LECTURE NOTES

EC3352-DIGITAL SYSTEM DESIGN
I YEAR - 11l SEMESTER —R2021
UNIT- 1 BASIC CONCEPTS

INTRODUCTION:

In 1854, George Boole, an English mathematician, proposed algebra for
symbolically representing problems in logic so that they may be analyzed mathematically.
The mathematical systems founded upon the work of Boole are called Boolean algebra in
his honor.

The application of a Boolean algebra to certain engineering problems was
introduced in 1938 by C.E. Shannon.

For the formal definition of Boolean algebra, we shall employ the
postulates formulated by E.V. Huntington in 1904.

Fundamental postulates of Boolean algebra:

The postulates of a mathematical system forms the basic assumption from
which it is possible to deduce the theorems, laws and properties of the system.

The most common postulates used to formulate various structures are—
1) Closure:

A set Sis closed w.r.t. a binary operator, if for every pair of elements of S, the
binary operator specifies a rule for obtaining a unique element of S.

The result of each operation with operator (+) or (.) is either 1 or 0 and 1, 0 €B.

ii) ldentity element:
A set S is said to have an identity element w.r.t a binary operation * on S, if

there exists an element e € S with the property,

eFx=x*e=xX

Eg: o+0=0 0+1=1+0=1 a) x+ 0=x
1.1=1 1.0=0.1=1 b) x.1=x

1il) Commutative law:
A binary operator * on a set S is said to be commutative if,

X*y=y*x forallx,y€ S

Eg: o+1=1+0=1 a) X+ y=y+x
0.1=1.0=0 b) x. y=y. x

iv) Distributive law:

If * and » are two binary operation on a set S, - is said to be distributive over +
whenever,

X.(yt2)=(x.y) + (x. 2)

Similarly, + is said to be distributive over « whenever,

X+ (y.2) = (x+y). (x+2)

v) Inverse:
A set S having the identity element e, w.r.t. binary operator * is said to have an
inverse, whenever for every x € S, there exists an element x’ € S such that,

X.x’€e

a)x+x =1,sinceo+0 =0+1and1+1'=1+0=1
b)x.x’=1,sinceo.0’=0.1and1.7=1.0=0

Summary:
Postulates of Boolean algebra:

POSTULATES (@) (b)
Postulate 2 (Identity) X+0=x Xx.1=x
Postulate 3 (Commutative) X+y=y+X X.Yy=VY.X
Postulate 4 (Distributive) X (y+ z) = xy+ xz X+yz = (x+y). (x+ 2)
Postulate 5 (Inverse) x+x’ =1 X.x’=0

Basic theorem and properties of Boolean algebra:

Basic Theorems:

The theorems, like the postulates are listed in pairs; each relation is the dual of
the one paired with it. The postulates are basic axioms of the algebraic structure and need
no proof. The theorems must be proven from the postulates. The proofs of the theorems
with one variable are presented below. At the right is listed the number of the postulate that

justifies each step of the proof.
1) a) X+ X =X

X+x=(xX+Xx).1

= (x+ x). (x+ X))

b

= X+ XX

=X+ 0

=X

b)x.x=x

XX=(xXx)+0

=(x.x)+(x.x)

=x(x+X)

=x (1)

=X
2)a)x+1=1
X+1=1.(x+1)

=(x+x). (x+1)

=x+X.1

=X+ X

=1

b)x.0=0

3) (x’)’ =X

by postulate 2(b) [x. 1 =x]
5() [x+x =1]
4(b) [x+yz = (x+y)(x+2)]
5(b)[x.X’=0]
2(a) [x+0 =x]

by postulate 2(a) [x+ 0 =x]
5(b) [x. X" = 0]
4(a) [x (y+2) = (xy)+ (x2)]
5@ [x+x =1]
2(b) [x1=x]

by postulate 2(b) [x. 1 =x]
5@) [x+x =1]
4(b) [x+yz = (x+y)(x+2)]
2(b) [x.1=x]
5(@) [x+x’=1]

From postulate 5, we have x+ X’ = 1 and x. X’ = 0, which defines the

complement of x. The complement of X’ is x and is also (x")’.

Therefore, since the complement is unique,

XY =x

4) Absorption Theorem:
a) X+ Xy =X

by postulate 2(b) [x.1=x]

4(a) [x (y+2) = (xy)+ (xz)]
by theorem 2(a) [x+1=x]
by postulate 2(a) [x.1=x]

X+ Xy = X. 1+ Xy
=X (1+y)
=x(1)
=X
b) X. (X+y)=x
X (X+y) =X. X+ X. y
=X+ Xy
=X

4(a) [x (y+2z) = (xy)+ (x2)]

C) X+ Xy =x+y

X+ Xy = X+ Xy+ Xy

=X+ Yy (X+ X) -----m-m---
=x+y (1)
=X+ Yy
d) x. (X'+y) = xy
X. (X+y) = XX+ Xy
= 0+ Xy

Properties of Boolean algebra:

1. Commutative property:

Boolean addition is commutative, given by

X+ Yy = y+ X

by theorem 1(b) [x. x =x]

by theorem 4(a) [x+ xy =x]
by theorem 4(a) [x+ xy = x]
by postulate 4(a) [x (y+z) = (xy)+ (xz)]

5(a) [x+x" =1]
2(b) [x. 1= x]

by postulate 4(a) [x (y+z) = (xy)+ (xz)]
5(b) [x.X=0]

2(a) [x+ 0= x]

According to this property, the order of the OR operation conducted on the

variables makes no difference.

Boolean algebra is also commutative over multiplication given by,

X. Yy =Y. X

This means that the order of the AND operation conducted on the variables makes

no difference.
2. Associative property:

The associative property of addition is given by,

A+ (B+C)=(A+B)+C

The OR operation of several variables results in the same, regardless of the grouping
of the variables.

The associative law of multiplication is given by,

A.(B.C)=(AB).C

It makes no difference in what order the variables are grouped during the AND
operation of several variables.

3. Distributive property:

The Boolean addition is distributive over Boolean multiplication, given by

A+ BC = (A+B) (A+C)

The Boolean addition is distributive over Boolean addition, given by

A. (B+C) = (A.B)+ (A.C)

4. Duality:

It states that every algebraic expression deducible from the postulates of
Boolean algebra remains valid if the operators and identity elements are interchanged.

If the dual of an algebraic expression is desired, we simply interchange OR
and AND operators and replace 1’s by 0’s and 0’s by 1’s.

x+x’=1lisx.x’=0
Duality is a very important property of Boolean algebra.

Summary:

Theorems of Boolean algebra:

THEOREMS (@) (b)
X+ X=X X. X=X
1 Idempotent r1=1 < 0=0
Involution (x’)’ =X
3 Absorption ik Anda x (xx y)_: s
X+ x’y = Xty X. (X’+Yy)=Xxy
4 | Associative X+(y+ 2)= (X+ y)+ z X (yz) = (xy) z
5 DeMorgan’s Theorem (xtyy=x’.y’ X. y)y=x’+y’

DeMorgan’s Theorems:

Two theorems that are an important part of Boolean algebra were proposed by
DeMorgan.

The first theorem states that the complement of a product is equal to the sum of
the complements.

(ABy = A+ B’

The second theorem states that the complement of a sum is equal to the product of
the complements.

(A+B) =A’. B’

Consensus Theorem:

In simplification of Boolean expression, an expression of the form AB+ A’C+ BC,
the term BCis redundant and can be eliminated to form the equivalent expression AB+ A’C.
The theorem used for this simplification is known as consensus theorem and is stated as,

AB+ A°’C+ BC = AB+ A’C

The dual form of consensus theorem is stated as,

(A+B) (A’+C) (B+C) = (A+B) (A’+C)

BOOLEAN FUNCTIONS:

Minimization of Boolean Expressions:

The Boolean expressions can be simplified by applying properties, laws

and theorems of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals:

1. x (x’+y)
= xx’+ Xy
=0+xy
= Xy

2. X+Xxy
=X+ Xy +x’y
=Xty (x+x’)
=x+y (1)
= X+y.

3. (x+y) (x+y’)
= XX+ xy’+ Xy+ yy’
= x+ xy’+ xy+ 0
=x(1+y+y)
=x(1)
=X.

4, xy+x’z+Yyz
=Xy +x’z + yz(X+ x°)
=Xy + X’z + Xyz + xX’yz
Re-arranging,
=Xy + Xyz + X’z +x’yz
=xy (1+ 2) + x’z (1+y)
= Xy+ X’z

5. Xy+yz+y’z
=xy+z(yt+y’)
=xy+z(1)
= Xy+ Z

[x.x’=0]
[x+0=x]

[x+xy=x]

[x+ x> =1]

[x.x=0]; [y.y’=0]

[1+y=1]

[x+x’=1]

[1+y=1]

[y+y =1]

6. (x+y) (xX’+2) (y+2)
= (x+y) (x’+2)

7. xX’y+Xxy+x’y’
=Y (X) + XY
=y(1)+xy
=y+ X’y’
=y+x’.

8. X+ xy’+Xxy
=X (1+ y)+ Xy
=x(1)+xy
=X+ X’y
= X+Y.

9. AB +(AC)' + AB’C (AB + C)

[dual form of consensus theorem,
(A+B) (A’+C) B+ C) = (A+B) (A’+C)]

[x (y+2)=xy+xz]
[x+x =1]
[x+ Xy’ =x+y’]

= AB + (AC)" + AAB'BC + AB'CC

= AB + (AC)' + 0+ AB'CC
= AB + (AC)' + AB'C
=AB+A'+C'+AB'C

= AB+A’+C'+AB'
= A'+ B+ C’+ AB’
Re- arranging,

10. (x’+y) (x+y)
= x’.x+ xX’y+ yx+ y.y

=y (x4 x+ 1)
:y_

11. xy+ xyz+ xy (w+ 2)
=xy (1+ z+ w+ 2)

[1+x=1]

[x+xXy=x+y]
[B.B' =0]
[C.C=1]
[(AC)' =A"+C1]
[C’+AB’C =C’ + AB’]
[A’+AB=A+B|

=A+AB+B+C' [A’+AB=A’+B|
=A'+B’+B+C' [B>+B=1]
= A'+1+C’ [A+ 1=1]

=0+ x’y+xy+y [xx’=0]; [X. x=X]

=y(1) [1+x=1]

12.

13.

14.

15.

16.

17.

=xy (1) [1+x=1]
= Xy.

Xy+ Xyz+ xyz’+ x’yz
=xy (1+ z+)+ xXyz
=xy (1) +x’yz [1+x=1]
= Xy+ xX’yz
=y (x+x’z) [x+x’y =x+Y]
=y (x+z).

Xyz+ xy’z+ xyz’
=Xy (z+ z’) + xy’z
= Xy+ xy’z [x+x’=1]
=X(y+y’z) [x+ Xy =x+V]
= X(y+ 2)
X,y,Z,+ X,yZ,+ Xy,Z,+ XyZ,
=7 (y+)+ X2 (7 +Y)
=x’2’+ xz’ [x+x’=1]
=z’ (x’+X)
=7 [x+x’=1]

wxyz’+ xyz’+ xy’z’+ xy’z
=xyz’ (W+ 1) + xy’z’+ xy’z
=xyz’+ xy’z’+ xy’z [1+x=1]
=x2’ (y+y’) +xy’z
=xz’+Xy’z [x+x’=1]
=X (z*+y’z)
=X (@Z+y). [x*+xy’ =x"+y’]

wWxy’z+ w’xyz+ WXz
=w’xz (y’+ y)+ wxz
=wxz (1)+ wxz [x+x’=1]
= wW’Xz+ WXz
= XZ (W+ W)
= Xz. [x+x’=1]

X,y’z’+ X’y’Z+ X’yZ’+ X,yZ+ Xy,Z,
=x’y’ (z’+z) + X’y (z’+2)+ xy’7’
=x"y’ (1) +x’y (1)+ xy’z’ [x+x’=1]
= X,y, + X,y + Xy,Z,
=X(yHy) Xy’

=x’ (1) +xy’z’
=x’+ Xy’Z’
=x’+ y’Z’-
18. wy (W’xz)’ + w’xy’z’ + wx’y

= W’y (W”+ X’+ Z’) + w,xy,z, + wx9y
=Wy (Wt X+ 2°) + wxy’z’ + wx’y
=wWyw+ wy xX’+ wyz’ + wxy’z’ + wx’y
=0+ W’X’y+ W’y 7’ + W,Xy’Z’ + WX’y

Re-arranging,
=wxy+ wx’y + wyz’ + wxy’z’
=X’y (WHw) + w2’ (y+ xy’)

=Xy (1) + W2’ (y+ xy)
= Xy WZ (y4%)

19. xy+ x (y+ 2) +y (y+ 2)
= xy+ xy+ XZ+ yy+ yz
= Xy+ Xz+y+yz
= Xy+ Xz+y

:y+ XZ

20. [xy’ (z+wy) +x’y’] Z
= [xy’z+ xy’wy+ x’y’]
=[xy’z+ 0+ x’y’] z
=xy’z. 2+ xX’y’z
=xy’z+ xX’y’z
=y’z (X+ x°)

=y'z(1)
=yz

21. X’yz+ xy’z’+ xX’y’z’+ xy’z+ Xyz
= yz (X’+x) + xy’2’+ X’y’2’+ xy’z
=yz (1) +y'z’ (x+x°) + xy’z
=yz+y'z’ (1) + xy’z
=yz+ y’z’+ xy’z
=yz+y’ (2’+ x2)

=yz+y 27+ X)
=y yr+xy’

22. [(xy)’+ x’+ xy]’
- [X,+ y9+ X,+ XY]’
=[x+y+xyP

10

[x+x’=1]

[x+xy = x+y]

[x? =X]

[x. x’= 0]

[x+x’=1]
[+ X'y =%+ Y]

[x+ x=X]; [X. Xx=X]

[x+xy=x]
[x+ xy=X]
[x. x’=0]
[X. x=X]

[x+x’=1]
[x+x’=1]
[x+x’=1]

[x+xy =x"+Y]

[x+ x=X]

= [xX+y+x] [x*+ Xy =x"+VY]
=[y+1p [x+x’=1]
=[1p [1+x=1]

=0.

23. [xy+ xz]’+ xX’y’z

= (xy)". (X2)'+ X'’z

= (X’+ y’). (X’+ Z’)+ X’y’z

- X,X’+ X’Z’+ X,y,+ y,z,+ X,y,Z

=x+ x’72°+ X’y’+ y’Z’+ X’y’Z[X+ X= X]
- X,+ X’Z’+ X,y,+ y, [Z,+ X,Z]
=X+ X2+ X’y +y’ [+ X°] [X+ Xy =x"+Y]
=x+x’y+y [27+x] [x+Xxy=X]
- X,+ X,y,+ y,z,+ X’y,

=x’+y’z’+ xy’ [x+xy =x]
=x+y’z’. [x+ xy = x]
24. xy+ xy’(x’z’)
= Xy+ xy, (X99+ Z”)
= Xy+xy’ (x+ 2) [x** =X]
= Xy+ Xy’x+ xy’z
= Xy+ xy’+ xy’z [X. x=X]
= xy+ xy” [1+ 2]
= xy+xy’ [1] [1+x=1]
= Xy+ xy’
=X(y+y’)
=x[1] [x+x’=1]
=X

25. [(xy’+ xyz)’+ X (y+ xy”)|’
= [x(y+yz)’+ x (y+ xy)I’
= [x(y’+z)’+ x (y+ x)]’ [X+ xy =x’+y]; [X+ X’y = x+ V]
= [x(y’+z)’+ xy+ x.x)]’
= [(xy’+xz)’+ Xy+ x)]” [X. X=X]
=[(xy’+xz)’+ x)]’ [x+ xy =X]
=[(xy’). (x2)’+x]’
= [(X+y”). (x+2°)+ x]’
=4y ()X X0 =x]

=[x+ yz)+xP [(x+y) (x+ 2)=x+y7]
=[x+ yz’+x]
=[1+yz’) [x+x’=1]
=[yp [1+x=1]

11

26. [(xy+) (Xt y)+2) I’
=[xyt 2) (. y) D) P
= [xy. X’y + xy. z+ 2. X’y’+ 2°. z)°
=[0+ xyz+ x’y’z’+ 0]’ [x. x’= 0]
= [xyz+ x'y'2 |
= (xyz)’. (Y2
- (X’+ y’+ Z’). (X”+ y’,+ Z”)
= (X4 y+2). (x+ Y+ 2). x”=x]

27. (x+y) (xX’2’+ z) (y’+ xz)’
= (x+y) X°2’+ 2) (y”. (x2)")
= (xty) (X’+2) (y. (x2)) [x+ Xy =x+y]; [x” =X]
= (xty) (xX*+2) (y. (x’+2))
= (x.x’+ xz+ xX’y+ yz) (xX’y+ yz°)
= (0+ xz+ X’y + yz) (X’y+ yz’)
= (xz+ xX’y+ yz) (X’y+ yz’)
= XZ. X’y+ Xz. yz’+ X’y. X’y+ X’y. yz’+ yz. X’y+ yz. yz’
0+ 0+ x’y+ x’yz’+ x’yz+ 0 [x. x’=0]; [X. x=X]
X’y+ x’yz’+ x’yz
X’y (1+ z’+ 2)
x’y (1) [1+x=1]
x’y.

28.Y=Ym (1,3,5,7)
=x’y’z+ xX’yz+ xy’z+ Xyz
= x’z(y’+y) + xz(y’+y)

=x’z (1)+xz (1) [x+x’=1]
=x"Z+ Xz

=z(x+ X)

=z(1) [x+x’=1]
=Z.

12

COMPLEMENT OF A FUNCTION:

The complement of a function F is F’ and is obtained from an interchange of 0’s for
1’s and 1’s for 0’s in the value of F. The complement of a function may be derived
algebraically through DeMorgan’s theorem.

DeMorgan’s theorems for any number of variables resemble in form the two-
variable case and can be derived by successive substitutions similar to the method used
in the preceding derivation. These theorems can be generalized as —

(A+B+C+D+...+F)’=A’B’C’D’...F’

(ABCD...F) =A+B’+ C’+ D’+... +F’.

Find the complement of the following functions,

1. F=xXyz’+xX’y’z
F=(Xyz+xyz)
=xX'+y+272").X+y'+2)
= (xX+y+2z). X+ y+ 7).

2. F=(xy +y’z + xz) x.

F =[xy +yz+ xz) x]’

=Xy +yz+xz)+X

= [(xy). (y'2). (x2)] +X

= [X+Y). (y+2). X+Z)] + X
[(Xy+ XZ+ 0+ y7Z) (X+2)] + X

= XXY+ XXZ+ XYZ+ XyZ+ XZZ+ Y77+ X

=Xy+ XZ+ XYZ+ XyZ+ XZ+VZ+ X [x+ x =x], [x. x =X]
=Xy+ X7+ X7 (Y+y) +yzZ+X [x+ x’=1]
=Xy+X7Z+ X7 (1) +yzZ+X

=Xy+XZ+yZ+X

=Xy+ X+ X7+ Y7

=X (y+1) + Xz+yZ [y+1=1]
=X (1+z) +y7Z [y+1=1]
- X’+ y’Z’

13

F=x (y'2+y2)

F’: [X (y’Z’+ yz)]’
=X+ (YZ'+ yz)
— X’+ (y’Z’)’. (yZ)’
=X+ +2"). ¥+ 72)
=x+ (y+2z). '+ 2).

F=xy’+ x’y
F= (xy'+ Xy
= (xy). Xy)
= (X'+y) (x+Y)
= XX+ XY+ yX+ yy
=Xy + Xy.

f=wx’y + xy’+ wxz
f = (Wx'y + xy'+ wxz)’
= (wxy)’ (xy)’ (wxz)
=(W+x+y) (X+y) W+ X'+ 7)
= (WX'+ Wy+ XX+ Xy+ XY+ yy) (W+ X'+ 2)
= (WX'+ Wy+ xy+ Xy) W+ X'+ Z)
=WX. WH+WY. WH+XY. W+ XY. W+ WX.X+WY. X+ Xy. X+ Xy . X +
WX.Z+WY.Z+ Xy. 2+ Xy .2
= WX+ WY+ WXy+ WXY+ WX+ WX+ 0 + XY+ WXZ+ WYZ+ XyZ'+ Xy'Z
= WX+ WY+ WXY+ WXV + WXY+ XY+ WXZ+ WYZ'+ XyzZ'+ XyZ
= WX (1+ yV+ y+ 2)+ Wy(1+ x+ 2)+ Xy (1+ 2)+ xyZ
= wx (1)+ wy()+ Xy (1)+ xyz
= WX+ WY+ XY+ XyZ

14

CANONICAL AND STANDARD FORMS:

Minterms and Maxterms:

A binary variable may appear either in its normal form (x) or in its complement form
(x). Now either two binary variables x and y combined with an AND operation. Since each

variable may appear in either form, there are four possible combinations:

Xy, Xy, xy and xy

Each of these four AND terms is called a ‘minterm’.

In a similar fashion, when two binary variables x and y combined with an

OR operation, there are four possible combinations:

X+y,X+y,x+y and x+y

Each of these four OR terms is called a ‘maxterm’.

The minterms and maxterms of a 3- variable function can be represented as

in table below.

Variables Minterms Maxterms

X y Z mi Mi

0 0 0 Xy'z =mo X+ y+ z= Mo

0 0 1 Xy'zZ =1 X+ y+2z'=M

0 1 0 Xyz = me X+y+z=M,

o) 1 1 X'yZ = ms X+ Y+ z'= M3
1 0 0 Xy'zZ = my X+ y+ z= My

1 0 1 Xy'Z = M5 X+ y+ 2= Ms
1 1 0 Xyz = meé X+ y'+ 2= Ms
1 1 1 XyzZ = my X+ y+72=My

Sum of Minterm: (Sum of Products)

The logical sum of two or more logical product terms is called sum of products

expression. It is logically an OR operation of AND operated variables such as:

1. Y=AB+ BC+ AC

Sum

‘ e l o
2. Y=AB+BC+ AC

Product terms

15

Sum of Maxterm: (Product of Sums)
A product of sums expression is a logical product of two or more logical sum

terms. It is basically an AND operation of OR operated variables such as,
1. Y=(A+B). (B+QC). (A+C)
Product

ey \ e
2. Y=(A+B). (B+Q). (A+C)
..t

Sum terms

Canonical Sum of product expression:

If each term in SOP form contains all the literals then the SOP is known as standard
(or) canonical SOP form. Each individual term in standard SOP form is called minterm
canonical form.

