSISTOR LOGIC (DTL)

This DTL logic family reduces the problem of decreasing output voltage with

increasing load.

The following diagram shows the DTL NAND logic circuit using diode and transistor.

 A and B are the inputs.

 D1 D2 forms AND equivalent circuit and transistor (Q) acts as a inverter. Therefore,

the combinations of AND and NOT gates forms a logical NAND circuit hence it

follows the following NAND truth table.

 Operation:

As per the above circuit diagram, the operation is as follows:

When A = B = 1

Diodes D1 D2 are in reverse biased conditions [i.e., acts as open circuit].

Therefore D3 conduct. Hence the transistor base gets current flow and which is turned

ON.

Q output in low cut-off

When A = B = 0 (or) A = 0 and B = * (0 or 1)

When all inputs are zero, the D1 and D2 is in ON condition. Hence there is no input

current to base of the transistor. Q, hence it is in OFF condition. Thereby the output

in collector terminal of transistor Q is high, called saturated state.

Similarly if any one of the input is low (0) that makes the above operation. So output

is high (1)

Therefore, the final expression is Y = (A.B)‟ Then above operation is tabulated by

using functional operation table

 Operation table

 Characteristics of DTL Family

 Propagation Delay:

The turn-off delay is considerably more than the turn-on-delay. Hence propagation

delay is 25 ns.

 Fan-in and Fan-out.

Fan-in is less than 8.

Fan-out is high i.e., upto 8.

 Noise immunity:

Noise margin is high. This is due to the additional diodes.

 Anyhow, whatever the drawbacks, can be reduced (or) improved in TTL family.

5.3 TRANSISTOR TRANSISTOR LOGIC (TTL)

The speed limitation of DTL is overcome by TTL family. It is the commonly used

saturating family and hence operating speed is high.

Basic gate for TTL logic is NAND gate

ent for Q1

 2-Input TTL NAND Gate

 The figure shows the circuit diagram of 2-input NAND gate. Its input structure

consists of multiple-emitter transistor and output structure consists of totem-pole

output. Here, Q1 is an NPN transistor having two emitters, one for each input to

the gate. Although this circuit looks complex, we can simplify its analysis by using

the diode equivalent of the multiple-emitter transistor Q1, as shown in figure.

Diodes D2 and D3 represent the two E-B junctions of Q1 an d4 is the collector- base

(C-B) junction.

 Diode equival

 The input voltages A and B are either LOW (ideally grounded) or HIGH (ideally + 5

volts). If either A or B or both are low, the corresponding diode conducts and the

base of Q1 is pulled down to approximately 0.7 V. This reduces the base voltage of

Q2 to almost zero. Therefore, Q2 cuts off. With Q2 open, Q4 goes into cut-off and

the Q3 base is pulled HIGH. Since Q3 acts as an emitter follower, the Y output is

pulled up to a HIGH voltage. On the other hand, when A and B both are HIGH, the

emitter diode of Q1 are reversed biased making them off. This causes the collector

diode D4 to go into forward conduction. This forces Q2 base to go HIGH. In turn,

Q4 goes into saturation producing a low output.

 Without diode D1 in the circuit, Q3 will conduct slightly when the output is low. To

prevent this diode is used; its voltage keeps the base-emitter diode of Q3 revere

biased only Q4 conducts when output is low.

 3-input TTL NAND Gate

 The figure shows the three input TTL NAND gate. The operation of three input TTL

NAND is same as that of two output TTL NAND gate except that is Q1 (NPN)

transistor has three emitters instead of two. For three input NAND gate if all the

inputs are logic 1 then and then only output is logic 0; otherwise output is logic 1.

The operation is similar to the 2-input NAND gate. The table show the truth table

for 3-input NAND gate.

 Totem-Pole Output

 The figure shows a highlighted output configuration.

 Transistor Q3 and Q4 form a totem-pole. Such a configuration is known as active

pull-up or totem pole output.

 The active pull-up formed by Q3 and Q4 has specific advantage.

 Totem-pole transistors are used because they produce LOW output impedance

 Either Q3 acts as a emitter follower (HIGH output) or Q4 is saturated (LOW output)

 When Q3 is conducting, the output impedance is approximately 70Ω; when Q4 is

saturated, the output impedance is only 12Ω.

 Either way, the output impedance is low. This means that the output voltage can

change quickly from one state to the other because any stray output capacitance is

rapidly charged or discharged through the low output impedance. Thus the

propagation delay is low in totem-pole TTL logic.