F (A, B, C) = AB’C+ ABC+ ABC’

Steps to convert general SOP to standard SOP form:

1. Find the missing literals in each product term if any.

2. AND each product term having missing literals by ORing the literal and
its complement.

3. Expand the term by applying distributive law and reorder the literals in
the product term.

4. Reduce the expression by omitting repeated product terms if any.

Obtain the canonical SOP form of the function:
1. Y(A,B)=A+B
=A.(B+ B)+ B (A+ A)
= AB+ AB’+ AB+ A’'B
= AB+ AB’+ A’B.
2. Y(A, B,C)=A+ ABC
= A. (B+ B’). (C+ C)+ ABC
= (AB+ AB’). (C+ C)+ ABC
= ABC+ ABC’+ AB’'C+ AB’C’+ ABC
= ABC+ ABC’+ AB'C+ ABC
= my+ M6+ Ms+ My

16

=>m (4,5, 6, 7).
3. Y(A,B,C)=A+BC

= A. (B+ B). (C+ C)+(A+ A"). BC

= (AB+ AB’). (C+ C)+ ABC+ A’BC

= ABC+ ABC’+ AB’C+ AB’C’+ ABC+ A’BC
ABC+ ABC’+ AB’C+ AB'C’+ A'BC
= my+ M6+ M5+ Mg+ M3

=>m (3, 4, 5, 6,7).

4. Y (A, B,C)=AC+ AB+ BC
= AC (B+ B’)+ AB (C+ C)+ BC (A+ A))
= ABC+ AB’C+ ABC+ ABC’+ ABC+ A’'BC
= ABC+ AB’C+ ABC’+ A’BC

=>m (3, 5, 6, 7).

5. Y(A, B,C,D) = AB+ ACD
= AB (C+ C) (D+ D) + ACD (B+ B)
= (ABC+ ABC’) (D+ D’) + ABCD+ AB'CD
= ABCD+ ABCD’+ ABC’D+ ABC’'D’+ ABCD+ AB’CD
= ABCD+ ABCD’+ ABC’'D+ ABC’'D’+ AB’CD.

Canonical Product of sum expression:

If each term in POS form contains all literals then the POS is known as standard (or)
Canonical POS form. Each individual term in standard POS form is called Maxterm
canonical form.

e F(A B, C)=(A+B+C).(A+ B+ C). (A+ B+ C)
e F(x,v,2)=x+y+2). X+ y+2z) (X+y+12)

Steps to convert general POS to standard POS form:

Find the missing literals in each sum term if any.

2. OR each sum term having missing literals by ANDing the literal and
its complement.

3. Expand the term by applying distributive law and reorder the literals in
the sum term.

4. Reduce the expression by omitting repeated sum terms if any.

17

Obtain the canonical POS expression of the functions:
1.Y=A+ BC
=(A+B) (A+ O [A+ BC = (A+B) (A+C)]
= (A+ B+ C.C) (A+ C+ B.B)
= (A+ B+C) (A+ B'+C) (A+ B+ C) (A+ B'+ C)
= (A+ B'+C). (A+ B'+C). (A+ B+ C)
= M2. M3. Mo
=[IM (o, 2, 3)

2. Y= (A+B) (B+C) (A+C)
= (A+B+ C.C’) (B+ C+ A.A’) (A+C+B.B’)
= (A+B+C) (A+B+C’) (A+B+C) (A’+B+C) (A+B+C) (A+B’+C)
= (A+B+C) (A+B+C’) (A’+B+C) (A+B’+C)
= Mo. Mi. M4. M2

=[IM (o, 1, 2, 4)

3.Y=A.(B+ C+ A)
= (A+ B.B+ C.C). (A+ B+ O
= (A+B+C) (A+B+C’) (A+B’+C) (A+ B'+C) (A+B+C)
= (A+B+C) (A+B+C’) (A+B’+C) (A+ B'+C)
= Mo. M1. M2. M3
=[IM (0,1, 2, 3)
4.Y= (A+B’) (B+C) (A+C’)
= (A+B’+C.C") (B+C+ A.A) (A+C'+ B.B)

= (A+B’+C) (A+B’+C) (A+B+C) (A’+B+C) (A+B+C) (A+B’+C))

= (A+B’+C) (A+B’+C") (A+B+C) (A’+B+C) (A+B+C")
= Ma. M3. Mo. M4. M1
=[IM(0,1,2,3,4)

5. Y=Xxy+ Xz
= (xy+ x') (xy+ z)Using distributive law, convert the function into OR terms.
= (x+x)) (y+x') (x+z) (y+2) [x+ x’=1]
= (X'+y) (x+2) (y+2)

= (X+y+ z.2) (x+z+y.y) (y+z+ x.X)

= X'+ y+ z) X+ y+ 2') (X+ v+ 2) (x+ ¥+ z) (x+ y+ 2) (X'+ y+ 7)

= (X+y+2z) X+y+2) xX+y+2z) (x+y+17)

18

= M. Ms. Mo.Ma
=[IM (o, 2, 4, 5).

KARNAUGH MAP MINIMIZATION:

The simplification of the functions using Boolean laws and theorems becomes
complex with the increase in the number of variables and terms. The map method, first
proposed by Veitch and slightly improvised by Karnaugh, provides a simple,
straightforward procedure for the simplification of Boolean functions. The method is called
Veitch diagram or Karnaugh map, which may be regarded as a pictorial representation of a
truth table.

The Karnaugh map technique provides a systematic method for simplifying and
manipulation of Boolean expressions. A K-map is a diagram made up of squares, with each
square representing one minterm of the function that is to be minimized. For n variables
on a Karnaugh map there are 2n numbers of squares. Each square or cell represents one of
the minterms. It can be drawn directly from either minterm (sum-of- products) or maxterm
(product-of-sums) Boolean expressions.

Two- Variable, Three Variable and Four Variable Maps

Karnaugh maps can be used for expressions with two, three, four and five variables.
The number of cells in a Karnaugh map is equal to the total number of possible input
variable combinations as is the number of rows in a truth table. For three variables, the
number of cells is 23 = 8. For four variables, the number of cells is 24 = 16.

" B BC
A B B & BC BC BC BEC
Al A A| AB | AB A| ABC | ABc | ABC | ABC
Al A A| AB | AB A| ABC | ABc | AaBCc | ABC
1-Variable map 2 -Variable map 3-Variable map
cD 3 B
AB cD CD CD cD
AB|ABCD|ABCD|ABCD|ABCD

ABCD|ABCD

x=l
o)
o=l
o)
Bl
wl|
a=|
a3
gl
o

ABCD|ABCD

S
s
e
w
Nl
lwll
e
(il
N
w)

ABCD|ABCD

J=
o]
X
|
Ml
lwll
J=
(L]
N
lw)

4 -Variable map

19

Product terms are assigned to the cells of a K-map by labeling each row and each
column of a map with a variable, with its complement or with a combination of variables &
complements. The below figure shows the way to label the rows & columns of a 1, 2, 3 and
4- variable maps and the product terms corresponding to each cell.

It is important to note that when we move from one cell to the next along any row
or from one cell to the next along any column, one and only one variable in the product
term changes (to a complement or to an uncomplemented form). Irrespective of number
of variables the labels along each row and column must conform to a single change. Hence
gray code is used to label the rows and columns of K-map as shown ow.

—» Graycode Sequence

B BEC
0 A 0 ik A 00 01 11 10
0 1o 0 1o 1 0 1o 111 ms me
A
1 | mu 1| me | ms 1| me | ms | mv | ms
1 -Variable map 2 -Variable map 3 -Variable map

cp —— Gray code Sequence
AB 00 01 d:1 10

Graycode (8]8] 10 m ms me
Sequence

o1 ma | ms my ms

11| muz | a3 | mus | muag

10| ms | me | mm1 | mue

4 Variable map

Grouping cells for Simplification:

The grouping is nothing but combining terms in adjacent cells. The simplification is
achieved by grouping adjacent 1’s or 0’s in groups of 2i, where i = 1, 2, ..., n and n is the
number of variables. When adjacent 1’s are grouped then we get result in the sum of product
form; otherwise we get result in the product of sum form.

20

Grouping Two Adjacent 1°s: (Pair)
In a Karnaugh map we can group two adjacent 1’s. The resultant group is called

Pair.
CD
AB 00 01 11 10
00
ol |0 [1)
13 \

<[T8

ABD

CD
AB 00 01 1 10

00 1

01 \
11 \
10 (ﬂ‘\

cD CD
AB 00 01 11 10 AB 00 01 11 10
00 00
o1 m 01 1! 0
11 1 11
10 10 \ /
BCD \S_
ABD
CD CD
AB 00 01 11 10 AB 00 01 11 10
00 00 Al
01 1 g i 01 \
11 1 11
&
10 \ 10 (l! 1 \
ABD BCD el BCD

Grouping Four Adjacent 1’s: (Quad)

Examples of Pairs

In a Karnaugh map we can group four adjacent 1’s. The resultant group is called
Quad. Fig (a) shows the four 1’s are horizontally adjacent and Fig (b) shows they are
vertically adjacent. Fig (c) contains four 1’s in a square, and they are considered adjacent

to each other.

21

CD
ABN_ 00 01 11 10
oL T]
D
ABN_ 00 01 11 10
00
01
1] 1 1
|'\
10 1| 1
™
(d) -
AD

|)
D

CD
ABN_ 00

AB

00

01

11

10

CD
01 11 10 ABN_ 00 01 11 10
o 1w T T 7T 1
D
00 01 11 10 ABN_ 00 01 11 10
|1 1 00 1! 1
01 \
11 \ }f
|1 1 \ 1 3 \/[1

Examples of Quads

The four 1’s in fig (d) and fig (e) are also adjacent, as are those in fig (f) because, the
top and bottom rows are considered to be adjacent to each other and the leftmost and
rightmost columns are also adjacent to each other.

Grouping Eight Adjacent 1°s: (Octet)
In a Karnaugh map we can group eight adjacent 1’s. The resultant group is called Octet.

D
CD CD CD
AB 00 01 7 b 10 AB 00 01 11 10 AB 00 01 11 10
— 7 — 7)]
00| 1 . 00 |1 1 1 1] 00 || 1 ;/ 1 1
01 1 | | 01|l [1 1 J- 1J 01 1 1
™~
10 10 10
BN TN N AR
@ 5 &/ ©® Vi ® g
CD cD CD
AB 00 01 p i | 10 AB 00 01 1 | 10 AB 01 g | 10
o
00 [1 1|1 1] ooff1 | 1 00 L1 1|1 1J
oafls 1|1]2 aff: |2 01 /
AN
11 \ 1|1 | 1 11 /
4
10 10 10
1|1 1|1 1]
A i
(a) A ol (b) B ()

Simplification of Sum of Products Expressions: (Minimal Sums)

The generalized procedure to simplify Boolean expressions as follows:

1. Plot the K-map and place 1’s in those cells corresponding to the 1’s in the sum
of product expression. Place 0’s in the other cells.

2. Check the K-map for adjacent 1’s and encircle those 1’s which are not adjacent
to any other 1’s. These are called isolated 1’s.

3. Check for those 1’s which are adjacent to only one other 1 and encircle such
pairs.

22

4. Check for quads and octets of adjacent 1’s even if it contains some 1’s that have
already been encircled. While doing this make sure that there are minimum
number of groups.

5. Combine any pairs necessary to include any 1’s that have not yet been
grouped.

6. Form the simplified expression by summing product terms of all the groups.

Three- Variable Map:

1. Simplify the Boolean expression,
F(X,y,2)=Ym (3,4,6,7).

Soln:
xYZ ¥Z yz yz VI XYZ VZ ¥z VI VI
00 01 11 10 00 01 11 10
ol oo |[1]o0 xo|o|o [[1}{0
0 1 3 2 ,::> T ¥
x1 1 0 1 1 X1 1 0 U (1
4 5 7 6
\ XZ
F=yz+ xz’

2.F(X,y,2)=Ym (0, 2,4, 5, 6).

Soln:
N°FE §2oyz yE ~N°OFE §zooyz oy
00 01 11 10 R e i
— g BT
RPN 0| 1] 0 | o [(1
1 : .2 |
x1 11 o1 %3 [)| o |1
S
F=z+xy’
3. F=A’C+A’B+AB’C+BC
Soln:

=AC(B+B)+AB(C+C)+ABC + BC (A+ A)
= A’'BC+ A'B'C + A’'BC + A’'BC’ + AB’C + ABC + A'BC
= A’'BC+ A'B'C + A’'BC’ + AB'C + ABC

= M3+ M1+ M2+ M5+ My

23

=ym(1,2,3,5,7)

BC BC BC BC EBC BC EBC BC BC BC
A A AR
00 01 11 10 00 01 11 IV_.
Ro|of1 1)1, oo |1 Gk
Al 0‘ 15 l7 06 Al 0 |l .1 0
__c
F=C+A’B
4. AB’C + A’B’C + A’BC + AB°C’ + A’B’C’
Soln:
= m5 + mi1 + m3 + m4 + mo
=Yy m(o,1,3,4,5)
ABC BEC BC BC BC ABC BEC BC BC BC
00 01 11 10 \ 00 01 11 10
ol 1|1 |1]o0 o (1 [(1)] L 0 | zc
0 1 3 2 ::> -
Al 14150706 Alll 11 0 0
\\—E
F=A’C+B’

Four - Variable Map:

1. Simplify the Boolean expression,

Y = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D + AB’C’D + A’B’CD’

— ABCD

Soln:
55
AB CD CD cD cbD
280 | o | o [(1
AB| [1 1 0 0
—1f ﬂ 0| 0
ag| O _IJ 0 0

Therefore, Y= A'B'CD+ AC'D+ BC

24

2.F(w,x,y,2)=>m(0,1,24,5,6,8,9,12, 13, 14)

Soln:
WwWZ
VZ VZ
WX 00 01 11 10 e ¥z Yz _yz \yz
00 T ™ :
1 g 1) 0 v 1 . et | 1 1 0 1
01 a2
1 3 1 ’ 0 ’ 1 g wxl] 1) 1 0 1
1119 1 .. i : wx||1 1| 0 ,I 1
12 13 15 14 /,” i
10 B LB
1 8 1 9 0 11 0 10 ‘/}/’g—*—l/ 0 0
XZ \T
Therefore,

F=y+wz+ xz’
3. F=A’B’C’+ B’CD’+ A’BCD’+ AB’C’
= A’'B'C (D+ D) + BCD’ (A+ A”) + A’BCD’+ AB’C’ (D+ D)
= A’BCD+ A’'BCD’+ AB'CD’+ A’'B'CD’+ A’ BCD’+ AB'C’D+ ABCD’
= M1+ Mo+ Mio+ M2+ M6+ Mo+ M8
=Ym(0,1,2,6,8,9,10)

CD R = -
AB 00 01 0 AB €L R R 'CD
oof 1| 1]0]1 25|l 1] o LT
0 1 3 2 s T —
onf 0 | 0| 0|1 ig| 0 \? o [lJ] ° cD
4 3 7 6 ,::
L1 0 &) 0 aB| 0 0\ 0| o0
12 13 15 14] \ L
10 . ~‘
: 8 19 011 l10 4B (1 ».,l] 0 | ! BD

Therefore,
F: B9D9+ B’C’_'_ A’CDQ.

25

4. Y=ABCD+ AB’C’D’+ AB’C+ AB
= ABCD+ AB’'C’'D’+ AB’C (D+D’)+ AB (C+C’) (D+D’)
= ABCD+ AB’'C’'D’+ AB’CD+ AB’CD’+ (ABC+ ABC’) (D+ D)
= ABCD+ AB'C'D’+ AB'CD+ AB’CD’+ ABCD+ ABCD’+ ABC'D+ ABC’'D’
= ABCD+ AB’'C'D’+ AB'CD+ AB’CD’+ ABCD’+ ABC’'D+ ABC'D’
= M5+ M8+ M1+ Mio+ Mig+ Mi3z+ Mi2
=Y m (8, 10, 11, 12, 13, 14, 15)

CcD cD

AB 00 01 11 10 AB D €0 ¢éb ebh
ool 0| 0|0 |o0 EE| 0 | 0|0 |0
0 1 3 2
o1| O 0|0 0 2| O 0 | *0 0
4 5 7 6
nl 1|1 |11 : as|(11] 1 [T [T AB
12 13 15 14 ol
10 110 |11 - 0 —
] 9 11 10 AB l \1 l j’
\= AD
Therefore,

Y= AB+ AC+ AD’.

5.Y (A, B,C,D)=Ym (7,9, 10, 11, 12, 13, 14, 15)
CcD

cD__ _ _
AB 00 01 11 10 AB el Gy Gl GEh
oo O 0 0 0 AE| O 0 0 0
0 1 3 2
BCD
o1l o o |1]o0 i 1
4 5 7 6 l::: BR| % | ¥ 2
#9411 sl A1)
12 13 15 14 H’_/
oo |1]1 |1 AR =To Rl li) | i
8 9 11 10 i |/
AD
Therefore,

Y= AB+ AC+ AD+BCD.

26

6. Y= A’'B'C’'D+ A'BC’'D+ A’BCD+ A’BCD’+ ABC’'D+ ABCD+ AB'CD
= M1+ M5+ M7+ M6+ Mi3z+ Mis+ M
=Ym(1,5,6,7,11, 13, 15)

cD CcD

AB 00 01 11 10 AB ED €D ¢h C¢D

oo| O 1 0 0 ZE f—E”I 1 | 0 0 T

0 1 3 2 S —»
ACD=<—"""| g

01] 0 1 1 1 2 0 1 3] | ;
IR —3 iB U :QﬁABD

11| 0 1] 0 0 1 [{1pr o
12 : 13 15 14 AB S

10 0 =| 0 0

0 8 0 9 1 11 10 AB O \'31\-/

— ——» ACD

In the above K-map, the cells 5, 7, 13 and 15 can be grouped to form a quad as
indicated by the dotted lines. In order to group the remaining 1’s, four pairs have to be
formed. However, all the four 1’s covered by the quad are also covered by the pairs. So, the
quad in the above k-map is redundant.

Therefore, the simplified expression will be,

Y = A’C’D+ A’BC+ ABD+ ACD.

7.Y=Y m (L, 5, 10, 11, 12, 13, 15)

ACD
CD cD_ _
AB 00 01 11 10 AB cD’ e/ €D eD

00| O 1 0 0 2| O

e (@ |2 |0 vk

wWwlo | o1 |1 =| 0

[
otlo |1 |0 [0 ggoLlJo T
[Y | (R | (O | I:C st Bl
E
N

Therefore, Y= A’C’D+ ABC’+ ACD+ AB’C.

27

8. Y= A’B’CD’+ ABCD’+ AB’CD’+ AB’CD+ AB’C’D’+ ABC’D’+ A’B’CD+ A’B’C’D’

BD
CB. .. @ .
AB CDyYCD CD |eD
_— i J
AB| 1 0 1 1
-)

Ze|l o [o | 0 o\\
i
ael 1 0|0 /1 BC

Therefore, Y= AD’+ B’C+ B’D’

9.F(A,B,C,D)=Ym (0, 1,4, 8,9, 10)

CcD L1 E N s
AB 00 01 11 10 AB CD’ 2D eD eD
ol & |4 |@| o aco zslh) 1)L 0| o0
0 1 3 2 ____ ~
o1l 1 o o] o zell1] o | o=l o
4 5 7 6 :> ~— \“\
1uloglo |00 wgl o | 0 | 00|
12 13 15 14
101|101 aBl(QT] 174 o (1~
g 9 11 10
Therefore, F= A’C’D’+ AB’D’+ B’C’.
Simplification of Sum of Products Expressions: (Minimal Sums)
1. Y=(A+ B+ C’) (A+ B+ C’) (A’+ B+ C’) (A’+ B+ C) (A+ B+ C)
= M1. M3s. My. M4. Mo
=[IM (0,1, 3,4, 7)
=y m(2,5,6)
BC EBC B s AC
A BC BC BC BC ABC o A(_
00 01 11 10 BC Bc/ BC BEBC
Eo| oo | o1 z o |[o]|(o"]]o
0 1 3 2 :>
A 0 1 0 1 A1 bJ 1 0 1
4 b) 6

/

28

Y’ =B’C’+ A’C+ BC.

Y=Y = (B'C'+ A’C+ BC)
= (BIC)". (A'CY. (BCY
= (B™+ C). (A™+C). (B'+ C)
Y = (B+C). (A+C’). (B’+ C°)

2. Y= (A’+ B’+ C+ D) (A’+ B+ C’+ D) (A’>+ B+ C’+ D’) (A>+ B+ C+ D) (A+ B’+ C’+ D)

(A+ B’+ C’+D’) (A+ B+ C+ D) (A’+ B+ C+ D’)
= Mi2. M14. M15. Ms. Me. M7. Mo. M3
= [IM (o, 6, 7, 8, 12, 13, 14, 15)

ED T € D

B ch €D D CD AB
00 01 11 10
AB 00| O 1 1 1

0 1 3 2

ABDT | 1.0 4 1@]| 0

AB
4 5 7 6 [::> s e ::
BCD
AB 11 0 0 0 0 AB

12 13 15 14

AB 10| 0 1 1 1 AB

g 9 11 10

Y’ =B’C’D’+ AB+ BC

Y=Y"=(B'CD+ AB+ BC)
= (B'C’D’). (AB). (BC)
= (B”+ C’+D”). (A’+B’). (B+ C)
=(B+C+D).(A+B).(B+(C)
Therefore, Y= (B+ C+ D). (A’+ B’). (B’+ C°)

3.F(A,B,C,D)=[IM (o, 2, 3, 8, 9, 12, 13, 14, 15)

CD
CD €D Cb €D
AEMON 1 1 1
=
1 1 0 0|
™™ BC
(0] 0 [lo]|.0)
ol 1 | 1 1 [™aB

i 4 e ABD
BCD CD: CD €D :CD o CD
00 01 11 10 ER DD AED
__ . |
ABOO(O |1 (0|0, AB § Il 1 @%

AB 01 14 15 17 1ts :> AB| 1 1 1 1 T=2aBC
AB = § ABD
11 012 0 u 015 1 | AE:_ AB [0 [(O]]-0)| | 1 L
E 10 0 1 = 0 1

Ak v 8 9 ! 11 10 AB \0——/ !

Y’ = A’B’D’+ A’B’C+ ABD+ AC’

29

Y=Y = (A’'BD’+ A’B'C+ ABD+ AC)’
= (A’'B'D’). (A’B’C)’. (ABD). (AC’Y
= (A”+ B”+ D”). (A”+ B”+C’). (A’+ B+ D’). (A’+ C”)
= (A+ B+ D). (A+ B+ C’). (A’+ B+ D’). (A’+ C)

Therefore, Y= (A+ B+ D). (A+ B+ C*). (A’+ B’+ D). (A’+ C)

4.F(A,B,C,D)=Ym (o0, 1,2,5,8,9,10)
=[IM (3, 4, 6, 7, 11, 12, 13, 14, 15)

€D CO €0 O b CD 5
B AB - - BD
00 01 11 10 P ‘€P EF D /
AB 00 | 1 1 0 1 A8 | 1 1 (6\/”1/ cD
0 1 3 2 (S -+ IJ"’
ABOL[0|1 |0 |0 #5100 1 Mol o'
::> | —= AB
AB 110 | 0 |0 |0 ag [(0]] o [[o]][o7
12 13 15 14
E 10 1 = 1
¥ ’ 8 . 9 ¢ 11 10 AB | 1 . \Ez

Y’ =BD’+ CD+ AB

Y=Y =(BD’+ CD+ AB)
= (BD’)’. (CD)’. (ABY
=(B+D”).(C+D).(A+B)
= (B™+ D). (C'+ D). (A™+ B)

Therefore, Y= (B’+ D). (C’+ D’). (A’+ B’)

Don’t care Conditions:

A don’t care minterm is a combination of variables whose logical value is not
specified. When choosing adjacent squares to simplify the function in a map, the don’t
care minterms may be assumed to be either o0 or 1. When simplifying the function, we
can choose to include each don’t care minterm with either the 1’s or the 0’s, depending
on which combination gives the simplest expression.

1.F(x,y,2) =Xm (0,1, 2,4,5)+ >d(3,6,7)
VZ

X\ yz
: 00 01 11 10 % VZ ¥z yz Yz
0 1 1 X 1 o
0 1 3 2 ,::> X [1] 1 . X, 1]2
1 1 4 1 5 X 7 X 6 X Ll l X XjNH].
7 3 7 6

30

F(x,y,2)=1

2. F(w,x,y,2) =>m (1, 3, 7, 11, 15)+ >d (0, 2, 5)

yZ Vi
L 00 01 11 10 WX YZ ¥z vz @ yZ
00| X " 1 g 1 g X 5 WE (X 1 1 X}_...ﬁ&
011 0 ; X F 1 3 0 ; wxz| O X 1 I yz
B 0 1 0 wx | 0 0 1 0
12 13 15 14
Wlo o |1 |0 wglo |0 [[1]]0O
8 9 11 10 -

F(w, X, y,2)=wx’+yz

3.F(w,x,y,2) = Ym (0, 7,8, 9,10,12)+ >d (2, 5, 13)

Yz Yz
WENL 00 01 11 10 YIN FZ, ¥z yz yz
00| 1 0 0 X wE lJ 0 0 |x‘“-~>§z
0 1 3 2 =
01 =
0 4 % 5 1 7 4 6 :D wE| # EB‘\Q—‘—“WXZ
Wit |x |0 |0 wz |1 [x) o | o
12 13 15 14
011 |1 o |1 wg[{1]|v)] o 1 i
8 9 11 10 o
__———,FPP‘_F__'__YWY
F (w, X,Y, 2) = wxz+ wy’+ x’z’.
4.F(w,x,y,2) =3Ym (0,1, 4, 8,9, 10)+ ¥d (2, 11)
Soln:
vz Yz
WX 00 01 11 10 wx ¥z vz yz @ yzZ
00 X R w3z B
1 0 1 1 0 3 2 WYZ-“‘-M___N. [1 T d:-w-—;"*xh_ﬂ e
01 14050706 7574 \1_“05070
1110 0 0 0 WX | 0 0 0 0
12 13 15 14 12 13 15
10 X WX “ X
} 3 ! 9 11 ‘ 10 O 1 \1) WX
e

F(w, Xy, 2) = wx’+ X’y’+ wy’z’.

31

5.F(A,B,C,D)=Ym (o, 6, 8,13, 14)+ >d (2, 4, 10)
Soln:

CD CD

AB AB e i

00 01 11 10 eD; '€p oo B

110 | o0 == 1l o | 0o Mx)

00 0 1 3 X 2 AB-— »
01| x| o 0 1 ZB| X | 0 0 T

4 5 7 6 ::>
1 1 1
11 012 13 015 14 AB 0 @ 0
10 0 |o | x == %] ol | 0o |flx
1 8 9 11 10 BD\ﬁMI \ o

F(A, B, C, D) = CD’+ B’D’+ A’B’C’D".

Five- Variable Maps:

A 5- variable K- map requires 25= 32 cells, but adjacent cells are difficult to identify
on a single 32-cell map. Therefore, two 16 cell K-maps are used.
If the variables are A, B, C, D and E, two identical 16- cell maps containing B, C, D

and E can be constructed. One map is used for A and other for A’.

In order to identify the adjacent grouping in the 5- variable map, we must
imagine the two maps superimposed on one another ie., every cell in one map is
adjacent to the corresponding cell in the other map, because only one variable changes

between such corresponding cells.

DE A=0
00 01 11 10
=
~
00 | © & 3 2 .\\
-
01| 4 5 7 & e
BC \\\
1112 |13 |15 | 14 | A=1"~
\\ D \\x
10| 8 9 11 10 RS 00 01 11 10«
\\\ \\\03 16 | 17 | 19 18
\\\ 01 ™0 | 21 | 23 o
~
\\ BC ™=
. 1128 |29~ 31 | 30
\\ \-\\
\‘LO 24 | 25 | 27 e
~

Five- Variable Karnaugh map (Layer Structure)

32

Thus, every row on one map is adjacent to the corresponding row (the one
occupying the same position) on the other map, as are corresponding columns. Also,

the rightmost and leftmost columns within each 16- cell map are adjacent, just as
they are in any 16- cell map, as are the top and bottom rows.

Adjaceiit cmensy mmwereruns 3
s N
= /~ columns =
- DE A=0 w 66 DE 1 \\‘
DE DE DE DE . DE DE DE %\ DE
Adjacent i
BC BC
B,c..‘{ """ ~IHOWS; s “‘g
' " BcC Q— ---------- ==t —Adjacent-——--B-Q--O
Adjacent — il
S % BC l

6.0
Nl
A
us}
5]
|
(

—
- e

B Adjacent -7

-~

-

groups
Typical subcubes on a five-variable map
However, the rightmost column of the map is not adjacent to the leftmost

column of the other map.

1. Simplify the Boolean function
F(A, B,C, D, E)=Ym (o, 2, 4, 6,9, 11, 13, 15, 17, 21, 25, 27, 29, 31)
Soln:

ABE ADE

DE % DE \ A=1
BC e _ BC —_\— _
DE/DE DE DE DE \DE DE DE
__ 7 ﬁ . A
BC 1 0 0 k 0 1 2 BC 016 l 17 0 19 0 18
—B-c —j 4 0 5 0 & uﬁ BC 020 l 21 O 23 0 22
Be 012 1 13?15 0 14 5L 028 [l 29 l]31 0 30

BEO@V__IJO BEOLI‘IJO

w

11 10 24 Dy 27 26

F (A, B,C, D, E) = A’B’E’+ BE+ AD’E

33

2.F(A,B,C,D,E)=Ym (o, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27, 29, 31)
Soln:

CDE

A=1
DE DE DE DE
1 0 0 0

6 17 19 18

by 1 0 0 0
20 21 23 22

0 ”TTE—*’O’"’

28 29 1 30

HE s ! 9 111 ‘ﬂp\\ - 4 ::1_25_1)2? qﬁ
HE o R RE

F (A, B, C,D, E)=CD’E’+ A’B°’CD’E+ A’B’CDE’+ AB’D’E’+ ABE+ BC’

. — ABE

3.F(A,B,C,D,E)=Ym (1,4, 8, 10, 11, 20, 22, 24, 25, 26)+>d (0, 12, 16, 17)
Soln:

X 0 0 BCE
! _____ﬁ._f/fancn

ADE . . il
e _E‘OOQ
0

1
20 21l a3 72|
\0 0 0 0
28 290 31 30

gc ll 1| o [(1 1D Bapx1lol
~ 18] 9 1T L 0 [24 25 a7 26

& BCE —///

F (A, B,C,D, E) =B’C’'D’+ A’D’E’+ BC’E’+ A’BC’D+ AC’D’+ AB’CE’

34

4.F(A,B,C,D,E)=¥Ym (0,1, 2,6,7,9, 12, 28, 29, 31)

Soln:
DE A=0 DE .
BE DE DE DE DE BE DE DE DE DE
I DE 7.35(—35 DE
sl 1 0 W14 gl ol o | o | o

- 0

TenE—— T ABCD 20 2 a3 7 [
.:—4—‘_'_'__'_'_ LT

\Q@ 0 | o BC @ 1 | ¥ 0

2 13 1s 14 8 31 30

0

2

25 a7 26

|
(]
k
-~
.
o
C/ Q‘J
(=]
|
(]

BCDE
F (A, B, C,D, E) =BCD’E’+ ABCE+ A’B’C’E’+ A’C’D’E+ A’B°CD

5. F (x1, X2, X3, X4, x5) = Ym (2, 3, 6, 7, 11, 12, 13, 14, 15, 23, 28, 29, 30, 31)
Soln:

X4X5 X1=0 X1X2X4 X4X5 X1=1

X2X3 ey s X2X3 A T e
X4X5 X4X35 X4X5 X4X5 X4X5 X4X5 X4X5 X4X5
xXx3| 0 | O :

0 l3 |2 X3X4X35 X2X3 016 017 019 0 18

Xaxs| 0 | O)ﬁ\ lJ xax3| O _Q_,-ﬁ 0
L

1

4 5 e [—au] 21 22
X2X
? Q’!’g ! 13 15 1] 151 1)30
x2X3| 0 0 0 0 0 0

8 914 [i1 24 25 27 26

X1X3X4X5 X2X3

F (X1, X2, X3, X4, X5) = X2X3+ X3X4X5+ X1’ X2 X4+ X1°X3’X4X5

35

6. F (x1, x2, X3, X4, x5) = >m (1, 2, 3, 6, 8, 9, 14, 17, 24, 25, 26, 27, 30, 31)+ >d (4, 5)
Soln:

X4X5 x1=10 X4X5 G
NX4X5 X4X5 X4X5 X4X5 X4X5 X4X5 X4X5 X4X5
gzl 0 [UHG [1Rk x| 0 M 0| o
% 0 1 2 6 7 19 18
o xar X)| X 0 0 0 0 0
X1X2X3X5 4] 7 20 a1 23 22
‘——‘—u-—.__'_,_,_o-'-
x2x3| O 0 0 ax3 N0 0 1
12 13 15 28 29 31 0
= L~ N X3X4X5 s
X2%3 [1 M o | o X Ll \J) L1
% 8 24 5 26
_/ X1X2X4
X2X3%4 XIX3X4X5

F (X1, X2, X3, X4, X5) = X2X3”X4’+ X2X3X4X5’+ X3°X4’ X5+ X1X2X4+ X1°X2’X3X5’+ X1°X2°X3’X4

LoGic GATES

BASIC LOGIC GATES:

Logic gates are electronic circuits that can be used to implement the most
elementary logic expressions, also known as Boolean expressions. The logic gate is the most
basic building block of combinational logic.

There are three basic logic gates, namely the OR gate, the AND gate and the NOT
gate. Other logic gates that are derived from these basic gates are the NAND gate, the NOR
gate, the EXCLUSIVE- OR gate and the EXCLUSIVE-NOR gate.

GATE SYMBOL OPERATION TRUTH TABLE
NOT NOT gate (Invertion), produces A |y=a
an inverted output pulse for a 0 1
(7404) given input pulse.

AND gate performs logical

3=
=
-t
I
=
=

A multiplication. The output is
AND B—} HIGH only when all the inputs 0 0 0
(7408) |~ are HIGH. When any of the 0 |1 0
Y=A.B inputs are low, the output is 1 0 0
LOW. 1 1 1

36

OR gate performs logical

A B [Y=A+B
addition. It produces a HIGH
OR on the output when any of the 0 0 0
(7432) inputs are HIGH. The output is 0 |1 1
LOW only when all inputs are 1 0 1
LOW. 1 il |
It is a universal gate. When any A| B |Y-AB
NAND A " of the inputs are LOW, the 0 0 1
B output will be HIGH. LOW
(7400) | = 0|1 1
— output occurs only when all 3 " 7
Y=A.B inputs are HIGH.
1 1 0
& It is a universal gate. LOW A | B |Y=A+B
NOR y | output occurs when any of its 0 0 1
B input is HIGH. When all its g |+ "
(7402) — inputs are LOW, the output is
Y= A+B 1 0 0
HIGH.
1 4 0
A B |Y=AZB
A
EX-OR | g D_’Y The output is HIGH only when 0] 0 0
(7486) odd number of inputs is HIGH. 011 1
Y= AZB 1 0 iL
il 1 0
A g A | B |Y=AGB
EX- NOR B D The output is HI'GH 0n¥y when o | o 1
o even number of inputs is HIGH. & | 4 "
B (0:) Or when all inputs are zeros. 1 0 0
Y= A®B 11| 1

UNIVERSAL GATES:

The NAND and NOR gates are known as universal gates, since any logic
function can be implemented using NAND or NOR gates. This is illustrated in

the following sections.

a) NAND Gate:
The NAND gate can be used to generate the NOT function, the AND function,

37

the OR function and the NOR function.
i) NOT function:

By connecting all the inputs together and creating a single common input.

A — A | B|Y=A.B
X 'B Y=A.B
— X=0| 0 1
=X.X
el 0 q} 1l
=X+X 1 0 n
=7 w=1|1 1 0

NOT function using NAND gate

i) AND function:
By simply inverting output of the NAND gate. i.e.,

‘AB= AB

"
%
=
et
I
|
I
e
]
Il
"
e
=

A| B|Y=A.B A | B | AB
0 0 0 0 0 0
0|1 0 = 0|1 0
1 0 0 1 0 0
1|1 1 1|1 1

AND function using NAND gates

iii) OR function:
By simply inverting inputs of the NAND gate. i.e.,

AI:A
— A_o
Y=A.B — B
B_‘>¢,_J—
B

OR function using NAND gates

38

o ;||w
-t
I

1

=l

I
>
-]

Bubble at the input of NAND gate indicates inverted input.

A | B |Y=A+B A|B|AB |AB
0 0 0 0 0 1 0
@ |4 1 = 0|1 0 1
1 0 1 1 0 0 al
3k i, 1 1 1 0 il

iv) NOR function:

By inverting inputs and outputs of the NAND gate.
A A
> P
L{>°J§— By A —
A.B

e
-+
-~

A | B |Y=A+B A|B|AB |aB | a8
0 0 1l 0 0) 0 al
0 |1 0 = 0|1 0 1 0
1 0 0 1 0 0 i 0
1 1 0 1 1 0 1 0

NOR function using NAND gates

b) NOR Gate:

Similar to NAND gate, the NOR gate is also a universal gate, since it can be used
to generate the NOT, AND, OR and NAND functions.

i) NOT function:

By connecting all the inputs together and creating a single common input.

4

-
-]

A

I
”
-

+

| =]
el

=X

X=1

A| B |y=a+B
0| o0 1
0|1 0
1|0 0
I [0

NOT function using NOR gates

39

i) OR function:
By simply inverting output of the NOR gate. i.e.,

A+B= A+B

A A+B A —
iD’_D“ - - QD_DY Ao
=A+B =A+B

OR function using NOR gates

A B | Y=A+B A B A+B A+B
0 0 0 0 0 1 0
Q@ |4 1 = 0 | 1 0 1
1 0 1 i 0 0 il
1 1 1 1 1 0 1
iii) AND function:
By simply inverting inputs of the NOR gate. i.e.,
A A
Y=A+B =
B —
B

AND function using NOR gates

Bubble at the input of NOR gate indicates inverted input.

A| B |y=A.B A | B| A+B | A+B

0| 0o 0 0 | o 1 0

0 1 0 — 0 1 1 0

1| 0 0 1| 0 1 0

T | a 1 O I | 0 1
Truth table

40

iv) NAND Function:

By inverting inputs and outputs of the NOR gate.

A| B|Y=A.B A | B| A+B | a+B | A+B
0| o 1 0| o 1 0 1
0 |4 1 = 0 |1 1 0 1
1|0 1 1|0 1 0 1
| I | 0 T | 0 1 0

Conversion of AND/OR/NOT to NAND/NOR:

1. Draw AND/OR logic.

2. If NAND hardware has been chosen, add bubbles on the output of each
AND gate and bubbles on input side to all OR gates.
If NOR hardware has been chosen, add bubbles on the output of each OR
gate and bubbles on input side to all AND gates.

3. Add or subtract an inverter on each line that received a bubble in step 2.
4. Replace bubbled OR by NAND and bubbled AND by NOR.

5. Eliminate double inversions.

1. Implement Boolean expression using NAND gates:

A+ B)C)D

Original Circuit:

A — {A+B) C

((A+ B) C)

gy

B
&
D

>

r

41

-

Y= ((A+B)C) D

Yt
I

| 3
. +
| o

Soln:
NAND Circuit:

=

A Elimination of double inversion
Y
B I_ |__

Unw e

B3t

D:%}Y

=

Elimination of double inversion

< N\

gow e

@

(@]

vl

W e

42

2. Implement Boolean expression for EX-OR gate using NAND gates.

Soln: A ',_|>QA_ AB
B B
gate. Y= AB+ AB
A
——-DOT AB
B

Adding bubbles on the output of each AND gates and on the inputs of each OR

o et ;
[>°

Adding an inverter on each line that received bubble,

u et
D"

Eliminating double inversion,

S ias ;

f

Replacing inverter and bubbled OR with NAND, we have

A

UNIT I COMBINATIONAL LOGIC CIRCUITS:

INTRODUCTION:

The digital system consists of two types of circuits, namely
() Combinational circuits

(i) Sequential circuits

Combinational circuit consists of logic gates whose output at any time is
determined from the present combination of inputs. The logic gate is the most basic
building block of combinational logic. The logical function performed by a combinational
circuit is fully defined by a set of Boolean expressions.

Sequential logic circuit comprises both logic gates and the state of storage
elements such as flip-flops. As a consequence, the output of a sequential circuit depends
not only on present value of inputs but also on the past state of inputs.

In the previous chapter, we have discussed binary numbers, codes, Boolean algebra
and simplification of Boolean function and logic gates. In this chapter, formulation and
analysis of various systematic designs of combinational circuits will be discussed.

A combinational circuit consists of input variables, logic gates, and output
variables. The logic gates accept signals from inputs and output signals are generated
according to the logic circuits employed in it. Binary information from the given data
transforms to desired output data in this process. Both input and output are obviously the
binary signals, i.e., both the input and output signals are of two possible states, logicl and
logic 0.

—» >
ey Combinational i F—-—
n input _> Lot . B m 0.1.1 pu
variables . Cirenit : variables

Block diagram of a combinational logic circuit

For n number of input variables to a combinational circuit, 2» possible
combinations of binary input states are possible. For each possible combination, there is
one and only one possible output combination. A combinational logic circuit can be
described by m Boolean functions and each output can be expressed in terms of n input
variables.

DESIGN PROCEDURE:

Any combinational circuit can be designed by the following steps of design procedure.
The problem is stated.

Identify the input and output variables.

The input and output variables are assigned letter symbols.

Construction of a truth table to meet input -output requirements.

a1 e W

Writing Boolean expressions for various output variables in terms of

input variables.

6. The simplified Boolean expression is obtained by any method of minimization—
algebraic method, Karnaugh map method, or tabulation method.

7. Alogic diagram is realized from the simplified boolean expression using

logic gates.

The following guidelines should be followed while choosing the preferred form
for hardware implementation:
1. The implementation should have the minimum number of gates, with the
gates used having the minimum number of inputs.

There should be a minimum number of interconnections.
Limitation on the driving capability of the gates should not be ignored.

ARITHMETIC CIRCUITS — BASIC BUILDING BLOCKS:

In this section, we will discuss those combinational logic building blocks that can
be used to perform addition and subtraction operations on binary numbers. Addition and
subtraction are the two most commonly used arithmetic operations, as the other two,
namely multiplication and division, are respectively the processes of repeated addition
and repeated subtraction.

The basic building blocks that form the basis of all hardware used to perform the

arithmetic operations on binary numbers are half-adder, full adder, half-subtractor, full-
subtractor.

Half-Adder:

A half-adder is a combinational circuit that can be used to add two binary bits. It
has two inputs that represent the two bits to be added and two outputs, with one
producing the SUM output and the other producing the CARRY.

A el L Sum, S
Half Addes

| +—— Carry, C

Block schematic of half-adder

The truth table of a half-adder, showing all possible input combinations and
the corresponding outputs are shown below.