 Open-Collector Output

 One problem with totem pole output is that two outputs cannot be tied together.

See the figure, where the totem pole outputs of two separate gates are connected

together at point X. Suppose that the output of gate A is high (Q3A ON and Q4A

OFF) and the output of gate B is low (Q3B OFF and Q4B ON). In this situation

transistor Q4B acts as a load for Q3A. Since Q4B is a low resistance load, it draws

high current around 55 mA. This current might not damage Q3A or Q4B

immediately, but over a period of time can cause overheating and deterioration in

performance and eventual device failure.

 Some TTL devices provide another type of output called open collector output. The

outputs of two difference gates with open collector output can be tied together.

This known as wired logic. Figure shows a 2-input NAND gate with an open-collector

output eliminates the pull-up transistor Q3, D1 and R4. The output is taken from

the open collector terminal of transistor Q4.

 Because the collector of Q4 is open, a gate like this will not work properly until you connect

an external pull-up resistor, as shown in fig. When Q4 is ON, output is low and when Q4

is OFF output is tied to VCC through an external pull up resistor.

 Comparison between Totem-Pole and Open-Collector Outputs

Totem-pole Open collector

Output stage consists of pull-up transistor

(Q3), diode resistor and pull-down

transistor (Q4)

Output stage consists of only pull-down

transistor.

External pull-up resistor is not required. External pull-up resistor is required for

proper operation of gate.

Output of two gates cannot be tied

together.

Output of two gates can be tied together

using wired AND technique.

Operating speed is high. Operating speed is low.

 Table summarizes the difference between totem-pole and open collector outputs.

 Tri-Slate TTL Inverter

 The tristate configuration is a third type of TTL output configuration. It utilizes the high-

speed operation of the totem-pole arrangement while permitting outputs to be wired-

ANDed (connected together). It is called tristate TTL because it allows three possible output

stages: HIGH, LOW and high impedance. We know the transistor Q3 is ON when output is

HIGH and Q4 is ON when output is LOW. In the high impedance state both transistors,

transistors Q3 and Q4 in the totem-pole arrangement are turned OFF. As a result, the

output is open or floating, it is neither LOW nor HIGH.

 The figure shows the simplified circuit for tristate inverter. It has two inputs A and E.

A is the normal logic output whereas E is an ENABLE input. When ENABLE input is

HIGH, the circuit works as a normal inverter. Because when E is HIGH, the state of the

transistor Q1 (either ON or OFF) depends on the logic input A, and the additional

component diode is open circuited as its cathode is at logic HIGH. When ENABLE input is

LOW, regardless of the state of logic input A, the base-emitter junction of Q1 is forward

biased and as a result it turns ON. This shunts the current through R1 away from Q2

making it OFF. As Q2 is OFF, there is no sufficient drive for Q4 to conduct and hence Q4

turns off. The LOW at ENABLE input also forward-biases diode D2 which shunt the current

away from the base of Q3, making it OFF. In this way, when ENABLE input is LOW, both

transistors are OFF and output is at high impedance state. Fig shows the logic symbols for

tristate inverter. In above case circuit operation is enabled when ENABLE input is HIGH.

Therefore, ENBLE input is active high. The logic symbol for high enable input is shown in

figure. In some circuits ENABLE input can be active LOW, i.e. circuit operates when ENABLE

input is LOW. The logic symbol for active low ENABLE input is shown in the figure.

 The internal temperature – and voltage -compensated bias network supplies a

reference voltage (Bias voltage VBB = -1.3 V) to the differential amplifier. The best

noise immunity is obtained by connecting VCC to ground and VEE to -5.2 V.

5.4 ECL – Emitter coupled logic:

 Emitter Coupled Logic (ECL) is a non saturated digital logic family. It achieves the

propagation delay of 2ns. Its required high speed system operation. The output

provides both OR and NOR functions. Each input is connected to the base of

transistor. The two voltage levels are about -0.8 V for the high state and -1.8V for

the low state.

 The circuit consists of

 Differential amplifier

 Temperature – and voltage -compensated bias network

 Emitter follower

 The Emitter follower output requires a pull down resistor for current to flow. This is

obtained from the input resistor, Rp of other similar gates or from an external

resistor connected to a negative voltage supply.

 Working:

 If any of the input is high the corresponding input transistor is turned ON and

transistor Q3 is OFF.