Inputs Outputs
A B Carry (C) | Sum (S)
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Truth table of half-adder

K-map simplification for carrv and sum:

For Carnry

Sum= AB'+ A'B
=A®B

The Boolean expressions for the SUM and CARRY outputs are given by the
equations,

Sum,S =A'B+AB’=A_LB

Carry,C=A.B
The first one representing the SUM output is that of an EX-OR gate, the second
one representing the CARRY output is that of an AND gate.

The logic diagram of the half adder is,

A —

Sum, S =A®@B
B
} Cany,C =A B

Logic Implementation of Half-adder

Full-Adder:

A full adder is a combinational circuit that forms the arithmetic sum of three
input bits. It consists of 3 inputs and 2 outputs.

Two of the input variables, represent the significant bits to be added. The third
input represents the carry from previous lower significant position. The block
diagram of full adder is given by,

Cin
A —
Full Adder [Swun
B —
Cout

Block schematic of full-adder
The full adder circuit overcomes the limitation of the half-adder, which can be used

to add two bits only. As there are three input variables, eight different input combinations
are possible. The truth table is shown below,

Truth Table:

Inputs Outputs
Sum (S) Carry (Cout)

o}
)
5

A
0
0
0
0
1
1
1
1

==l Bl = K=l Bl =l =)
Il =0 Il el B el B e
Il =0 =N B B el B B e
Ll Bl Bl el B B el B en)l i en)

To derive the simplified Boolean expression from the truth table, the Karnaugh map
method is adopted as,

For Camnry For 5mm

& oo 0 11 10 & 0o 01 11 10
0| 0 0
1 0 1

Canry, Cow = AB+ ACin + BCis Sum, 5 = A'B'Cir A'BCin+ AB'Clin+ ABCy

The Boolean expressions for the SUM and CARRY outputs are given by the
equations,

Sum, S = A’B’Cin+ A’BC’in + AB’C’in + ABCin
Carry, Cout = AB+ ACin + BCin.

The logic diagram for the above functions is shown as,

A
B
G } A=
A B
Cin A1
A Cout
B
Cin
A B —
B) Cin —|
Cin

Implementation of full-adder in Sum of Products

The logic diagram of the full adder can also be implemented with two half-
adders and one OR gate. The S output from the second half adder is the exclusive-OR of
Cin and the output of the first half-adder, giving

Sum=Cin | (A | B) [x y=xy+xy]
= Cin _ (A'B+AB)
= C'in (A‘B+AB‘) + Cin (A‘B+AB")" [(x'y+xy)= (xy+xy)]

= C'n (A‘B+AB") + Cin (AB+A‘B)
= A‘BC‘in + AB‘C‘in + ABCin + A‘B‘Cin.

and the carry output is,
Carry, Cout = AB+ Cin (A’'B+AB’)

= AB+ A‘BCin+ AB‘Cin
= AB (Cin+1) + A‘BCin+ AB‘Cin [Cin+1= 1]
= ABCin+ AB+ A‘BCin+ AB‘Cin
= AB+ ACin (B+B‘) + A‘BCin
= AB+ ACin+ A‘BCin
= AB (Cin+1) + ACin+ A'BCin [Cin+1= 1]
= ABCin+ AB+ ACin+ A‘BCin
= AB+ ACin+ BCin (A +A)
= AB+ ACin+ BCin.

Cin
Implementation of full adder with two half-adders and an OR gate

Half -Subtractor:

A half-subtractor is a combinational circuit that can be used to subtract one binary
digit from another to produce a DIFFERENCE output and a BORROW output. The
BORROW output here specifies whether a _1‘ has been borrowed to perform the
subtraction.

A ——» Difference, D
Half- Subtractor
I > Borrow, (Bow)

Block schematic of half-subtractor

The truth table of half-subtractor, showing all possible input combinations
and the corresponding outputs are shown below.

Input Output
A B Difference (D) | Borrow (Bout)
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

K-map simplification for half subtractor:

For Difference For Borrow

Difference = AB'+ A'B
= A®@B
The Boolean expressions for the DIFFERENCE and BORROW outputs are given by
the equations,
Difference, D =A'B+AB'=A _ B
Borrow, Bout =A’.B

The first one representing the DIFFERENCE (D)output is that of an exclusive-OR
gate, the expression for the BORROW output (Bout) is that of an AND gate with input A
complemented before it is fed to the gate.

The logic diagram of the half adder is,

A \
T) Difference, D
[/

[_D— Borrow, Bow

Logic Implementation of Half-Subtractor

Comparing a half-subtractor with a half-adder, we find that the expressions for the
SUM and DIFFERENCE outputs are just the same. The expression for BORROW in the case
of the half-subtractor is also similar to what we have for CARRY in the case of the half-
adder. If the input A, ie., the minuend is complemented, an AND gate can beused to
implement the BORROW output.
Full Subtractor:

A full subtractor performs subtraction operation on two bits, a minuend and a
subtrahend, and also takes into consideration whether a _1‘ has already been borrowed
by the previous adjacent lower minuend bit or not.

As a result, there are three bits to be handled at the input of a full subtractor,

namely the two bits to be subtracted and a borrow bit designated as Bin. There are two
outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

A —p
B —»

By, —>|

Full- Subtractor

}—— Difference, D

}——> Borrow, Bow

BORROW output bit tells whether the minuend bit needs to borrow a _1‘ from the next
possible higher minuend bit.

Block schematic of full-adder

The truth table for full-subtractor is,

Inputs Outputs
A B Bin Difference(D) | Borrow(Bout)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
K-map simplification for full-subtractor:
For Difference For Borrow
BBin BEBEin
AN_ 00 01 11 10 AN_ 00 01 11 10

0 0
1 1
Difference, D = A’B’Birnt A’'BB'int+ AB’B'int+ ABBin Borrow, Bowt = A’B+ A’Bin + BBin

The Boolean expressions for the DIFFERENCE and BORROW outputs are given
by the equations,

Difference, D = A’B'Bin+ A'BB’in + AB’B’in + ABBin

Borrow, Bout = A’'B+ A’Cin + BBin.
The logic diagram for the above functions is shown as,

A
Bin

A ‘ B

B D
Bn B

B,

3 Bm—j_:D .
Bin

A e
Bin

Implementation of full-adder in Sum of Products

The logic diagram of the full-subtractor can also be implemented with two half-
subtractors and one OR gate. The difference,D output from the second half subtractor
is the exclusive-OR of Bin and the output of the first half-subtractor, giving

Difference,D=Bin _ (A _ B) [x 1y=x'y+xyT]
=Bin | (A‘B+ABY)
= B‘in (A‘B+AB‘) + Bin (A‘B+AB’)’ [(xy+xy)'= (xy+xy)]

= Bin (A‘B+AB‘) + Bin (AB+A‘B")
= A‘BB‘in + AB‘B‘in + ABBin + A‘B‘Bin

.and the borrow output is,

Borrow, Bout = A’B+ Bin (A’'B+AB’)’ [(x'y+xy)'= (xy+xy)]
= A‘B+ Bin (AB+A'BY)
= A‘B+ ABBin+ A‘B‘Bin

= A'‘B (Bin+1) + ABBin+ A'B‘Bin [Cin+1= 1]
= A‘BBin+ A‘B+ ABBin+ A‘B‘Bin

= A‘B+ BBin (A+A‘) + A'B‘Bin [A+A'= 1]
= A‘B+ BBin+ A'‘B‘Bin

= A'‘B (Bin+1) + BBin+ A'‘B‘Bin [Cin+1= 1]

= A‘BBin+ A‘B+ BBin+ A‘B‘Bin
= A‘B+ BBin+ A'Bin (B +B")
= A‘B+ BBin+ A‘Bin.

Therefore,
we can implement full-subtractor using two half-subtractors and OR gate as,

A I A\ I
:) : Difference, D

———————————————] / 1

) >+ '

) T I I
Bin 7 I I
I
I

| sy | Lol
| | D

Implementation of full-subtractor with two half-subtractors and an OR gate

10

Binary Adder (Parallel Adder):

The 4-bit binary adder using full adder circuits is capable of adding two 4-
bit numbers resulting in a 4-bit sum and a carry output as shown in figure below.

B3 A3 B2 A2 B4 Af Bo Ag
J 1 | J | | | J
C:
Ca (n Caf—IC3 @3 O©2 C2 @ O C1 {1y Comof—"
| } | |
Cout S3 S2 S So

4-bit binary parallel Adder

Since all the bits of augend and addend are fed into the adder circuits
simultaneously and the additions in each position are taking place at the same time, this
circuit is known as parallel adder.

Let the 4-bit words to be added be represented by,
A3A2A1A0= 1111 and B3B2B1Bo= 0011.

Significant place 4321
Inputcarry L 3% O
Augend word A : ;s DG 4 |
Addend word B 0011
1 001 0« Sum
f
Output Camry

The bits are added with full adders, starting from the least significant position, to
form the sum it and carry bit. The input carry Co in the least significant position must be
0. The carry output of the lower order stage is connected to the carry input of the next
higher order stage. Hence this type of adder is called ripple-carry adder.

In the least significant stage, Ao, Bo and Co (which is 0) are added resulting in sum
Soand carry Ci. This carry C1 becomes the carry input to the second stage. Similarly in
the second stage, A1, B1 and C1 are added resulting in sum S1 and carry Cz, in the third
stage, A2, Bzand Cz2are added resulting in sum Szand carry Cz,in the third stage, A3, B3and
Czare added resulting in sum S3 and Cs4, which is the output carry. Thus the circuit results
in a sum (S3S2S1So0) and a carry output (Cout).

Though the parallel binary adder is said to generate its output immediately after
the inputs are applied, its speed of operation is limited by the carry propagation delay

11

through all stages. However, there are several methods to reduce this delay.
One of the methods of speeding up this process is look-ahead carry addition which
eliminates the ripple-carry delay.

Carry Propagation-Look-Ahead Carry Generator:

In Parallel adder, all the bits of the augend and the addend are available for
computation at the same time. The carry output of each full-adder stage is connected to
the carry input of the next high-order stage. Since each bit of the sum output depends on
the value of the input carry, time delay occurs in the addition process. This timedelay
is called as carry propagation delay.

For example, addition of two numbers (0011+ 0101) gives the result as 1000.
Addition of the LSB position produces a carry into the second position. This carry when
added to the bits of the second position, produces a carry into the third position. This carry
when added to bits of the third position, produces a carry into the last position. The sum
bit generated in the last position (MSB) depends on the carry that was generated by the
addition in the previous position. i.e., the adder will not produce correct result until LSB
carry has propagated through the intermediate full-adders. This represents a time delay
that depends on the propagation delay produced in an each full-adder. For example, if
each full adder is considered to have a propagation delay of

30nsec, then S3 will not react its correct value until 90 nsec after LSB is generated.
Therefore total time required to perform addition is 90+ 30 = 120nsec.

B3 A3 B2 A2 B4 Af Bo Ag
J J J | | | J
C.
Ca @ Cof—C3 @3 ©2 2 @ Cf 1 M Cof—
| | |
Cout S3 S2 Sl1 So

4-bit Parallel Adder
The method of speeding up this process by eliminating inter stage carry delay is
called look ahead-carry addition. This method utilizes logic gates to look at the lower
order bits of the augend and addend to see if a higher-order carry is to be generated. It
uses two functions: carry generate and carry propagate.

o

Gij

Ci+1

Ci

12

Full-Adder circuit

Consider the circuit of the full-adder shown above. Here we define
two functions: carry generate (Gi) and carry propagate (Pi) as,

Carry generate, Gi = Ai | Bi
Carry propagate, Pi= Ai _ Bi
the output sum and carry can be expressed as,
Si=Pi 1 G
Ci+1 = Gi _| PiGi
Gi(carry generate), it produces a carry 1 when both Ai and Bi are 1, regardless of
the input carry Ci.

Pi (carry propagate) because it is the term associated with the propagation of the
carry from Ci to Ci+1.

The Boolean functions for the carry outputs of each stage and substitute for each
Ci its value from the previous equation:

Co= input carry
C1= Go + PoCo
C2= G1 + P1C1 = G1 + P1 (Go + PoCo)
= G1 + P1Go + P1PoCo
C3= G2 + P2C2 = G2 + P2 (G1 + P1Go + P1PoCo)
= G2 + P2G1 + P2P1Go + P2P1PoCo

13

|) |

‘ e :

: — E

:] s
P2) 1:
G2 —+ !

| =) i

! e’ :

:] Cz
- — ;
-, - -

s =) |
Pg—t o -

i | C1
Go—t! i
Co— |

Since the Boolean function for each output carry is expressed in sum of products,
each function can be implemented with one level of AND gates followed by an OR gate.
The three Boolean functions for C1, C2 and C3 are implemented in the carry look-ahead
generator as shown below. Note that C3 does not have to wait for C2 and C1 to propagate;
in fact C3 is propagated at the same time as C1 and Cz.

Logic diagram of Carry Look-ahead Generator

Using a Look-ahead Generator we can easily construct a 4-bit parallel adder with
a Look-ahead carry scheme. Each sum output requires two exclusive-OR gates. The

output of the first exclusive-OR gate generates the Pivariable, and the AND gate generates
the Givariable. The carries are propagated through the carry look-ahead generator and
applied as inputs to the second exclusive-OR gate. All output carries are generated after a
delay through two levels of gates. Thus, outputs Si through Sz have equal propagation
delay times.

14

_ Fa C4 Sa
B3 y/

w
P
(“"--._.--j
u

[g%]
o

S

[

Look Ahead

A Carry Generator

94
H'
u
u

1) >
b [P

o o

4-Bit Adder with Carry Look-ahead

Binary Subtractor (Parallel Subtractor):

The subtraction of unsigned binary numbers can be done most conveniently by
means of complements. The subtraction A-B can be done by taking the 2‘s complement of
B and addingitto A. The 2‘s complement can be obtained by taking the 1‘s complement and
adding 1 to the least significant pair of bits. The 1‘s complement can be implemented with
inverters and a 1 can be added to the sum through the input carry.

15

The circuit for subtracting A-B consists of an adder with inverters placed between
each data input B and the corresponding input of the full adder. The input carry Co must
be equal to 1 when performing subtraction. The operation thus performed becomes A,
plus the 1‘s complement of B, plus1. This is equal to A plus the 2‘s complement of B.

B3 A3 Bo Ao Bo
FA FA . FA FA Cin
Ca (4 Cs C3 (3 ©2 C2 @ @ C1 (1) Co=1f—
Cout S3 S2 Sq So

4-bit Parallel Subtractor

Parallel Adder/ Subtractor:

The addition and subtraction operation can be combined into one circuit with one
common binary adder. This is done by including an exclusive-OR gate with each full
adder. A 4-bit adder Subtractor circuit is shown below.

B3 A3 B2 Ao B4 Aq Bo Ao
‘ Y | Y P N.I
FA FA FA FA
% @ St @ 2 @ O o [5
S3 So S4 So
v
\

4-Bit Adder Subtractor

The mode input M controls the operation. When M= 0, the circuit is an adder and
when M=1, the circuit becomes a Subtractor. Each exclusive-OR gate receives input M

16

and one of the inputs of B. When M=0, we have BLO= B. The full adders receive the
value of B, the input carry is 0, and the circuit performs A plus B. When M=1, we have B
1£/B‘ and Co=1. The B inputs are all complemented and a 1 is added through the input
carry. The circuit performs the operation A plus the 2‘s complement of B. The exclusive-
OR with output V is for detecting an overflow.

Decimal Adder (BCD Adder):

The digital system handles the decimal number in the form of binary coded decimal
numbers (BCD). A BCD adder is a circuit that adds two BCD bits and producesa sum digit
also in BCD.

Consider the arithmetic addition of two decimal digits in BCD, together with an
input carry from a previous stage. Since each input digit does not exceed 9, the output sum
cannot be greater than 9+ 9+1 = 19; the 1 is the sum being an input carry. The adder will
form the sum in binary and produce a result that ranges from 0 through 19.

These binary numbers are labeled by symbols K, Zs, Z4, Z2, Z1, K is the carry. The
columns under the binary sum list the binary values that appear in the outputs of the 4-
bit binary adder. The output sum of the two decimal digits must be represented in BCD.

Binary Sum BCD Sum

Decimal

A

s 74 72 71 C

o
(=]
o
oS

O O O O O O o o o o
_ Rk O O O O O o o o
[T = =N)
S O R Rk OO R Rk O
=R e R e R e R e S e S o S
O O O O O O o o o o
[= = =)
O O R Rk OO R =Rk O
_ O R O RO RO RO
O© O 9 O Ul A W N Rk o

17

o 1.0 1 04 1 0 0 0 O 10
o 1.0 1 1 1 0 0 0 1 11
o 1.1 0 o 1 0 O 1 O 12
o 1.1 0 1 1 0 0 1 1 13
o0 1.1 1 0 1 0 1 0 O 14
o 11 1 13 1 0 1 0 1 15
i 0 0 O 0o 1 0 1 1 O 16
1 0 0 0 1 1 0 1 1 1 17
i1 0 0 1 0 1 1 0 0 O 18
1 0 0 1 o 1 1 0 0 1 19

In examining the contents of the table, it is apparent that when the binary sum is
equal to or less than 1001, the corresponding BCD number is identical, and therefore no
conversion is needed. When the binary sum is greater than 9 (1001), we obtain a non-
valid BCD representation. The addition of binary 6 (0110) to the binary sum converts it to
the correct BCD representation and also produces an output carry as required.

The logic circuit to detect sum greater than 9 can be determined by simplifying
the boolean expression of the given truth table.

Inputs Output
53 S2 51

g
K

o

S1 S
S5 S2 00 01 11 10

oo O 0 0 0

o1| O 0 0 0
11 (1 M 1]
10| © 0 1 1 I

Y= 5352 +5351

HHH AR RO OO OO OOCO
HHEHEHEOoOOolcOoORrR R HR RO OO

HHOoOOHHOORROOR HROO
HoroHRHO|lRrRoRrOHRHOR OR O
HHHHHRHRROODODOODOOD OO O

18

To implement BCD adder we require:
* 4-bit binary adder for initial addition
» Logic circuit to detect sum greater than 9 and
* One more 4-bit adder to add 01102 in the sum if the sum is greater than 9 or
carry is 1.

The two decimal digits, together with the input carry, are first added in the top4-
bit binary adder to provide the binary sum. When the output carry is equal to zero,
nothing is added to the binary sum. When it is equal to one, binary 0110 is added to
the binary sum through the bottom 4-bit adder. The output carry generated from the
bottom adder can be ignored, since it supplies information already available at the
output carry terminal. The output carry from one stage must be connected to the input
carry of the next higher-order stage.

Addend Augend
Carry iR Carry
out X 4- bit binary adder —
2 Zs 2y Z

v -
carry 0 | :

4-bit binary adder

BRE

5 S 8 8
Block diagram of BCD adder

Binary Multiplier:

Multiplication of binary numbers is performed in the same way as in decimal
numbers. The multiplicand is multiplied by each bit of the multiplier starting from the
least significant bit. Each such multiplication forms a partial product. Such partial

19

products are shifted one position to the left. The final product is obtained from the sum
of partial products.

Consider the multiplication of two 2-bit numbers. The multiplicand bits are Biand
Bo, the multiplier bits are A1 and Ao, and the product is C3, C2, C1 and Co. The first partial
product is formed by multiplying Aoby B1Bo. The multiplication of two bits such as Ao and
Bo produces a 1 if both bits are 1; otherwise, it produces a 0. This is identicalto an AND

operation. Therefore the partial product can be implemented with ANDgates as shown
in the diagram below.

The second partial product is formed by multiplying A1 by BiBo and shifted one
position to the left. The two partial products are added with two half adder (HA) circuits.

2-bit by 2-bit Binary multiplier

B1 Bo Ao
Bi Bo
At An | l
AnB1 AnBo L_,J
A1B1 A1Bo M B4 Bo

C: @ G« G [lJ HU

A

¢ G (65} Cy

Usually there are more bits in the partial products and it is necessary to use full
adders to produce the sum of the partial products. The least significant bit of the product
does not have to go through an adder since it is formed by the output of thefirst AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a
similar fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as
many levels as there are bits in the multiplier. The binary outputin each level of AND gates
are added with the partial product of the previous level to form a new partial product. The
last level produces the product. For | multiplier bits and K multiplicand bits we need (J x
K) AND gates and (J-1) k-bit adders to produce a product of J+K bits.

Consider a multiplier circuit that multiplies a binary number of four bits by a
number of three bits. Let the multiplicand be represented by B3, B2, B1, BO and the
multiplier by Az, A1, and Ao. Since K= 4 and J= 3, we need 12 AND gates and two 4-bit

adders to produce a product of seven bits. The logic diagram of the multiplier is shown
below.

20

Aq

Ay
& | U a]] J
1] ¥ ¥ ¥
A ddend Augend ‘
Cout 4Bt Binary Adder Cmn
Sum and output cany =
s
Ba Bz T By T Ba
| | l

¥ I ¥

Addend Augend

Cout 4.BnBinay Adder Cin

.||._J

Sum and output carry

vt o

T
*
Cy C. C, C; C, c, ¢

4-bit by 3-bit Binary multiplier

PARITY GENERATOR/ CHECKER:

A Parity is a very useful tool in information processing in digital computers to
indicate any presence of error in bit information. External noise and loss of signal strength
causes loss of data bit information while transporting data from one device to other
device, located inside the computer or externally. To indicate any occurrence of error, an
extra bit is included with the message according to the total number of 1s in a set of data,
which is called parity.

If the extra bit is considered O if the total number of 1s is even and 1 for odd
quantities of 1s in a set of data, then it is called even parity. On the other hand, if the extra
bitis 1 for even quantities of 1s and 0 for an odd number of 1s, then it is called oddparity.

21

The message including the parity is transmitted and then checked at the receiving
end for errors. An error is detected if the checked parity does not correspond with the one
transmitted. The circuit that generates the parity bit in the transmitter is called a parity
generator and the circuit that checks the parity in the receiver is called a parity checker.

Parity Generator:

A parity generator is a combination logic system to generate the parity bit at the
transmitting side. A table illustrates even parity as well as odd parity for a message
consisting of three bits.

3-bit Message Odd Party | Even Parity
B bit bit

k=1 = I I K=l k=)
olr|o|lr|ol~|ol O
mlmlolmr|lolo] -
olo|lr|lo|lr|r|o

NGIRIREIEEER]

1 1 0 1
Parity generator truth table for even and odd parity

If the message bit combination is designated as A, B, C and Pe, Po are the even
and odd parity respectively, then it is obvious from table that the boolean expressions
of even parity and odd parity are
Pe=A_(B_C)and
Po=(A B ().

K-map Simplification:

BC

Ll 210

Ho

P= A’B’C+ A’BC’+ A’B’C’+ ABC
=A’ (B'C+ BC’) + A (B’C’+ BC)
=A’(BLC)+A (B_CY

=A (B_C)

22

Logic Diagram:
A
B
P
C /j :

3-bit even parity generator

Parity Checker:

The message bits with the parity bit are transmitted to their destination, where
they are applied to a parity checker circuit. The circuit that checks the parity at the
receiver side is called the parity checker. The parity checker circuit produces a check bit
and is very similar to the parity generator circuit. If the check bit is 1, then it is assumed
that the received data is incorrect. The check bit will be 0 if the received data is correct.
The table shows the truth table for the even parity checker.

4-Bit Received Parity Error
A B C D Check (PEC)
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

23

K-map Simplification:

PEC= A’B’ (C'D+ CD’) + A’B (C'D’+ CD) + AB (C'D+ CD’) + AB’ (C’'D’+ CD)
=A’B’ (C_D) + A’B (C_D)’ + AB (C/ D) + AB’ (C_D)’
= (A’B’+ AB) (C_D) + (A’B+ AB’) (C . DY’
=(A_B)’ (C_D)+ (A_B) (C_D)’
=(ALB) L (C_D)

Logic Diagram:

PEC
C
D
4-bit even parity checker

MAGNITUDE COMPARATOR:

A magnitude comparator is a combinational circuit that compares two given
numbers (A and B) and determines whether one is equal to, less than or greater than the
other. The output is in the form of three binary variables representing the conditions A
= B, A>B and A<B, if A and B are the two numbers being compared.

A—> —> A>B
Magnitude | L A-F
Comparator

B—» —— A<B

Block diagram of magnitude comparator

24

For comparison of two n-bit numbers, the classical method to achieve the
Boolean expressions requires a truth table of 22n entries and becomes too lengthy and
cumbersome.

2-bit Magnitude Comparator:
The truth table of 2-bit comparator is given in table below—

Truth table:

Inputs Outputs

=
2
=
2
>
V
oy

A=B

>
A
es]

—_

(U TSR IR N U N g puN K1 E=) E=1 =1 =1 k=1 k=1 k=)
Uy QU JEN "N K= E=1 =1 =1 I I I I\ k=1 k=1 k=1 k=]
[N = =1 Y I =1 = I N = E= 1 N SN R =1 =)
~lolr|lolr|lolr|lo|lr|lol~|lolr|ol—|o
olr|lr|r|lo|lolr|r|lo|lolo|r|o|lo|o|lo
—lolo|lololr|olo|lo|lol—|ololo|lo

olo|lo|lo|r|ololo|lr|r|lololr|~|r—|lo

K-map Simplification:

25

A>B = AoB1'Bo’+ A1B1'+ A1AoBo” A=B = A1’A¢’B1’Bo’+ A1’AgB1’Bo+
A1A0B1Bo+ A1A0'B1Bo’

= A1'B1’ (Ao'Bo’+ AoBo) + A1B1 (AoBo+ Ao'Bo’)
= (Ao © Bo) (A1 © B1)

For A<B

A<B = A1"Ao'Bo+ Ao’B1Bo+ A1'B1

Logic Diagram:

26

.

=

B1 B

ASB = AgByBy'+ AiBy+
KaArBe

! . l—- A=B= (Ap D Bo) (%1 2Ba)-
A THUNE T YU W S T — jI: J_]

Acl= As'Ac'Bo+ Ao'BiBo+
A'Bi

2- bit Magnitude Comparator
4-bit Magnitude Comparator:

Let us consider the two binary numbers A and B with four digits each. Write
the coefficient of the numbers in descending order as,

A = A3A2A1Ao0
B = B3 B2 B1 Bo,

Each subscripted letter represents one of the digits in the number. It is observed from the
bit contents of two numbers that A = B when A3z = B3, A2 = B2, A1= B1and Ao = Bo. When the
numbers are binary they possess the value of either 1 or 0, the equality relation of each
pair can be expressed logically by the equivalence function as

Xi = AiBi + Ai'Bi’ fori=1,2,3,4.
Or, Xi=(A _B). or,Xi'=A _B
or, Xi = (AiBi' + Ai'Bi)'.

27

where,
Xi =1 only if the pair of bits in position i are equal (ie., if both are 1 or both are 0).

To satisfy the equality condition of two numbers A and B, it is necessary that all Xi
must be equal to logic 1. This indicates the AND operation of all Xi variables. In other
words, we can write the Boolean expression for two equal 4-bit numbers.

(A = B) = X3X2X1 Xao.

The binary variable (A=B) is equal to 1 only if all pairs of digits of the two numbers
are equal.

To determine if A is greater than or less than B, we inspect the relative magnitudes
of pairs of significant bits starting from the most significant bit. If the two digits of the
most significant position are equal, the next significant pair of digits is compared. The
comparison process is continued until a pair of unequal digits is found. It may be
concluded that A>B, if the corresponding digit of A is 1 and B is 0. If the corresponding
digit of A is 0 and B is 1, we conclude that A<B. Therefore, we can derive the logical
expression of such sequential comparison by the following two Boolean functions,

(A>B) = A3B3' +X3A2B2’ +X3X2A1B1" +X3X2X1A0Bo’
(A<B) = A3'B3 +X3A2'B2 +X3X2A1'B1 +X3X2X1A0'Bo

The symbols (A>B) and (A<B) are binary output variables that are equal to 1 when
A>B or A<B, respectively.

The gate implementation of the three output variables just derived is simpler
than it seems because it involves a certain amount of repetition. The unequal outputs
can use the same gates that are needed to generate the equal output. The logic
diagram of the 4-bit magnitude comparator is shown below,

28

U

(A<B)
QP

00

)

L/ (A>B)

QP

Y (A=8)
-, ,.

4-bit Magnitude Comparator

The four x outputs are generated with exclusive-NOR circuits and applied to
an AND gate to give the binary output variable (A=B). The other two outputs use the
x variables to generate the Boolean functions listed above. This is a multilevel
implementation and has a regular pattern.

CODE CONVERTERS:

binary code to another code of binary code. The following are some of the most

A code converter is a logic circuit that changes data presented in one type of

commonly used code converters:

i.

il.
iii.
iv.
V.
Vi.
vil.
viii.
ix.

1.

Binary-to-Gray code
Gray-to-Binary code
BCD-to-Excess-3
Excess-3-to-BCD
Binary-to-BCD
BCD-to-binary
Gray-to-BCD

BCD-to-Gray

84 -2 -1 to BCD converter

Binary to Gray Converters:
The gray code is often used in digital systems because it has the advantage that

only one bit in the numerical representation changes between successive numbers. The

truth table for the binary-to-gray code converter is shown below,

Truth table:

Decima Binary code Gray code
B3 B2 B1 Bo G3 G2 G1 Go
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

30

K-map simplification:
For G3 For 2
B, B B; B

Gs=Bs G:=B;3'B2+B;sBy’
=Bs; ® B>

For Go

G1=B2'B1+B:By’ Go=B1'Bo+B1Bo’
=B2® By =B1® Bo

Now, the above expressions can be implemented using EX-OR gates as,

31

Logic Diagram:

Binary

Bo . Gray

Go (LSB)
Bi—

G1
B2 —4:)

G

B3 G3 (MSB)

2. Gray to Binary Converters:
The truth table for the gray-to-binary code converter is shown below,

Truth table:
Gray code Binary code
G3 G2 G1 Go B3 B2 B1 Bo
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 0
0 1 1 1 0 1 0 1
1 0 0 0 1 1 1 1
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0

From the truth table, the logic expression for the binary code outputs can be written as,
G3=Y¥m(8,9,10,11,12,13,14,15)
G2=Ym (4,5,6,7,8,9,10,11)
Gi1=Y¥m(2,3,4,5,8,9,14,15)
Go=Ym(1,2,4,7,8,11,13,14)

32

K-map Simplification:

For B3 For B2
G1Go G1Go

GG\ 00 01 11 10 GG\ 00 01 11 10
00| O 0 0 0 ool O 0 0 0
11 0 0 0 0
10

Bs=Gs; B2=G3'G:+G 3G’

=Gs®G2
For B1 For Bo

From the above K-map,
B3= G3

B2= G3‘G2+ G3G2*
B2= G3__G2
B1= G3‘G2'G1+ G3'G2G1'+ G3G2G1+ G3G2'G1’
= G3' (G2'G1+ G2G1Y) + G3 (G2G1+ G2'G1)
= G3* (G21UG1) + G3 (G2 _G1)* [xTy=x'y+xy], [(x Ty) = xy+ x'y‘]
Bi=G3_ G2_G1

Bo= G3‘G2* G1‘Go+ G3'‘G2_G1Go'+ G3G2G1_Go+ G3G2G1 Go'+ G3'‘G2G1‘Go‘+
G3G2_G1‘Go'+ G3‘G2G1Go+ G3Gz2_G1 Go.
= G3'G2* (G1°Go+ G1Go*) + G3G2 (G1°Go+ G1Go) + G1‘Go’ (G3‘Gz+ G3G2) +
G1Go (G3‘Gz+ G3Gz2).
= G3'Gz2" (Go _G1) + G3Gz (Go ' G1) + G1°Go* (G2 _G3) +G1Go (Gz _G3).
= Gol IG1 (G3‘G2* + G3G2) + G2 1G3 (G1‘Go‘+G1Go)
= (Go_G1) (G2 _G3)+ (G2 _G3) (Go _G1) [x "y =xy+ xy]
Bo=(Go _G1) (Gz _G3).

33

Now, the above expressions can be implemented using EX-OR gates as,

Gray

R

Binaty g, (s

G1

1

) >-

G2

1

) >-

Gs3

——— B>

B3

(MSB)

Logic diagram of 4-bit gray-to-binary converter
3. BCD -to-Excess-3 Converters:

Excess-3 is a modified form of a BCD number. The excess-3 code can be derived

from the natural BCD code by adding 3 to each coded number.

For example, decimal 12 can be represented in BCD as 0001 0010. Now adding 3 to each digit
we get excess-3 code as 0100 0101 (12 in decimal). With this information the truth table for

BCD to Excess-3 code converter can be determined as,

Truth Table:
BCD code Excess-3 code
Decimal
B3 B2 B1 Bo E3 E2 E1 Eo
0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

From the truth table, the logic expression for the Excess-3 code outputs can be

written as,

Es=Y¥m (5,6,7,8,9) + Ya (10,11, 12, 13, 14, 15)
E2=Y¥m (1,2,3,4,9) +Ya (10,11, 12, 13,14, 15)
Ei=Ym (0,3, 4,7, 8) + Xa (10,11, 12,13, 14, 15)
Eo=Ym (0, 2, 4, 6, 8) + ¥a (10,11, 12,13, 14, 15)

34

K-map Simplification:

For E3
B, B
B:B:\ 00 01 11 10
o0l 0|0 |0 | o
01| O
11
10

Es= Bs+ B2 (Bo +B4)

For E1

Ei=B1'Bs"+ B1Bs
=B1®Bs

35

E:=B:B1'By'+ B>’ (Bo+ Bl)

For Eo

01 11

Logic Diagram:
BCD Code

B3 B2 B1 Bo

3;’ 3_; 3’; if_’ Excess-3 Code
Eo= Bo’
R\
D E1=Bo®B1
¥/

) E>=B2B1’Bo’
+ B2’ (Bo+ B1)

E3= B3+ B2 (Bo+ B1)

4, Excess-3 to BCD

Converter: Truth table:

Decimal Excess-3 code BCD code

Es E2 E1 Eo B3 B2 B1 Bo

3 0 0 1 1 0 0 0 0
4 0 1 0 0 0 0 0 1
5 0 1 0 1 0 0 1 0
6 0 1 1 0 0 0 1 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 0 1 0 1
9 1 0 0 1 0 1 1 0
10 1 0 1 0 0 1 1 1
11 1 0 1 1 1 0 0 0

12 1 1 0 0 1 0 0 1

36

From the truth table, the logic expression for the Excess-3 code outputs can be
written as,

B3=Ym(11,12) +¥a(0,1,2,13,14,15)
B2=Ym (7,8,9,10) + ¥ (0,1,2, 13, 14, 15)
Bi=¥m (5,6,9,10) + Ya (0,1,2,13, 14, 15)
Bo=¥m (4, 6,8,10,12) + Y4 (0, 1,2, 13, 14, 15)

K-map Simplification:
For B3
Ei1Eo
EsE2\ 00 01 11 10

00| X X 0 X

o1| O 0 0 0

11
10
Bs= E;sEx+ EsE1Eo B:=E’E:"+ E:E1Eo+ EsE4Eo”
For B1 For Bo
01 11 10
x| o fx
0|0 J1
X | x Bx
1
Bi= Ei'Eo+ 1Ky’ Bo=Eo’
- E6k

Now, the above expressions the logic diagram can be implemented as,

37

Logic Diagram:
Excess-3 Code

Es E: Ex Eo

YIY[v]y s cot

Bo=Eo’

B1=E1®Eo

B2= E2’E1’+ E2E1Eo+ EsE1Eo’

uéUT

B3= E3E>+ E3E1Eo

5. BCD -to-Binary Converters:
The steps involved in the BCD-to-binary conversion process are as follows:

1. The value of each bit in the BCD number is represented by a binary equivalent
or weight.
2. All the binary weights of the bits that are 1‘s in the BCD are added.
3. The result of this addition is the binary equivalent of the BCD number.
Two-digit decimal values ranging from 00 to 99 can be represented in BCD by two 4-
bit code groups. For example, 1910 is represented as,

1 9
b ot
0001 1001

The left-most four-bit group represents 10 and right-most four-bit group represents 9.
The binary representation for decimal 19 is 1910 = 11001..

Binary

BCD Code

Bo

B1

B2

B3

B4

For A

K-map Simplification:

A=Bs

39

B, B, Bi=0
B:B\ 00 01 11 10 B:B; 10
ool o [o M1 [1 0
o1l 0 |0 W1 |1 0
11| X b ¢ 4 X . 4
0] 0|0 fx | X %

B=BiB:'+ B:'B:
- Bj@B-;

ForC
Bi=1

C=B:'B: + B:B:" + B:B:"B4

ForD
B, B Bs=0
BB\ 00 01 11 10 BB,
o0lo0 [0 |0 |o0
01{ 0 |0 |0 |oO
1nmEgxX | X| X | X
o1 y | X X 10 0 0 X X

D=B:'Bs + BsBs'B:" + BsBs'B+’

40

BB b4=0 Wi, et
B:B_ 00 01 11 10 B:B:_ o0 01 11 10
ool 0o [0 |0 | 0 ool o |o |0 | o
o1l 0 [0o |0 | 0o o1l 0 | O
11 X X x X 11
E= BiB;s + BsB:B,y

From the above K-map,
A= Bo

B= B1B4‘'+ B1'B4
=Bi1. Bs

C= B4'Bz + B2B1’ + B4B2'B1

D= B4'B3 + B4B3'B2’ + B4B3’Bt’

E= B4B3 + B4B2B1

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

41

B4

BCD Caode

B:

B2

Y

Y

B

iBa

Binary Code

uyu UéU?

42

A=B

B=B:@Bs

C=Bis'B: + B:By
+ BsB:"By

D= By'By + B.Bs'B:"
+ E-[B,}'Bq'

E= ByB: + BsB:B,

6. Binary to BCD Converter:
The truth table for binary to BCD converter can be written as,

Truth Table:
. Binary Code BCD Code
Decimal
D C B A B4 B3 B2 B1 Bo
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1
2 0 0 1 0 0 0 0 1 0
3 0 0 1 1 0 0 0 1 1
4 0 1 0 0 0 0 1 0 0
5 0 1 0 1 0 0 1 0 1
6 0 1 1 0 0 0 1 1 0
7 0 1 1 1 0 0 1 1 1
8 1 0 0 0 0 1 0 0 0
9 1 0 0 1 0 1 0 0 1
10 1 0 1 0 1 0 0 0 0
11 1 0 1 1 1 0 0 0 1
12 1 1 0 0 1 0 0 1 0
13 1 1 0 1 1 0 0 1 1
14 1 1 1 0 1 0 1 0 0
15 1 1 1 1 1 0 1 0 1

From the truth table, the logic expression for the BCD code outputs can be written as,
Bo=Ym(1,3,5,7,9,11,13,15)
Bi1=Y¥m(2,3,6,7,12,13)
B2=Ym (4,5, 6,7,14,15)
B3=Ym(8,9)
Bs=Ym (10,11, 12,13, 14, 15)

K-map Simplification:

BA BA For By
DCENL 00 10
00| 0 0
o1| © 0
11| O 0
1000 1| 18 0
Bi=A B:=DCB'+D'B

43

For B;
DEN 00 01 11 10

1m0 fo]o|o
10 0|0
Bs=DC'B’

B:=DC+DB

From the above K-map, the logical expression can be obtained

as, Bo= A

B1=DCB’+D’B

B2=D’C+ CB

B3=DC’B’

Bs=DC+ DB

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

44

BCD Code

Bo= A

B:i=DCB'+ DB

=

7. Gray to BCD Converter:

D
)

B;=DC'B’

D
"I B:=DC+ DB
= 3o

The truth table for gray to BCD converter can be written as,

Truth Table:

Gray Code

BCD Code

(o)
@

)
N
2
[y

o]
S

e}
Y
e}
w
™
N
e}
ey
e}
(=)

[l E=0 {==] R} Jeo] e} N} Ne) N}

[ERY U Ui JUN JEN E=1 E=1 K=] k=)
olo|lo|—|r|r|r|lolo

(e} Neol B B el Ranll Be N B e

olo|lo|lo|lo|o|o|o|o
~lo|lololo|lo|lo|lo|lo
ol |lolo|lo]lo
olr|r|lololr|r|lolo
ol |lol~|lolr|lol~|o

45

U [URY) U] JURN) [FURN) U [JUEN
olo|lo|lo|r|r|+—
o|lo|lr|r|r]|~|lo

=1 =Y =Y =1 E=1 =Y =

[UN U\ JURN) [N (U] RN Y)
olo|lolo|o|o|—

|l Rl K=J k=1 k=] N =]} N o]

(=] Nl Bl Bl el Ran)l aw)

—lolr|lolr|ol-

K-map Simplification:

Bo= (Go®G1) @ (G28G3)

G].GO FOI'BZ
GG\ 00 01 11 10

Bo= G'3Ga2+ G3G2G"1

Bi= G2G1+ G"3G2G"y

Gl GO FOI’ BJ
GG\ 00 01 11 10
oo|lo|ol|lo]o
oil 0o |lo o] o
11 0| o0
10 0 0 0 0
Bi= G3G2G"1

46

G For B;
GGaN, 60 D 13 4D

44

G ENTEE

Ba= GiG "2+ G3G1
From the above K-map, the logical expression can be obtained as,
Bo= (GoLG1) L (G2LG3)

B1= G'2G1+ G'3G2G’1

B2= G’3G2+ G3G'2G'1

B3= G3G2G'1

Ba= G3G"2+ G3G1

10

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

47

Gs

Gray Code

G

G

G

1 BCD Code
D Bi- (Ge8G1) ® (G28G)

Bi= G'9G1+ G'3G2G"

Ba= G'3G2+ G3G"2G"1

\ Bi= G3G2G"

Bi= G3G+ G3G1

8. BCD to Gray Converter:

The truth table for gray to BCD converter can be written as,

Truth table:

BCD Code (8421) Gray code
B3 B2 B1 Bo G3 G2 G1 Go
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0

48

0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
K-map Simplification:
For G3
B; B,
BsB:\ 00 01 11 10

00| O 0 0 0

o1l O 0 0 0

11

10

G1=B2'B1+ B2B¢’ Go=B1'Bo+ B1B¢’
=B:® B4 =B1® Bo

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

49

Be

G e E—‘

BB

G5

’ ﬁx a 'E;E‘T’Eu

B
H

Bz [Ba

9. 84 -2 -1to BCD Converter:

The truth table for 8 4 -2 -1 to BCD converter can be written as,

Truth Table:

BCD Code

Bo

B1

B2

B3

B4

Gray Code

50

K-map Simplification:
BA For Be

DENC 00 01 11 10
S

00| O [[X | X||] X

o1| O I 0

110 |1 | 1} o

10| © 1 1 0

For B:
BA -

DCN 00 01 11 10
0

00 X XJ_XJ
af(1} o]0 |o
0
0

171 0| O 0

1 111

10

B:= D'CB’A’+ C'A+C'B
= D'CB’A’+ C'(A+B)

BA For B:

DCN . 00 01 11 10
00 0 | X | X | X

o1 © 0 0 0

ul[J 1] o |O]

wolololo]o

Bs= B'CD+ A’CD
= CD(A’+B")

BA For By

DCNC 00 01 11 10

ooor@x@
OIOL}JO 1
1|1} oo |o

w0l 0 MY o |1

Bi= DCB’A’+ D'B’A+ D'BA’+ C'B’A+ C'BA’
= A'B'CD+ D'(B’A+BA")+ C'(B’A+ BA)
= A'B'CD+ D'(A®B) + C'(A®B)
= A’'B'CD+ (A®B) (C'+D")

DCN. 00 01 11 10
oo O X X X

o1| 0|0]| 0|0

1|0 0@0
w0l oo |0

Bi;= ABCD+ A’B'C'D
= D(ABC+ A'B'C))

From the above K-map, the logical expression can be obtained as,

51

Bo=A

Bi= A’'B’CD+ (A ~B) (C'+D’)
B2= D’CB’A’+ C’ (A+B)
B3=D (ABC+ A’B’C’)

Bs= CD (A’+B’)

Logic Diagram:

8421 Code
D |c |B |A

e e

ﬂ Bo
L J

)D—L Bi1
D>

)

L/ B
> |

]—} By

vje

52

DECODERS:

A decoder is a combinational circuit that converts binary information from _n‘
input lines to a maximum of _2»‘ unique output lines. The general structure of

decoder circuit is -

n-data
puts

Enable —*

inputs __*_.

n.on

Decoder

———
——

General structure of decoder

Possible
20 outputs

The encoded information is presented as _n‘inputs producing _2»‘ possible outputs.
The 2noutput values are from 0 through 2n-1. A decoder is provided with enable inputs to
activate decoded output based on data inputs. When any one enable input is unasserted,

all outputs of decoder are disabled.