 Ex: if VA = -0.8V, the transistor Q1 starts conducting, So the VBE(Q1) = 0.8V. Now

VE(Q1) = VA - VBE(Q1) = -0.8V – 0.8V = -1.6V

 Next to find the VBE(Q3). VBE(Q3) = VB(Q3) – VE(Q3) = -1.3 –(-1.6) =0.3V. Thus the

transistor Q3 is OFF. So the transistor Q1 is remains ON. The output voltage of the

transistor Q1 is low. So the input voltage of transistor Q6 is Low. Since the transistor

Q6 is a Emitter follower so the output of the transistor Q6 is also Low. This output

produce the NOR output of the circuit.

 The transistor Q3 is OFF. The output voltage of the transistor Q3 is high. So the

input voltage of transistor Q5 is high. Since the transistor Q5 is a Emitter follower

so the output of the transistor Q5 is also high. This output produce the OR output

of the circuit.

2. If both the inputs are low, transistors Q1 and Q2 are turned OFF and transistor

Q3 is ON.

 Ex: if VA = VB = -1.8V, the transistor Q1 and Q2 = OFF, the transistor Q3 is ON. So

the VBE(Q3) = 0.8V. Now VE(Q3) = VBB - VBE(Q1) = -1.3V – 0.8V = -2.1V

 Next to find the VBE(Q1) or VBE(Q2) . VBE(Q1) = VB(Q1) – VE(Q1) = -1.8 –(-2.1)

=0.3V. Thus the transistor Q1 is OFF. So the transistor Q3 is remains ON. The output

voltage of the transistor Q3 is low. So the input voltage of transistor Q3 is Low. Since

the transistor Q5 is a Emitter follower so the output of the transistor Q5 is also Low.

This output produce the OR output of the circuit.

 The transistor Q1 is OFF. The output voltage of the transistor Q1 is high. So the

input voltage of transistor Q6 is high. Since the transistor Q6 is a Emitter follower

so the output of the transistor Q6 is also high. This output produce the NOR output

of the circuit.

 Operation Table

5.5 CMOS Families

 Complementary MOS (CMOS) logic uses the MOSFET in complementary pairs as

its basic element.

 A complementary pair uses both p-channel and n-channel enhancement MOSFETs

 CMOS AS INVERTER

A Q1

PMOS

Q2

NMOS

Y

0 ON OFF 1

1 OFF ON 0

 CMOS AS NAND LOGIC

 When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off.

 The output is pulled HIGH through the on resistance of Q1 and Q2 in parallel.

 When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are

off.

A

(Q1 &

Q3)

B

(Q2 &

Q4)

Q1

PMOS

Q2

PMOS

Q3

NMOS

Q4

NMOS

Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

 The output is pulled HIGH through the low on resistance of Q1.

 When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are

on.

 The output is pulled HIGH through the low on resistance of Q2.

 When both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on.

 The output is pulled LOW through the on resistance of Q3 and Q4 in series to

ground.

 CMOS AS NOR LOGIC

 When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off.

 The output is pulled HIGH through the on resistance of Q1 and Q2 in series.

A

(Q1 &

Q3)

B

(Q2 &

Q4)

Q1

PMOS

Q2

PMOS

Q3

NMOS

Q4

NMOS

Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 0

1 0 OFF ON ON OFF 0

1 1 OFF OFF ON ON 0

 When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are

off.

 The output is pulled LOW through the low on resistance of Q4 to ground.

 When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are

on.

 The output is pulled LOW through the on resistance of Q3 to ground.

 When both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on. The

output is

 pulled LOW through the on resistance of Q3 and Q4 in parallel to ground.

	EC3352-DIGITAL SYSTEM DESIGN II YEAR – III SEMESTER – R2021
	Introduction:
	Boolean Functions:
	Minimization of Boolean Expressions:
	(A+ B) (A’+ C) (B+ C) = (A+ B) (A’+ C)]
	9. AB + (AC)' + AB’C (AB + C)
	[B’+B=1]

	Complement Of A Function:
	(A+B+C+D+…+F)’=A’B’C’D’…F’

	Canonical and Standard Forms:
	F (A, B, C) = AB’C+ ABC+ ABC’
	KARNAUGH MAP MINIMIZATION:
	Grouping cells for Simplification:
	Simplification of Sum of Products Expressions: (Minimal Sums)
	3. F=A’C+A’B+AB’C+BC
	F=C+A’B
	F=A’C+B’
	Y = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D + AB’C’D + A’B’CD’
	3. F= A’B’C’+ B’CD’+ A’BCD’+ AB’C’
	F= B’D’+ B’C’+ A’CD’.
	Y= AB+ AC+ AD’.
	Y= AB+ AC+ AD+BCD.
	Y = A’C’D+ A’BC+ ABD+ ACD.