Binaryv Decoder (2 to 4 decoder):

A binary decoder has _n‘ bit binary input and a one activated output out of 2n
outputs. A binary decoder is used when it is necessary to activate exactly one of 2n outputs

based on an n-bit input value.

A B

[y

Enable (EN)

53

2-to-4 Line decoder

Here the 2 inputs are decoded into 4 outputs, each output representing one of the
minterms of the two input variables.

Inputs Outputs
Enable A B Y3 Y2 Y1 Yo
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

As shown in the truth table, if enable inputis 1 (EN= 1) only one of the outputs
(Yo - Y3), is active for a given input.
The output Yo is active, ie., Yo= 1 when inputs A= B= 0,
Y1 is active when inputs, A= 0 and B=1,
Y2 is active, when input A=1 and B=0,
Y3 is active, when inputs A= B=1.

3- to-8 Line Decoder:

A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Yo- Y7). Based
on the 3 inputs one of the eight outputs is selected.

The three inputs are decoded into eight outputs, each output representing one of
the minterms of the 3-input variables. This decoder is used for binary-to-octal conversion. The
input variables may represent a binary number and the outputs will represent the eight
digits in the octal number system. The output variables are mutually exclusive because
only one output can be equal to 1 at any one time. The output line whose value is equal to
1 represents the minterm equivalent of the binary number presently available in the input
lines.

Inputs Outputs
A B C Yo Y1 Y2 Y3 Ya Ys Yo Y7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

54

-
=

I

T

o

iy
'™

et
(-1

i
o

TIT1T

3-to-8 line decoder

BCD to 7-Segment Display Decoder:

A seven-segment display is normally used for displaying any one of the decimal
digits, 0 through 9. A BCD-to-seven segment decoder accepts a decimal digit in BCD
and generates the corresponding seven-segment code.

55

£ 4 ¢

Each segment is made up of a material that emits light when current is passed
through it. The segments activated during each digit display are tabulated as—

Digit Display Segments Activated
a
f| b
0 a,b,cdef
C
“ld_
b
1 b, c
c
a
b
2 i a,b,d,eg
ld_
a
b
3 i ar b, CI d' g
d C
f| b
4 .- b,cf, g
c
f
5 i a,cdfg
C
d_

56

o8 2 oD
— < o
¢ © . <
< < = g
. : g -
3 @ . e
o <A i
¢ < c
o £ [£ (7
a_ o.o_ d_a_ a_ nﬁ_ d_ 3_ d_
ot -7] [@ St
O D~ o] ()

Truth table:

7-Segment code

BCD code

A

Digit

57

K-map Simplification:

cD For (a) EE For
ABNC 00 01 11 10 ABNC 00 01 11 10
00 1
(1]
01 1
u
10 1
a= A+ C+ BD+ B'D' b=B'+ C'D'+ CD
d
_ For (c) o For (d)
ABN 00 01 11 10 ABN 00, 01 11 10

c=B+C'+D d=B'D'+ CD'+ BC'D+ B'C+ A

il o For ()

AB 00 AB 11
00| 1
01| O
i I
10| 1

e=B'D'+ CD' f= A+ C'D'+ BC'+ BD'

58

AEN 00 D1 11 10
ow| o | o1 |1

1| 1) o 2

nlix | x| =[] x

] B 1| X |1X

g= A+ BC'+ BfC+ CIY

Logic Diagram:

59

J

sjss]sses] v
%th

b

\

BCD to 7-segment display decoder

Applications of decoders:

1. Decoders are used in counter system.
2. They are used in analog to digital converter.
3. Decoder outputs can be used to drive a display system.

60

ENCODERS:

An encoder is a digital circuit that performs the inverse operation of a decoder.
Hence, the opposite of the decoding process is called encoding. An encoder is a
combinational circuit that converts binary information from 2ninputlines to a maximum of
_n‘unique output lines.

The general structure of encoder circuit is -

—
=
2t-data . —>
inputs - . =" dat
: : n-data
: Encoder : outputs

Enable ——*™
mputs ——w

General structure of Encoder

It has 2ninput lines, only one which 1 is active at any time and _n‘ output lines. It
encodes one of the active inputs to a coded binary output with _n‘ bits. In an encoder, the
number of outputs is less than the number of inputs.

Octal-to-Binary Encoder:
It has eight inputs (one for each of the octal digits) and the three outputs that

generate the corresponding binary number. It is assumed that only one input has a value of
1 at any given time.

Inputs Outputs

S
(=)
=
[y
=
N
=)
w
=)
£y
=)
v
=)
=)
=)
~
>
o}

olo|lo|lo|lo|lo|o|—
olo|lo|lo|lo|lo|r|o
olo|lo|lo|lo|l—|o|lo
olo|lo|lolr|olo|lo
olo|lo|lr|lo|lo|lo|o
olo|lr|lolo|lo|lo|lo
olr|lo|lo|lo|lo|lo|lo
Rlo|lo|lo|lo|lo|lo|lo
Rl R R|lo|lo|lo|lo
R |lo|lolr|r|lolo
= = =l =l I k=] o)

The encoder can be implemented with OR gates whose inputs are determined
directly from the truth table. Output z is equal to 1, when the input octal digit is 1 or 3
or 5 or 7. Output y is 1 for octal digits 2, 3, 6, or 7 and the output is 1 for digits 4, 5, 6 or
7. These conditions can be expressed by the following output Boolean

functions: z= D1+ D3+ Ds+ D~

61

y= D2+ D3+ De+ D7
X= D4+ Ds+ Dé+ D7

The encoder can be implemented with three OR gates. The encoder defined in the
below table, has the limitation that only one input can be active at any given time. If two
inputs are active simultaneously, the output produces an undefined combination.

For eg., if Dsand Desare 1 simultaneously, the output of the encoder may be 111.
This does not represent either Ds or D3. To resolve this problem, encoder circuits must
establish an input priority to ensure that only one inputis encoded. If we establish a higher
priority for inputs with higher subscript numbers and if Dzand Dsare 1 at the same time, the
output will be 110 because Ds has higher priority than Ds.

D7 D¢ Ds D: D3 D2 D1 Do

x= Dus+ D5+ De+ D7

y= D2+ D3+ De+ D>

z= D1+ D3+ Ds+ D>

YYY

Octal-to-Binary Encoder

Another problem in the octal-to-binary encoder is that an output with all 0‘s is
generated when all the inputs are 0; this output is same as when Do is equal to 1. The
discrepancy can be resolved by providing one more output to indicate that atleast one
input is equal to 1.

Priority Encoder:

A priority encoder is an encoder circuit that includes the priority function. In
priority encoder, if two or more inputs are equal to 1 at the same time, the input having
the highest priority will take precedence.

In addition to the two outputs x and y, the circuit has a third output, V (valid bit
indicator). It is set to 1 when one or more inputs are equal to 1. If all inputs are 0, there
is no valid input and V is equal to 0.

The higher the subscript number, higher the priority of the input. Input D3, has the
highest priority. So, regardless of the values of the other inputs, when Dzis 1, the output
for xy is 11.

D2 has the next priority level. The outputis 10, if D2= 1 provided D3= 0. Theoutput
for D1is generated only if higher priority inputs are 0, and so on down the priority levels.

Truth table:
Inputs Outputs
Do D1 D2 D3 X y A"
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

Although the above table has only five rows, when each don‘t care condition is
replaced first by 0 and then by 1, we obtain all 16 possible input combinations. For
example, the third row in the table with X100 represents minterms 0100 and 1100. The
don‘t care condition is replaced by 0 and 1 as shown in the table below.

Modified Truth table:

Inputs Outputs

y \"4
X 0
0 0 1

S
=]
=)
[y
=)
N
=)
w
»

o

_mk 00 Ok, ko ol okr|lo
OO R Rk OO, or ol rlolo
O R O R O R oOolRrRRR Rloololo
_ R Rl Rl m R oo o|lo o|lo|lo

63

K-map Simplification:

DoD4 20
00

00

01

11

10

D;s D:

K

Di Do

For X DD D:D;
01 11 10 10
X 0
0 0
0 0
0 0
x= D2+ D3

V= Do+ D1+ D2+ Ds
The priority encoder is implemented according to the above Boolean functions.

x=D:+ D3

V= D;+ D1D2

V= Do+ D1+ D:+ D3

e

Input Priority Encoder

64

MULTIPLEXER: (Data Selector)

A multiplexer or MUX, is a combinational circuit with more than one input line, one
output line and more than one selection line. A multiplexer selects binary information
present from one of many input lines, depending upon the logic status of the selection
inputs, and routes it to the output line. Normally, there are 2ninput lines and n selection
lines whose bit combinations determine which input is selected. The multiplexer is often
labeled as MUX in block diagrams.

A multiplexer is also called a data selector, since it selects one of many inputs and
steers the binary information to the output line.

—
2t -data ——ml .
mputg E MUX —— | Output S@lal
_& g
'n'- Control
signals

Block diagram of Multiplexer

2-to-1- line Multiplexer:
The circuit has two data input lines, one output line and one selection line, S.

When S= 0, the upper AND gate is enabled and Io has a path to the output.
When S=1, the lower AND gate is enabled and I1 has a path to the output.

- D

I

S —0—Do—
Logic diagram

The multiplexer acts like an electronic switch that selects one of the two sources.

Truth table:
S Y
0 Io
1 I1

65

4-to-1-line Multiplexer:

A 4-to-1-line multiplexer has four (2n) input lines, two (n) select lines and one
output line. It is the multiplexer consisting of four input channels and information of one
of the channels can be selected and transmitted to an output line according to the select
inputs combinations. Selection of one of the four input channel is possible by two selection
inputs.

Each of the four inputs lo through I3, is applied to one input of AND gate. Selection
lines S1and Soare decoded to select a particular AND gate. The outputs of the AND gate
are applied to a single OR gate that provides the 1-line output.

e
L4

“ 7

4-to-1-Line Multiplexer

Function table:

[l o el e
|l =0 E =]

To demonstrate the circuit operation, consider the case when S1So= 10. The AND
gate associated with input Izhas two of its inputs equal to 1 and the third input connected
to I2. The other three AND gates have atleast one input equal to 0, which makes their
outputs equal to 0. The OR output is now equal to the value of Iz, providinga path from the
selected input to the output.

«

The data output is equal to Ioonly if S1= 0 and So= 0; Y= 10S1‘So".
The data output is equal to I1 only if S1= 0 and So= 1; Y= 11S1‘So.
The data output is equal to Iz only if S1= 1 and So= 0; Y= 12S1So".
The data output is equal to I3 only if S1= 1 and So= 1; Y= [3S1So.

When these terms are ORed, the total expression for the data output s,

Y= 10S1’So’+ 11S1’So +12S1S0’+ I3S1So.

As in decoder, multiplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive state, the outputs are disabled, and when
itis in the active state, the circuit functions as a normal multiplexer.

Quadruple 2-to-1 Line Multiplexer:

Ao \
J D—' Yo
A \
) , >—Y1
A \
_J _D—> Y2
As \
_J ‘D—»Y:,
Bo
) Function table:
E S OutputY
B1 \ 1 x All0’s
_J 0 0 Select A
0 1 Select B
B2 \
.7
B3 \
|7
S
(SelecED" >0_
E
(Enable) >c

67

This circuit has four multiplexers, each capable of selecting one of two input lines.
Output Yocan be selected to come from either A0 or BO. Similarly, output Y1 may have the
value of Al or B1, and so on. Input selection line, S selects one of the lines in each of the
four multiplexers. The enable input E must be active for normal operation.

Although the circuit contains four 2-to-1-Line multiplexers, it is viewed as a circuit
that selects one of two 4-bit sets of data lines. The unit is enabled when E= 0. Then if S= 0,
the four A inputs have a path to the four outputs. On the other hand, ifS=1, the fourB
inputs are applied to the outputs. The outputs have all 0‘s when E= 1, regardless of the
value of S.

Application:

The multiplexer is a very useful MSI function and has various ranges of applications
in data communication. Signal routing and data communication are the important
applications of a multiplexer. It is used for connecting two or more sources to guide to a
single destination among computer units and it is useful for constructing a common bus
system. One of the general properties of a multiplexer is that Boolean functions can be
implemented by this device.

Implementation of Boolean Function using MUX:

Any Boolean or logical expression can be easily implemented using a multiplexer.
If a Boolean expression has (n+1) variables, then _n‘ of these variables can be connected
to the select lines of the multiplexer. The remaining single variable along with constants
1 and 0 is used as the input of the multiplexer. For example, if C is the single variable, then
the inputs of the multiplexers are C, C, 1 and 0. By this method any logical expression can
be implemented.

In general, a Boolean expression of (n+1) variables can be implemented using a
multiplexer with 2n inputs.

1. Implement the following boolean function using 4: 1 multiplexer,
F(A B,C)=Ym (1, 3,5, 6).
Solution:
Variables, n= 3 (A, B, C)
Select lines=n-1 =2 (S1, So)
2n-1to MUX ie., 22to 1 =4 to 1 MUX

Input lines= 21"1 = 22 = 4 (Do, D1, D2, D3)

Implementation table:

Apply variables A and B to the select lines. The procedures for implementing the
function are:

68

i. Listthe input of the multiplexer
ii. List under them all the minterms in two rows as shown below.

The first half of the minterms is associated with A’ and the second half with A. The given
function is implemented by circling the minterms of the function and applying the
following rules to find the values for the inputs of the multiplexer.

1. If both the minterms in the column are not circled, apply 0 to the corresponding
input.

2. If both the minterms in the column are circled, apply 1 to the
corresponding input.

3. If the bottom minterm is circled and the top is not circled, apply C to the input.

4. If the top minterm is circled and the bottom is not circled, apply C to the input.

Do D1 D> D3

(—;0@2@
(5)

7

(‘ (1

Multiplexer Implementation:

(:1
! 0
’3 __-1‘-7 Do
C 1 D1 4: 1- Y
D> MUX
Ds
51 So
A |
B

69

2.F(x,y,2)=Ym(1,2,6,7)
Solution:

Implementation table:

L Y

Do D1 D2 | D3
: [[O]0)] 5
JEXE (7)
0 zZ 1 z
Multiplexer Implementation:
VA
L
TL— Do
z D1 4:1
D MUX
Ds
51 So

3.F(ABC)=Y¥m(1,2,4,5)
Solution:
Variables, n= 3 (A, B, C)

Selectlines=n-1 =2 (S1, So)
2n-1to MUX e, 22to 1 =4 to 1 MUX

Input lines= 2™1 = 22 = 4 (Do, D1, D2, D3)

Implementation table:

Do D1 D> | D3
= 3 @@ 3
¢ |Gyl s | 7

1

(:‘

70

Multiplexer Implementation:

(1
Do
\/_ ! 4:1
C K % X
D2
L—O Ds
= 51 So
A |
B
4.F(P,Q,R,S)=Y¥m (0,1, 3,4,8,9,15)
Solution:
Variables, n=4 (P, Q, R, S)
Select lines= n-1 = 3 (Sz, S1, So)
2n-1to MUX i.e,, 23to 1 = 8to 1 MUX
Input lines= 2""1 = 23 = 8 (Do, D1, D2, D3, D4, Ds, Ds, D7)
Implementation table:
Do D1 D2 D3 | Dy Ds Ds Ds
s [OQIO] 2 [5 |6 | 7
s |GG 10 | 12| 13| 14 [(5)
1 1 0 | S| S 0 0 S

71

Multiplexer Implementation:

<

5. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer

Lol
Ill

S

S:1

MUX

S1

So

F(A B,C,D)=Ym(0,1,2,4,6,9, 12, 14)

Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (Sz, S1, So)

2n-1to MUX ie., 23to 1 =8to 1 MUX
Input lines= 21 = 23 = 8 (Do, D1, D2, D3, D4, Ds, De, D7)

Implementation table:

—— Y

Do D1 D | D3 | Ds Ds Ds D>

b (O[] 2 [()] s 7
10 | 11 @ 13 15

5| 1| D|lo| 1] 0| 1]o0

72

Multiplexer Implementation (Using 8: 1 MUX):

ol
D—|><,D Do
D1
D2 —’Y
D g
Dy MUX
Ds
Ds
D7
[17- S2 81 So
A |
B
(:'
Using 4: 1 MUX:
D
5
D
Do
D1 4:1
D2 MUX
C B
_"_l>“ E g s
B
A :D—'Y
Ds 51 So
Ds 4:1
Ds MUX
Ds
E

0

6.F (A B,C,D)=¥m(1,3,4,11,12,13, 14, 15)

73

Solution:
Variables, n= 4 (A, B, C, D)
Select lines=n-1 = 3 (Sz, S1, So)
2n-1to MUX i.e,, 23to 1 =8 to 1 MUX

Input lines= 21 = 23 = 8 (Do, D1, D2, D3, D4, Ds, D¢, D7)

Implementation table:
Do D1 D> D3 | Ds Ds Ds D-
b | o (D] 2 [5 |6 |7
8 | o | o (G2} (3) | (9 |(5)
0 D 0 1 1 D D D
Multiplexer Implementation:
D
-1
D
Do
D1
DZ - Y
Ds S: 1
Da DNIUX
Ds
De
D=
o S> S1 So
= A |
B
c

7. Implement the Boolean function using 8: 1 multiplexer.
F (A, B, C, D) = A’'BD’ + ACD + B’CD + A'C’'D.

Solution:
Convert into standard SOP form,
= A‘BD‘ (C‘+C) + ACD (B‘+B) + B‘CD (A‘+A) + A‘C'D (B‘+B)
= A'‘BC‘'D‘ + A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD + AB‘CD +A‘B‘C‘'D+ A‘BC‘D

74

=A‘BC'D'+ A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD +A‘B‘C‘'D+ A‘BC‘D
=m4+ m6+ mll+ m15+ m3+ m1+ m5
=>m(1,3,4,5,6,11,15)

Implementation table:

Do D1 D> Ds | Ds Ds Ds D>

50@2

(3)
8910@12 13 14@
1

0 D 0 D D D D
Multiplexer Implementation:
D
[é
! = |
D Do
D1
DZ »Y
D g3
D4 MUX
Ds
Ds
D>
0 S S1 So
= .'-\4|
B
(1

8. Implement the Boolean function using 8: 1 multiplexer.
F(A,B,C,D)=AB'D + A’C’'D + B'CD’ + AC’D.

Solution:
Convert into standard SOP form,
=ABD (C+C) + A‘C'D (B‘+B) + B‘CD* (A‘+A) + AC'D (B‘+B)

75

=AB‘C'D + AB‘CD+ A‘B‘C'D+ A‘BC'D +A‘B‘'CD‘ + AB‘CD* +AB‘C‘'D+ ABC‘D
= AB‘C'D + AB‘CD+ A‘B‘C'D + A‘BC'D +A‘B‘CD* + AB‘CD‘+ ABC'D
=m9+ mll+ ml+ m5+ m2+ m10+ m13

=Ym(1,2,5,9,10,11,13).

Implementation Table:

Do [D1 [D2 | D3 | Ds | Ds | Dsé | Ds
5 | o OO 5 | 4 [N 6 | 7
o |+ (OO = ()] w [
0 1 1 D 0 1 0 0
Multiplexer Implementation:
i
Do
D1
b D» >Y
PR sa
Dy MUX
Ds
Ds
D~
0 S2 S1 So
= ._\4|
B
(:1

9. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer
F(wx,y,z)=Y¥m (1,2,3,6,7,8,11,12, 14)

Solution:

Variables, n=4 (w, X, y, z)
Select lines= n-1 = 3 (Sz, S1, So)

76

2n1to MUX i.e, 23to 1 = 8 to 1 MUX
Input lines= 21 = 23 = 8 (Do, D1, D2, D3, D4, D5, D, D7)

Implementation table:

Do D1 D2 | D3 | Ds Ds Ds D>
2 | o JOIEG) 4 | s ()
2 [(B)| o | 10 [(D(2)| 13 | (4)] 15
z z Z 1 z 0 1 z
Multiplexer Implementation (Using 8:1 MUX):
Z
[
i; o |
z
Do
D1
D2 »F
Ds g1
Ds MUX
Ds
Ds
D>
0 S2 S1 So
= WQ

(Using 4:1 MUX):

77

7z
Da
1 Di
D2 MUY
Ds
W
—4r—[>u E 51 Sp
X
:D““*‘F
}.-
Ds S1 So
. 4:1
Ds nUIX
D-
E
o

10. Implement the Boolean function using 8: 1 multiplexer
F(A B,CD)=[Im(0,3,5,8,9,10,12, 14)
Solution:

Variables, n= 4 (A, B, C, D)
Select lines= n-1 = 3 (Sz, S1, So)
2n-1to MUX i.e., 23to 1 =8to 1 MUX

Input lines= 21 = 23 = 8 (Do, D1, D2, D3, D4, Ds, D¢, D7)

Implementation table:

Do D> D3 | Ds Ds Ds

- I B 0
D 9 @

78

Multiplexer Implementation:

D
| i
D
l Do
0T Dy
D2 »F
Ds g
D4 MUX
Ds
De
c]' D+
S2 S1 So
ho |
B
(:1
11. Implement the Boolean function using 8: 1 multiplexer
F(AB,C,D)=Ym(0,2,6,10,11,12,13) +d (3,8, 14)
Solution:
Variables, n= 4 (A, B, C, D)
Select lines= n-1 = 3 (Sz, S1, So)
2n-1to MUX i.e., 23to 1 =8to 1 MUX
Input lines= 271 = 23 = 8 (Do, D1, D2, D3, D4, Ds, Ds, D7)
Implementation Table:
Do D1 D2 | D3 | Ds Ds Ds D7
5 ()] 1 DG 4 | 7
D s [00)|(D)IG2)] (3 |(1e)) 15
1 0 1 1 D D 1 0

79

Multiplexer Implementation:
D 1
o

L F

S:1
D4 MUX

2 51 S

o
||I

S
A
B
(1

12. An 8x1 multiplexer has inputs A, B and C connected to the selection inputs Sz,
S1, and So respectively. The data inputs lo to I7 are as follows
I1=I2=I7= 0; I3s=Is= 1; Io=I4+= D and Ie= D'.
Determine the Boolean function that the multiplexer implements.

Multiplexer Implementation:

P
]|

O

[

Ip
I
I: F
I
L S: 1
MUX
Is
Ig
I;
o S S1 So
= A —,
B
(:‘

80

Implementation table:

Iy I; I» Is I

I3 Iz
5012@4@
D9 10@@@14 15

1 1

D 0 0 D

F(AB,C,D)=¥m(3,5,6,8, 11, 12, 13).

DEMULTIPLEXER:

Demultiplex means one into many. Demultiplexing is the process of taking
information from one input and transmitting the same over one of several outputs.

A demultiplexer is a combinational logic circuit that receives information on a
single input and transmits the same information over one of several (2n) output lines.

, 8

. &

1 input signal—=| DEMUX | : 2.
5 =

— > .

[|

'n'- Control
signals

Block diagram of demultiplexer

The block diagram of a demultiplexer which is opposite to a multiplexer in its
operation is shown above. The circuit has one input signal, _n‘ select signals and 2n
output signals. The select inputs determine to which output the data input will be
connected. As the serial data is changed to parallel data, i.e., the input caused to appear
on one of the n output lines, the demultiplexer is also called a —data distributer| or a

—serial-to-parallel converter| .

81

1-to-4 Demultiplexer:

A 1-to-4 demultiplexer has a single input, Din, four outputs (Yo to Y3) and
two select inputs (S1 and So).

——= Yo

D: 1: 4 ——» Y1
m—-r DEMUX

L+ Y2

—* Y3

[

S1 So
Logic Symbol

The input variable Din has a path to all four outputs, but the input information
is directed to only one of the output lines. The truth table of the 1-to-4 demultiplexer is
shown below.

Enable

%¢]
=y
w
(=]

Din

e
(=]
3
oy
e
N
e
w

o

[N SN TSN N N I R S
Ll e i =1 K= K= =]
N =1 =l) Y k=1 =]
= k=1 I =1 I K= i =] I
olo|lo|lo|o|olr|lo|lo
olo|lo|lo|r|o|lolo|o
ololr|lo|lo|lo|lolo|o
= k=1 k=1 k=1 k=1 k=1 k=] k=1 k=]

Truth table of 1-to-4 demultiplexer

From the truth table, it is clear that the data input, Din is connected to the
output Yo, when S1= 0 and So= 0 and the data input is connected to output Y1 when Si=
0 and So= 1. Similarly, the data input is connected to output Yz and Y3 when Si1= 1 and
So= 0 and when Si1= 1 and So= 1, respectively. Also, from the truth table, the expression
for outputs can be written as follows,

82

Yo= S1'So’Din
Yi= S1’SoDin
Y2= S1So0’Din
Y3= S1SoDin
Din |S1 So

Yo

Y1

T

Y3

T

Logic diagram of 1-to-4 demultiplexer

Now, using the above expressions, a 1-to-4 demultiplexer can be implemented
using four 3-input AND gates and two NOT gates. Here, the input data line Din, is connected
to all the AND gates. The two select lines S1, So enable only one gate at a time

and the data that appears on the input line passes through the selected gate to the
associated output line.

1-to-8 Demultiplexer:

A 1-to-8 demultiplexer has a single input, Din, eight outputs (Yo to Y7) and
three select inputs (Sz,S1and So). It distributes one input line to eight output lines
based on the select inputs. The truth table of 1-to-8 demultiplexer is shown below.

Din S2 S1 So Y7 Yo Ys Ya Y3 Y2 Y1 Yo
0 X X X 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0

83

1 0 1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

Truth table of 1-t0-8 demultiplexer
From the above truth table, it is clear that the data input is connected with one of

the eight outputs based on the select inputs. Now from this truth table, the expression

for eight outputs can be written as follows:

Yo= S2'S1‘So‘Din
Y1= S2'S1‘SoDin
Y2= S2'S1S0‘Din
Y3= S2S1SoDin

Y4= S2 S1°S0'Din
Ys= S2 S1‘SoDin
Ys= S2 S1S0‘Din
Y7= S251S0Din

Now using the above expressions, the logic diagram of a 1-to-8 demultiplexer can be
drawn as shown below. Here, the single data line, Din is connected to all the eight AND
gates, but only one of the eight AND gates will be enabled by the select input lines. For
example, if S251So= 000, then only AND gate-0 will be enabled and thereby the data input,
Din will appear at Yo. Similarly, the different combinations of the select inputs, the input

Din will appear at the respective output.

84

Din | &

51

50

et
=

=

It
=

TTT

i

e

f

LT

L3

v

[

LY

-
=

-
-

1T

Logic diagram of 1-to-8 demultiplexer
1. Design 1:8 demultiplexer using two 1:4 DEMUX.
Din » Din ——= Yo
1: 4 ——» Y1
DEMUX
—— Y2
£ —"‘D" E 5 s ¥s
B
C
S1 S
»Din 2 . — Y3
1: 4 _'YS
DEMUX
—= Y
E — Y-

85

2. Implement full subtractor using demultiplexer.

Inputs Outputs
A B Bin Difference(D) | Borrow(Bout)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
Yol
Y1
Y2 D
1.8 X
Din=1—» DEMUX Yz
Ys = \
Ye) Bout
/
So 515 Y7
R
ABZC

86

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

INTRODUCTION

In combinational logic circuits, the outputs at any instant of time depend only on

the input signals present at that time. For a change in input, the output occurs

immediately.
e -
s Combinational L P
n input _> Logic 4» mo.u pu
variables Civcuit : variables
. :

Combinational Circuit- Block Diagram

In sequential logic circuits, it consists of combinational circuits to which
storage elements are connected to form a feedback path. The storage elements are
devices capable of storing binary information either 1 or 0.

The information stored in the memory elements at any given time defines the
present state of the sequential circuit. The present state and the external circuit

determine the output and the next state of sequential circuits.

i o » Outputs
Inputs > Coml.rma.homl
Circuits next state

Memory

Elements
Tpre sent state

Sequential Circuit- Block Diagram

Thus in sequential circuits, the output variables depend not only on the
present input variables but also on the past history of input variables.

The rotary channel selected knob on an old-fashioned TV is like a
combinational. Its output selects a channel based only on its current input - the
position of the knob. The channel-up and channel-down push buttons on a TV is like
a sequential circuit. The channel selection depends on the past sequence of up/down

pushes.

The comparison between combinational and sequential circuits is given in

table below.

S.No Combinational logic Sequential logic

The output variable, at all times The output variable depends not only
1 | dependson the combination of on the present input but also depend

input variables. upon the past history of inputs.

o _ Memory unit is required to store the
2 | Memory unit is not required
past history of input variables.

3 | Faster in speed Slower than combinational circuits.
4 | Easy to design Comparatively harder to design.
5 | Eg. Parallel adder Eg. Serial adder

3.2 Classification of Logic Circuits

Logic Circuit
I
! '

Combinational Sequential
|
Synchronous Asynchronous
! | I | ! }
Moore Circuit Mealy Circuit Fundamental Mode Pulse Mode

The sequential circuits can be classified depending on the timing of

their signals:

e Synchronous sequential circuits

e Asynchronous sequential circuits.
In synchronous sequential circuits, signals can affect the memory elements
only at discrete instants of time. In asynchronous sequential circuits change
in input signals can affect memory element at any instant of time. The
memory elements used in both circuits are Flip-Flops, which are capable of

storing 1-bit information.

S.No | Synchronous sequential circuits Asynchronous sequential circuits
. Memory elements are clocked Memory elements are either unclocked
Flip-Flops Flip-Flops or time delay elements.
The change in input signals can
The change in input signals can affect
2 affect memory element upon
memory element at any instant of time.
activation of clock signal.
The maximum operating speed Because of the absence of clock, it can
3 of clock depends on time delays | operate faster than synchronous
involved. circuits.
4 Easier to design More difficult to design

3.3 LATCHES:

Latches and Flip-Flops are the basic building blocks of the most sequential
circuits. Latches are used for a sequential device that checks all of its inputs
continuously and changes its outputs accordingly at any time independent of clocking
signal. Enable signal is provided with the latch. When enable signal is activeoutput
changes occur as the input changes. But when enable signal is not activated input
changes do not affect the output.

Flip-Flop is used for a sequential device that normally samples its inputs and

changes its outputs only at times determined by clocking signal.

3.3.1 SR Latch:

The simplest type of latch is the set-reset (SR) latch. It can be constructed from
either two NOR gates or two NAND gates.

SR latch using NOR gates:
The two NOR gates are cross-coupled so that the output of NOR gate 1 is
connected to one of the inputs of NOR gate 2 and vice versa. The latch has two outputs

Q and Q" and two inputs, set and reset.

R (Reset)

Q
—R Ql—
—5 Ql—
Q
S (Set) Logic Symbol

SR latch using NOR gates
Before going to analyse the SR latch, we recall that a logic 1 at any input of a

NOR gate forces its output to a logic 0. Let us understand the operation of this circuit
for various input/ output possibilities.
Case1:S=0andR=0
Initially, Q=1 and Q=0

Let us assume that initially Q=1 and Q’=0. With Q’=0, both inputs to NORgate
1 are at logic 0. So, its output, Q is at logic 1. With Q=1, one input of NOR gate 2 is at
logic

1. Hence its output, Q’ is at logic 0. This shows that when S and R both are

low, the output does not change.

R (Reset)

Initially, Q= 0 and Q'=1
With Q’=1, one input of NOR gate 1 is at logic 1, hence its output, Q is at logic
0. With Q=0, both inputs to NOR gate 2 are at logic 0. So, its output Q’ is at logic 1. In

this case also there is no change in the output state.

Case2:S=0andR=1
In this case, R input of the NOR gate 1 is at logic 1, hence its output, Q is at logic 0.
Both inputs to NOR gate 2 are now at logic 0. So that its output, Q’ is at logic 1.

1

R (Reset)

Ol

Case3:S=1andR=0
In this case, S input of the NOR gate 2 is at logic 1, hence its output, Q is at logic 0.
Both inputs to NOR gate 1 are now at logic 0. So that its output, Q is at logic 1.

R (Reset) 2

Ol

Case4:S=1andR=1

When R and S both are at logic 1, they force the outputs of both NOR gates to

the low state, i.e., (Q=0 and Q’=0). So, we call this an indeterminate or prohibited state,

and represent this condition in the truth table as an asterisk (*). This conditionalso

violates the basic definition of a latch that requires Q to be complement of Q’. Thus in

normal operation this condition must be avoided by making sure that 1’'s arenot

applied to both the inputs simultaneously.
We can summarize the operation of SR latch as follows:
e When S= 0 and R= 0, the output, Qn+1 remains in its present state, Qn.
e When S=0and R=1, the latch isreset to 0.
e When S=1 and R=0, the latch is set to 1.

e When S=1 and R= 1, the output of both gates will produce 0.
ie., Qn+1= Qn+1'= 0.

The truth table of NOR based SR latch is shown below.

S R Qn Qn+1 State
0 0 0 No Change

0 0 1 1 (NC)
0 1 0 0

Reset
0 1 1 0
1 0 0 1

Set

1 0 1 1
1 1 0 X Indeterminate
1 1 1 X *

SR latch using NAND gates:

The SR latch can also be implemented using NAND gates. The inputs of this
Latch are S and R. To understand how this circuit functions, recall that a low on any

input to a NAND gate forces its output high.
S (Set)

R (Reset)

SR latch using NAND gates

—R Ql—

Logic Symbol

We can summarize the operation of SR latch as follows:
e When S=0 and R= 0, the output of both gates will produce 0.
i.e.,, Qn+1= Qn+1'= 1.
e When S=0 and R=1, the latch isreset to 0.
e When S=1 and R=0, the latch is set to 1.

e When S=1 and R= 1, the output, Qn+1 remains in its present state, Qn.

The truth table of NAND based SR latch is shown below.

S R Qn Qn+1 State
0 0 X Indeterminate
0 0 1 X *
0 1 0 1
Set

0 1 1 1
1 0 0 0

Reset
1 0 1 0
1 1 0 0 No Change
1 1 1 1 (NC)

Gated SR Latch:

In the SR latch, the output changes occur immediately after the input

changes i.e, the latch is sensitive to its S and R inputs all the time.

A latch that is sensitive to the inputs only when an enable input is active.

Such a latch with enable input is known as gated SR latch.

e Thecircuit behaves like SR latch when EN= 1. It retains its previous state

when EN= 0
S (Set) j
1 Q
—%
Q S
EN —¢ —EN
= —Ir Qf—
= Q
R (Reset) —
SR Latch witl ble ing NAND Logic Symbol
The truth table of gated SR latch is show below.
EN S R Qn | Qn+1 State
1 0 0 0 0
No Change (NC)
1 0 0 1 1
1 0 1 0 0
Reset
1 0 1 1 0

1 1 0 0 1
Set

1 1 0 1 1

1 1 1 0 X Indeterminate

1 1 1 1 X *

0 X X 0 0

No Change (NC)

0 X X 1 1

When S is HIGH and R is LOW, a HIGH on the EN input sets the latch. When S is

LOW and R is HIGH, a HIGH on the EN input resets the latch.

EN

Q

3.3.2 DLatch

In SR latch, when both inputs are same (00 or 11), the output either does not

change or it is invalid. In many practical applications, these input conditions are not

required. These input conditions can be avoided by making them complement of each

other. This modified SR latch is known as D latch.

EN —¢

D Latch

_>o—
Do_

Ol

EN

<l
|

Logic Symbol

As shown in the figure, D input goes directly to the S input, and its complement
is applied to the R input. Therefore, only two input conditions exists, either S=0 and

R=1 or S=1 and R=0. The truth table for D latch is shown below.

EN D Qn Qn+ 1 State
1 0 X 0 Reset
1 1 X 1 Set

0 X X Qn No Change (NC)

As shown in the truth table, the Q output follows the D input. For this reason,
D latch is called transparent latch.

When D is HIGH and EN is HIGH. Q goes HIGH. When D is LOW and EN is
HIGH, Q goes LOW. When EN is LOW, the state of the latch is not affected by the D

input.

p_|

EN

-
-t
-

3.4 TRIGGERING OF FLIP-FLOPS

The state of a Flip-Flop is switched by a momentary change in the input signal.
This momentary change is called a trigger and the transition it causes is said to trigger
the Flip-Flop. Clocked Flip-Flops are triggered by pulses. A clock pulse starts from an
initial value of 0, goes momentarily to 1and after a short time, returns to its initial 0
value.

Latches are controlled by enable signal, and they are level triggered, either
positive level triggered or negative level triggered. The output is free to change
according to the S and R input values, when active level is maintained at the enable

input.

Flip-Flops are different from latches. Flip-Flops are pulse or clock edge

triggered instead of level triggered.

Level
Triggering

Positive lewvel Negative level
Pulse
Triggering ==

Positive pulse Negative pulse

N L
% A\I v

Positive edge Negative edge

3.5 EDGE TRIGGERED FLIP-FLOPS

Flip-Flops are synchronous bistable devices (has two outputs Q and Q’). In this
case, the term synchronous means that the output changes state only at aspecified
point on the triggering input called the clock (CLK), i.e., changes in the output occur
in synchronization with the clock.

An edge-triggered Flip-Flop changes state either at the positive edge (rising
edge) or at the negative edge (falling edge) of the clock pulse and is sensitive to its
inputs only at this transition of the clock. The different types of edge-triggered Flip-
Flops are—

e S-RFlip-Flop,
e J-K Flip-Flop,
e D Flip-Flop,
e T Flip-Flop.

Although the S-R Flip-Flop is not available in IC form, it is the basis for the D

and J-K Flip-Flops. Each type can be either positive edge-triggered (no bubble at C

input) or negative edge-triggered (bubble at C input). The key to identifying an edge-
triggered Flip-Flop by its logic symbol is the small triangle inside the block at the clock

(C) input. This triangle is called the dynamic input indicator.

3.5.1 S-RFlip-Flop

The S and R inputs of the S-R Flip-Flop are called synchronous inputs because
data on these inputs are transferred to the Flip-Flop's output only on the triggering
edge of the clock pulse. The circuit is similar to SR latch except enable signal is
replaced by clock pulse (CLK). On the positive edge of the clock pulse, the circuit

responds to the S and R inputs.

S (Set) — j
= Q
S
Q —
CLK —¢ CLK—
. —Ir Q—
— Q
R (Reset) —}_ LogicSysabol

SR Flip-Flop

When S is HIGH and R is LOW, the Q output goes HIGH on the triggering edge
of the clock pulse, and the Flip-Flop is SET. When S is LOW and R is HIGH, theQ output
goes LOW on the triggering edge of the clock pulse, and the Flip-Flop is RESET.When
both S and R are LOW, the output does not change from its prior state. An invalid

condition exists when both S and R are HIGH.

CLK| S R Qn Qn+1 State
1 0 0 0 0
No Change (NC)
1 0 0 1 1
1 0 1 0 0
Reset
1 0 1 1 0
1 1 0 0 1
Set

1 1 1 0 X Indeterminate

1 1 1 1 X *

No Change (NC)
0 X X 1 1

Truth table for SR Flip-Flop

CLK

w

R —

Input and output waveforms of SR Flip-Flop

3.5.2 J-KFlip-Flop:

JK means Jack Kilby, Texas Instrument (TI) Engineer, who invented IC in 1958.
JK Flip-Flop has two inputs J(set) and K(reset). A JK Flip-Flop can be obtained from
the clocked SR Flip-Flop by augmenting two AND gates as shown below.

iy
K 1
— Q
CLK
Q
J 2 ol
[

IK Flip Flop
The data input] and the output Q" are applied o the first AND gate and its

output (JQ’) is applied to the S input of SR Flip-Flop. Similarly, the data input K and

the output Q are applied to the second AND gate and its output (KQ) is applied to
the R input of SR Flip-Flop.

J—_l)_s Q —’ Qf—

CLK D> CcP—p
K_l_ 2 Y—r Q —K Qf—
{a) Using SR flipflop {b) Graphic symbol

J=K=0

When J=K= 0, both AND gates are disabled. Therefore clock pulse have no
effect, hence the Flip-Flop output is same as the previous output.
J=0,K=1

When J= 0 and K= 1, AND gate 1 is disabled i.e., S= 0 and R= 1. This condition
will reset the Flip-Flop to 0.
J=1,K=0

When]J=1 and K= 0, AND gate 2 is disabled i.e., S= 1 and R= 0. Therefore the
Flip-Flop will set on the application of a clock pulse.
J=K=0

When]J=K= 1, it is possible to set or reset the Flip-Flop. If Q is High, AND gate
2 passes on a reset pulse to the next clock. When Q is low, AND gate 1 passes on a
set pulse to the next clock. Eitherway, Q changes to the complement of the last state
i.e., toggle. Toggle means to switch to the opposite state. The truth table of JK Flip-

Flop is given below.

Inputs Output
CLK State
I K Qn+1
1 0 0 Qn No Change
1 0 1 0 Reset
1 1 0 1 Set
1 1 1 Qr’ Toggle

1 2 3
CLK J_ &

A ,,.r:J

b e e e
———— e e e e e

Input and output waveforms of JK Flip-Flop

Characteristic table and Characteristic equation:
The characteristic table for JK Flip-Flop is shown in the table below. From the table,

K-map for the next state transition (Qn+1) can be drawn and the simplified logic expression

which represents the characteristic equation of JK Flip-Flop can be found.

Qn J K Qn+1

0

O P, O Rk O -k O

[T Y = I = I = R)
(AN < N < S SO e i)
O R O R R Rk O

1 1

Characteristic table

K-map Simplification:

Qa_ 00 01 11 10

Characteristic equation: Qn+1=JQ’+ K'Q.

3.5.3 D Flip-Flop:
Like in D latch, in D Flip-Flop the basic SR Flip-Flop is used with complemented
inputs. The D Flip-Flop is similar to D-latch except clock pulse is used instead of

enable input.

T
— Q
CP —¢
R

D Flip-Flop

To eliminate the undesirable condition of the indeterminate state in the RS Flip-
Flop is to ensure that inputs S and R are never equal to 1 at the same time. This is done by
D Flip-Flop. The D (delay) Flip-Flop has one input called delay input andclock pulse
input. The D Flip-Flop using SR Flip-Flop is shown below.

S —D
? o o
CP D> cP—p
-I>o— R 6 [~ 6 e
{(a) Using SR flipflop (b) Graphic symbol

The truth table of D Flip-Flop is given below.

Clock| D | Qn+1 State
1 0 0 Reset
1 1 1 Set
0 X Qn No Change

Truth table for D Flip-Flop

Input and output waveforms of clocked D Flip-Flo

Looking at the truth table for D Flip-Flop we can realize that Qn+1

function follows the D input at the positive going edges of the clock pulses.