	Simplification of Sum of Products Expressions: (Minimal Sums) (1)
	1. Y= (A+ B+ C’) (A+ B’+ C’) (A’+ B’+ C’) (A’+ B+ C) (A+ B+ C)
	Y’ = B’C’+ A’C+ BC.
	Y = (B+ C). (A+C’). (B’+ C’)
	Y’ = B’C’D’+ AB+ BC
	Y’ = A’B’D’+ A’B’C+ ABD+ AC’
	= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)
	Y’ = BD’+ CD+ AB
	= (B’+ D). (C’+ D’). (A’+ B’)

	Don’t care Conditions:
	Five- Variable Maps:
	F (A, B, C, D, E) = A’B’E’+ BE+ AD’E
	F (A, B, C, D, E) = C’D’E’+ A’B’CD’E+ A’B’CDE’+ AB’D’E’+ ABE+ BC’
	F (A, B, C, D, E) = B’C’D’+ A’D’E’+ BC’E’+ A’BC’D+ AC’D’+ AB’CE’
	F (A, B, C, D, E) = BCD’E’+ ABCE+ A’B’C’E’+ A’C’D’E+ A’B’CD

	Logic Gates

	UNIT II COMBINATIONAL LOGIC CIRCUITS:
	Arithmetic Circuits – Basic Building Blocks:

	Code Converters:
	Decoders:
	Application:
	Implementation of Boolean Function using MUX:
	3.2 Classification of Logic Circuits
	3.3.1 SR Latch:
	SR latch using NOR gates:
	Case 1: S= 0 and R= 0
	Case 2: S= 0 and R= 1
	Case 3: S= 1 and R= 0
	Case 4: S= 1 and R= 1
	SR latch using NAND gates:
	Gated SR Latch:

	3.3.2 D Latch

	3.5.1 S-R Flip-Flop
	3.5.2 J-K Flip-Flop:
	J=K=0
	J=0,K=1
	J=1,K=0
	J=K=0 (1)
	Characteristic table and Characteristic equation:
	Characteristic table and Characteristic equation: (1)

	3.5.4 T Flip-Flop
	Characteristic table and Characteristic equation:

	3.5.5 Master-Slave JK Flip-Flop
	3.6.1 SR Flip-Flop:
	3.6.2 JK Flip-Flop:
	3.6.3 D Flip-Flop
	3.6.4 T Flip-Flop
	3.7.2 SR Flip-Flop to JK Flip-Flop
	3.7.4 JK Flip-Flop to T Flip-Flop
	JK Flip-Flop to D Flip-Flop
	D Flip-Flop to T Flip-Flop
	T Flip-Flop to D Flip-Flop
	3.8.1 Moore model:

	3.8.2 Mealy model:

	3.8.3 Difference between Moore and Mealy model
	3.9.1 State Diagram
	State diagram is a pictorial representation of a behavior of a sequential circuit.

	3.9.2 State Table
	State table represents relationship between input, output and Flip-Flop states.

	3.9.4 Analysis Procedure
	3.9.5 Analysis of Mealy Model
	JA= B+ x JB= A’+ x’
	State table:
	DA= Ax+ Bx
	Y= (A+ B) x’.
	Soln:
	State Diagram:
	Soln: (1)
	State Table:
	State Diagram: (1)
	JA = Bx + B' y'
	z = Ax' y' + Bx' y'
	State diagram:
	State Equation:
	KA= Bx’
	Logic diagram:
	State table: (1)

	3.9.6 Analysis of Moore Model
	Soln:
	State table:
	TA= Bx TB= x
	Step 1: Determine the state table for given state diagram
	Step 2: Find equivalent states
	Soln: (1)
	Soln: (2)
	Soln: (3)

	3.11 Design of Synchronous Sequential Circuits:
	3.11.1 Design procedure:
	3.11.2 Excitation Tables:
	3.11.3 Problems
	State Table:
	State reduction:
	Excitation table:
	K-map Simplification:
	ii) Design using T Flip-Flops:
	iii) Design using SR Flip-Flops:
	K-map Simplification: (1)
	iii) Design using JK Flip-Flops:
	K-map Simplification: (2)
	Soln:
	Binary Assignment:
	Excitation Table:
	K-map Simplification: (3)
	State Table: (1)
	State Assignment:

	3.12 State Assignment:
	3.15.1 Rules for state assignments
	Rule 1:
	Rule 2:
	3.15.2 State Assignment Problem:

	3.14 SYNCHRONOUS COUNTERS
	3.14.1 2-Bit Synchronous Binary Counter
	3.14.2 3-Bit Synchronous Binary Counter
	3.14.3 4-Bit Synchronous Binary Counter
	3.14.4 4-Bit Synchronous Decade Counter: (BCD Counter):
	3.14.5 Synchronous UP/DOWN Counter
	J1= K1= (Q0.UP)+ (Q0’.DOWN)
	(ii) MOD 5 Counter:
	(iii) MOD 10 Counter:

	3.15.1 Serial-In Serial-Out Shift Register:
	3.15.2 Serial-In Parallel-Out Shift Register:
	3.15.3 Parallel-In Serial-Out Shift Register:
	3.15.4 Parallel-In Parallel-Out Shift Register:
	UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS
	Types:

	4.2 Analysis of Fundamental Mode Circuits
	4.2.1 Analysis procedure
	Y= x1x2+ (x1+x2) y Z= Y
	Soln:
	Transition table:
	Flow table:
	Soln: (1)
	Logic Diagram
	Transition table and Output map
	Primitive Flow table
	Y= x1x2’+ (x1+x2’) y Z= Y
	Soln: (2)
	Transition table: (1)
	Flow table: (1)
	Soln: (3)
	Transition table
	Flow table
	X= (Y1Z1’W2) x + (Y1’Z1W2’) S=X’
	Soln: (4)

	4.3 Analysis of Pulse Mode Circuits
	Soln:
	Non-critical races:
	4.5 CYCLES
	Step 5:
	Step 2: Merging of the flow table
	Step 3: Compatible pairs
	Step 4: Maximal compatibles
	Step 5: State Assignment and Transition table
	Transition Table and Output Map
	Logic Diagram:

	Soln:
	(A, B, D) (C, E, F) (A, F) (D, E)
	(A, B, D) (C, E, F)
	Soln: (1)
	Soln: (2)
	Soln: (3)
	(A, B) (C, E) (D, F)
	K- Map simplification:
	Soln: (4)
	4.7 HAZARDS
	Hazards in Combinational Circuits:
	Types of Hazards:

	4.7.1 Static Hazard
	Static- 0 hazard:
	Static- 1 hazard:
	When the output of the circuit is to remain at 1, and a momentary 0 output is possible during the transmission between the two inputs, then the hazard is called a static 1-hazard.

	4.7.3 Essential Hazard
	Essential hazards elimination:

	4.8 Design Of Hazard Free Circuits
	Soln:
	Soln: (1)
	Soln: (2)

	UNIT V LOGIC FAMILIES AND PROGRAMMABLE LOGIC DEVICES
	5.2 Units of Binary Data: Bits, Bytes, Nibbles and Words
	5.4 Memory Address and Capacity
	5.5 Basic Memory Operations
	5.5.1 Write Operation
	5.5.2 Read Operation

	5.6 Classification of Memories
	5.6.1.1 Static RAM (SRAM)
	Operation:
	Read:
	Write:
	Read and Write Cycles:

	5.6.2.2 PROM (Programmable Read-Only Memory)
	5.6.2.3 EPROM (Erasable Programmable ROM)
	 UV EPROM:

	5.6.2.4 EEPROM (Electrically Erasable PROM)
	Advantages of RAM:
	Advantages of ROM:
	Disadvantages of ROM:
	Comparison between RAM and ROM:
	Comparison of Types of Memories:
	Programmable Arrays:
	The OR Array:
	The AND Array:

	5.8.2 Classification of PLDs
	2. Programmable Logic Array (PLA):
	Array logic Symbols:
	1. Implement the combinational circuit with a PLA having 3 inputs, 4 product terms and 2 outputs for the functions.
	Solution:
	2. Implement the combinational circuit with a PLA having 3 inputs, 4 product terms and 2 outputs for the functions.
	Solution: (1)

	4. A combinational circuit is designed by the function F1 (A, B, C) = ∑m (3, 5, 7)
	8. Design a BCD to Excess-3 code converter and implement using suitable PLA.
	Comparison between PROM, PLA, and PAL:
	Integrated circuits
	Classification of Logic Families
	Characteristics of Logic Families
	5.1 RESISTOR TRANSISTOR LOGIC (RTL)
	5.2 DIODE TRANSISTOR LOGIC (DTL)
	5.3 TRANSISTOR TRANSISTOR LOGIC (TTL)

	5.4 ECL – Emitter coupled logic:
	5.5 CMOS Families
	CMOS AS NAND LOGIC
	CMOS AS NOR LOGIC