Characteristic table and Characteristic equation:

The characteristic table for D Flip-Flop shows that the next state of the Flip- Flop
is independent of the present state since Qn+1is equal to D. This means that an inputpulse
will transfer the value of input D into the output of the Flip-Flop independent of the value
of the output before the pulse was applied.

The characteristic equation is derived from K-map.

Qn D Qn+1
0 0
0 1 1
1 0 0
1 1 1

Characteristic table

K -map simplification

D
S
1] o

Characteristic equation: Qn+1= D.

3.5.4 T Flip-Flop
The T (Toggle) Flip-Flop is a modification of the JK Flip-Flop. It is obtained

from JK Flip-Flop by connecting both inputs | and K together, i.e., single input.
Regardless of the present state, the Flip-Flop complements its output when the clock

pulse occurs while input T= 1.

L

CLK —¢

T Flip-Flop

When T= 0, Qn+1= Qn, ie., the next state is the sameas the present state and no
change occurs.

When T= 1, Qn+1= Qvn’,ie., the next state is the complement of the present state.

T g
] ol— T ol—
CP—D CcP—D
K Qf— Qf—
{a) Using JK flipflop {b) Graphic symbol

The truth table of T Flip-Flop is given below.

T Qn+1 State
QnN p Change

1 Qn'Tqggle

Truth table for T Flip-Flop

Characteristic table and Characteristic equation:
The characteristic table for T Flip-Flop is shown below and characteristic

equation is derived using K-map.

Qo | T | Quat
0 0 0

0 1 1

1 0 1

1 1 0

K-map Simplification:

Characteristic equation: Qn+1= TQn’+ T’'Qn.

3.5.5 Master-Slave JK Flip-Flop

A master-slave Flip-Flop is constructed using two separate JK Flip-Flops. The
first Flip-Flop is called the master. It is driven by the positive edge of the clock pulse. The
second Flip-Flop is called the slave. It is driven by the negative edge of the clock pulse.

The logic diagram of a master-slave JK Flip-Flop is shown below.

—J Q J ol—
CP D —
K Q K Ql—

Logic diagram

When the clock pulse has a positive edge, the master acts according to its J-K
inputs, but the slave does not respond, since it requires a negative edge at the clock

input.

When the clock input has a negative edge, the slave Flip-Flop copies the
master outputs. But the master does not respond since it requires a positive edge at

its clock input.

The clocked master-slave J-K Flip-Flop using NAND gates is shown below.

T B B R N T e R e W 1
| : :
= |
i A Dk
! ; | :
CLK —— | |
. L |
| ' | —
A DO DT
r | :
| 1) s |
| | |
[coren®l v cvwvem e i o cow oy (S ssene owenen cesvess ooy v o8 _l
Master Slave

Master-Slave JK Flip-Flop

3.6 APPLICATION TABLE (OR) EXCITATION TABLE:

The characteristic table is useful for analysis and for defining the operation

of the Flip-Flop. It specifies the next state (Qn+1) when the inputs and present state

are known.
The excitation or application table is useful for design process. It is used to

find the Flip-Flop input conditions that will cause the required transition, when the

present state (Qn) and the next state (Qn+1) are known.

3.6.1 SR Flip-Flop:

Present Next
State Inputs State Present | Next
Inputs Inputs
Qn S | R Qn+1 State | State
0 0 0 0 Qn Qn+1 S R S R
0 1 0 1 0 <
0 0 0 1
0 1 1 X
1 0 0 1 0 1 1 0 1 0
1 0 1 0 1 0 0 1 0 1
1 1
1 1|0 1 01 0] 1o
1 1|1 X 1 1 1[0
Characteristic Table Modified Table
Present Next
Inputs
State State
Q“ Qn+1 S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

Excitation Table

The above table presents the excitation table for SR Flip-Flop. It consists of present

state (Qn), next state (Qn+1) and a column for each input to show how the required

transition is achieved.

There are 4 possible transitions from present state to next state. The required

Input conditions for each of the four transitions are derived from the information

available in the characteristic table. The symbol x’ denotes the don’t care condition,

it does not matter whether the inputis 0 or 1.

3.6.2

JK Flip-Flop:
Present Next Present | Next
Inputs Inputs Inputs
State State State State
Qn] K Qn+1 Qn Qn+1] K] K
0 0 0 0 0 0 0 0
0 0 1 0 0 X
0 0 0 1
0 1 0 1
0 1 1 0
0 1 1 1
1 X
1 0 0 1 0 1 1 1
1 0 1 0 1 0 0 1
X 1
1 o 1 1 o [1]1
1 111 0 1 1 0o o
X 0
1 1 1 0
Characteristic Table Modified Table
Present Next
Inputs
State State
Qn Qn+1] K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Excitation Table

3.6.3 D Flip-Flop

Present | Next
Input
State State
Qn Qn+1 D
0 0 0
0 1 1
1 0 0
1 1 1

Excitation Table

Present Next
Input
State State
Qn D Qn+1
0 0 0
0 1 1
1 0 0
1 1 1
Characteristic Table
3.6.4 T Flip-Flop
Present Next
Input
State State
Qn T Qn+1
0 0 0
0 1 1
1 0 1
1 1 0

Characteristic Table

Present | Next
Input
State State
Qn Qn+1 T
0 0 0
0 1 1
1 0 1
1 1 0

Modified Table

3.7 REALIZATION OF ONE FLIP-FLOP USING OTHER FLIP-FLOPS

It is possible to convert one Flip-Flop into another Flip-Flop with some
additional gates or simply doing some extra connection. The realization of one Flip-
Flop using other Flip-Flops is implemented by the use of characteristic tables and
excitation tables. Let us see few conversions among Flip-Flops.

SR Flip-Flop to D Flip-Flop
SR Flip-Flop to JK Flip-Flop
SR Flip-Flop to T Flip-Flop
JK Flip-Flop to T Flip-Flop
JK Flip-Flop to D Flip-Flop
D Flip-Flop to T Flip-Flop
T Flip-Flop to D Flip-Flop

e

b L

b L

b

3.71 SR Flip-Flop to D Flip-Flop:
e Write the characteristic table for required Flip-Flop (D Flip-Flop).
e Write the excitation table for given Flip-Flop (SR Flip-Flop).

o Determine the expression for the given Flip-Flop inputs (S and R) by

using K- map.

. Draw the Flip-Flop conversion logic diagram to obtain the required Flip-

Flop (D Flip-Flop) by using the above obtained expression.

The excitation table for the above conversion is

Given Flip-Flop
Required Flip-Flop (D)

(SR)
Input Present state Next state Flip-Flop Inputs
D Qn Qn+1 S R
0 0 0 0 X
0 1 0 0 1
1 0 1 1 0
1 1 1 X 0

K -map sumplficabion Logic hagram

Far § Far B
L_;__k.u. D " ofb—
0 / —
. E\! B
l. —L R b
CP
D Flip-Flop
3.7.2 SRFlip-Flop to JK Flip-Flop
The excitation table for the above conversion is,
Inputs Present state Next state Fl;p-Flop
nput
] Qn Qn+1 S R
0 0 0 0 0 be
0 0 1 1 X 0
0 1 0 0 0 be
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 X 0
1 1 0 1 1 0
1 1 1 0 0 1
K -map simplification
For S For R
KQ, KQ,
INC 00 01 11 10 IN_ 00 01 11 10
0] 0 X 0 0 0] = 0 X
1 x |0 1({0 |0 0
§=JQu R=KQ,
Logic diagram
—s
J Q
i cp —p
I\ —
Ot

JK Flip-Flop

2.7.3 SRFlip-Flop to T Flip-Flop

The excitation table for the above conversion is

Flip-Flop
Input Present state Next state Inputs
T Qn Qn+1 S R
0 0 0 0 X
0 1 1 X 0
1 0 1 1 0
1 1 0 0 1
K -map simplification Logic diagram

O e

T{ CP —p

3.7.4 JK Flip-Flop to T Flip-Flop
The excitation table for the above conversion is
Flip-Fl
Input Present state Next state ;gpu:sp
T Qn Qn+1] K
0 0 0 0 X
0 1 1 X 0
1 0 1 1 X
1 1 0 X 1
K -map simplification Logic diagram
; For K
ForJ N T n ol—
CP —p
K 3 =

JK Flip-Flop to D Flip-Flop

The excitation table for the above conversion is

Flip-Flop
Input Present state Next state Inputs
D Qn Qn+1] K
0 0 0 0 X
0 1 0 X 1
1 0 1 1 X
1 1 1 X 0
K -map simplification Logic diagram
For J For K & P 0
CcP —p
K Q
D Flip-Flop to T Flip-Flop
The excitation table for the above conversion is
Input Present state Next state Fl;g;)Fli:p
T Qn Qn+1 D
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0
K -map simplification Logic diagram

Qx

D=TQ.+TQ-

=T®Qx

) o

CP —p

ol
|

T Flip-Flop to D Flip-Flop

The excitation table for the above conversion is

Flip-Flop
Input Present state Next state Input
D Qn Qn+1 T
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0
K -map simplification Logic diagram
T
D]) > Q
cP —p
Ql—

=D®@Q.

3.8 CLASSIFICATION OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

In synchronous or clocked sequential circuits, clocked Flip-Flops are used as
memory elements, which change their individual states in synchronism with the
periodic clock signal. Therefore, the change in states of Flip-Flop and change in state
of the entire circuits occur at the transition of the clock signal.

The synchronous or clocked sequential networks are represented by two models.

e Moore model: The output depends only on the present state of the Flip-Flops.

e Mealy model: The output depends on both the present state of the Flip-Flops

and on the inputs.

3.8.1

Moore model:

In the Moore model, the outputs are a function of the present state of the Flip-

Flops only. The output depends only on present state of Flip-Flops, it appears only

after the clock pulse is applied, i.e., it varies in synchronism with the clock input.

—>
—’ Nest Output l
Inputs : e Memory Decoder :
» state R :

Eletnents (Combinational : Outputs

Decoder iy :
circuit) :

I_.

Moore model

3.82 Mealy model:

In the Mealy model, the outputs are functions of both the present state of the

Flip-Flops and inputs.

Output
Decoder
: 4 {Combinational [
Inputs § Next Mermory : circuit) :
state El :
Decoder Sments : Sulputs
[A |

Mealy model

3.8.3 Difference between Moore and Mealy model

SL.No Moore model Mealy model

1 [ts output is a function of present Its output is a function of present state
state only. as well as present input.

2 Input changes does not affect the Input changes may affect the output of
output. the circuit.

3 It requires more number of states It requires less number of states for
for implementing same function. implementing same function.

3.9 ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

The behavior of a sequential circuit is determined from the inputs, outputs
and the state of its Flip-Flops. The outputs and the next state are both a function of
the inputs and the present state. The analysis of a sequential circuit consists of
obtaining a table or diagram from the time sequence of inputs, outputs and internal

states.

Before going to see the analysis and design examples, we first understand the

state diagram, state table.

3.9.1 State Diagram

State diagram is a pictorial representation of a behavior of a sequential
circuit.

B Inthe state diagram, a state is represented by a circle and the transition between

states is indicated by directed lines connecting the circles.

B A directed line connecting a circle with circle with itself indicates that next
state is same as present state.

B Thebinary number inside each circle identifies the state represented by the circle.

b

The directed lines are labeled with two binary numbers separated by a symbol
‘/’. The input value that causes the state transition is labeled first and the output

value during the present state is labeled after the symbol ‘/".

In case of Moore circuit, the directed lines are labeled with only one binary number
representing the state of the input that causes the state transition. The output state is

indicated within the circle, below the present state because output state depends only

on present state and not on the input.

EnggTree.com www.Poriyaan.in

State diagram for Mealy circuit State diagram for Moore circuit

3.9.2 State Table
State table represents relationship between input, output and Flip-Flop states.
B It consists of three sections labeled present state, next state and output.

o The present state designates the state of Flip-Flops before the occurrence
of a clock pulse, and the output section gives the values of the output
variables during the present state.

o Both the next state and output sections have two columns representing

two possible input conditions: X= 0 and X=1.

Next state Output
Present state
X=0 X=1 X=0 X=1
AB AB AB Y Y
a a C 0 0
b b a 0 0
c d c 0 1
d b d 0 0

Downloaded from EfggTree.com

http://www.poriyaan.in/

B In case of Moore circuit, the output section has only one column since output

does not depend on input.

Next state Output
Present state
X=0 X=1 Y
AB AB AB

a a c 0
b b a 0
c d c 1
d b d 0

2.9.3 State Equation

It is an algebraic expression that specifies the condition for a Flip-Flop state
transition.

The Flip-Flops may be of any type and the logic diagram may or may not

include combinational circuit gates.

3.9.4 ANALYSIS PROCEDURE

The synchronous sequential circuit analysis is summarizes as given below:
1. Assign a state variable to each Flip-Flop in the synchronous sequential circuit.
2. Write the excitation input functions for each Flip-Flop and also write the
Moore/ Mealy output equations.
3. Substitute the excitation input functions into the bistable equations for
the Flip-Flops to obtain the next state output equations.
4. Obtain the state table and reduced form of the state table.

5. Draw the state diagram by using the second form of the state table.

3.9.5 Analysis of Mealy Model

1. Asequential circuit has two JK Flip-Flops A and B, one input (x) and one output

(v). the Flip-Flop input functions are,

Ja= B+ x

Ka=1

Jp=A'+ X’

Ke=1

and the circuit output function, Y= xA’B.

Tabulate the state table,

c) Draw the state diagram.

Soln:

Draw the logic diagram of the Mealy circuit,

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flops, use

B+x J_\ A
— (&)
Ky A
A+x Ts B
——p o
B

Kp

CLK

the JK Flip-Flop characteristics table.

xAB

Presentstate | Input Flip-Flop Inputs Next state Output
A B x | Ja=Brx| Ka=1 | Js=AX | Ke=11) gy | Bes1) | Y=xA'B
0 0 0 0 1 1 1 0 1 0
0 0 1 1 1 1 1 1 1 0
0 1 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 1
1 0 0 0 1 1 1 0 1 0
1 0 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 0 0 0
1 1 1 1 1 0 1 0 0 0

Present state Next state Output

x=0 x=1 x=0 x=1
A B A B A B y y
0 0 0 1 1 1 0 0
0 1 1 0 1 0 0 1
1 0 i 0 0 0 0
1 1 0 0 0 0 0 0

Second form|of state table

State Diagrnam:

State Diagram

2. A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one
output (y). the Flip-Flop input functions are:
Da= Ax+ Bx
De= A’xand the circuit output function is,
Y= (A+B) X
(a) Draw the logic diagram of the circuit,
(b) Tabulate the state table,
(c) Draw the state diagram.

Soln:

A J
¥ x —Ips Q}da
_y
= - ®
B . —
Qu A
Ar—
Dp Qs B
- H®
Qof——F
CLE
B
AtB — ¥
A ’T__/’
State Table:
Presentstate | Input Flip-Flop Inputs Next state Output
Da= , u)
A B X Ax+Bx D= A’x | A(t+1) B(t+1) | Y= (A+B)x
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1
0 1 1 1 1 1 1 0
1 0 0 0 0 0 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 1
1 1 1 1 0 1 0 0
Next state Output
Present state
x=0 x=1 x=0 x=1
A B A B A B Y Y
0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0
1 1 0 0 1 0 1 0

Second form of state table

State Diagram:

><_<>—[>f'—371)_,L P RE ‘}z

(=]
<]
o
-]

o

CLK
Soln:
The given synchronous Mealy machine consists of two D Flip-Flops, one inputs and
one output.
The Flip-Flop input functions are,
Da=Y1'Y2X’
De= X+ Y1'Y2

The circuit output function is, Z= Y1Y2X

State Table:

Presentstate | Input Flip-Flop Inputs Next state Output
Y1 Y2 X |[Da=Y1YzX" | D= X+ Y1'Yz | Yi(t+1) | Yz(t+1) | Z= Y1Y2X
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 1 0 1 0 1 1
Next state Output
Present state =0 o - o
Y1 Y2 Y1 Y2 Y1 Y2 yA Z
0 0 0 0 0 1 0 0
0 1 1 1 0 1 0 0
1 0 0 0 0 1 0 0
1 1 0 0 0 1 0 1

State Diagram:

Second form of state table

4, A sequential circuit has two JK Flop-Flops A and B, two inputs x and y and
one output z. The Flip-Flop input equation and circuit output equations are
JaA=Bx+B'y' Ka =B'xy'
Je=A'x Ke = A+ xy'
z=AxX'y'+Bx'y'

(a) Draw the logic diagram of the circuit
(b) Tabulate the state table.

(c) Derive the state equation.

State diagram:

L8

= * Ja Qsl-A
A 4 ® |
)_‘ RA .&
[
2 x
-—\L } JB Qs B o]
T
E b (B)
Kg B
A CLK

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flop, use

the JK Flip-Flop characteristic table,

Output

Z

Next state

A(t+1) | B(t+1)

Flip-Flop Inputs

Kg=
A+xy’

Js=
A’x

Ka=
B 'Xy'

Ja=

Bx+B’y’

Input

Present

state

State Equation:

For B(t+1)

For A(t+1)

01 11 10

00

AB

01 11 10

00

AB

00

01

11

10

\

1] |1

01

11 [1

0l 1!1 0

=A'x

B (t+1)

Ax'+ Ay+ Bx+ A'B’y’

A (t+])

5. Asequential circuit has two JK Flip-Flop A and B. the Flip-Flop input functions

are: Ja=B

(a) Draw the logic diagram of the circuit,
(b) Tabulate the state table,
(c) Draw the state diagram.

Logic diagram:

Ka= BX

X —

Jp=x

Ks= A® x.

B N

4 ®

Ky

)
/S

S

A®x

L

>—o>
B

K

CLK

The output function is not given in the problem. The output of the Flip-Flops

may be considered as the output of the circuit.

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flop, use

the JK Flip-Flop characteristic table.

Presentstate | Input Flip-Flop Inputs Next state
A B X Ja=B | Ka=Bx'| =X Ke=AXx | A(t+1) B(t+1)
0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 1 1
0 1 1 1 0 0 1 1 0
1 0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 1 0
1 1 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 1

EnggTree.com www.Poriyaan.in

Next state
X=0 X=1
A B A B A B
0 0 0 1 0 0
0 1 1 1 1 0
1 0 1 1 1 0
1 1 0 0 1 1
Second form of state table
State Diagram:

3.9.6 Analysis of Moore Model

6. Analyze the synchronous Moore circuit and obtain its state diagram.

—p @ | B
r Ky Y1
s Yz
——op -
—D‘« Kg Yz
CLK

Soln:
Using the assigned variable Y1 and Yz for the two JK Flip-Flops, we can write

the four excitation input equations and the Moore output equation as follows:

http://www.poriyaan.in/

Ja=Y2X ; Ka= Y2’
Js=X ; Ke=X’ and output function, Z= Y1Y2’
State table:
Present state | Input Flip-Flop Inputs Next state Output
Y2
Y1 Yz X Ja=Y2X | Ka=Y2' | JB=X | Ke=X"| Y1(t+1) | (t+1) | Z=Y1Y2’
0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 1 1 0
1 0 0 0 1 0 1 0 0 1
1 0 1 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1 0 0
1 1 1 1 0 1 0 1 1 0
Next state Output
Present state
X=0 X=1
Y
Y1 Y2 Y1 Y2 Y1 Y2
0 0 0 0 0 1 0
0 1 0 0 1 1 0
1 0 0 0 0 1 1
1 1 1 0 1 1 0

Second form of state table

State Diagram:

Here the output depends on the present state only and is independent of the

input. The two values inside each circle separated by a slash are for the present state

and output.

7. A sequential circuit has two T Flip-Flop A and B. The Flip-Flop input functions

are:

Ta= Bx
y=AB

Ts= x

(a) Draw the logic diagram of the circuit,

(b) Tabulate the state table,

(c) Draw the state diagram.

Soln:

Logic diagram:

CLK
State table

Presentstate | Input Flip-Flop Inputs Next state Output
A B X Ta= Bx Te= x A(t+1) | B(t+1) y= AB
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0
0 1 1 1 1 1 0 0
1 0 0 0 0 1 0 0
1 0 1 0 1 1 1 0
1 1 0 0 0 1 1 1
1 1 1 1 1 0 0 1

Next state Output
Present state
x=0 x=1 x=0 x=1
A B A B A B y y
0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 1 1
Second form of state table
State Diagram:
a 0
00 1 f 01
0 A0
1 1
1 10
1/ 1 0
0 0

3.10 STATE REDUCTION/ MINIMIZATION

The state reduction is used to avoid the redundant states in the sequential
circuits. The reduction in redundant states reduces the number of required Flip-Flops
and logic gates, reducing the cost of the final circuit.

The two states are said to be redundant or equivalent, if every possible set of
inputs generate exactly same output and same next state. When two states are
equivalent, one of them can be removed without altering the input-output
relationship.

Since ‘n’ Flip-Flops produced 2x state, a reduction in the number of states may
result in a reduction in the number of Flip-Flops.

The need for state reduction or state minimization is explained with one example.

State diagram
Step 1: Determine the state table for given state diagram

S Next state Output
X=0 X=1 X=0 X=1
a b C 0 0
b d e 1 0
C C d 0 1
d a d 0 0
e C d 0 1
State table

Step 2: Find equivalent states

From the above state table c and e generate exactly same next state and same
output for every possible set of inputs. The state c and e go to next states cand d and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state e can be removed

and replaced by c. The final reduced state table is shown below.

Next state Output
Present state
X=0 X=1 X=0 X=1
a b c 0 0
b d c 1 0
c c d 0 1
d a d 0 0

Reduced state table

The state diagram for the reduced table consists of only four states and is shown

below.

0/

v

Reduced state diagram

1. Reduce the number of states in the following state table and tabulate the reduced

state table.
Present state e Output
X=0 [X=1 | X=0 [X=1
a a b 0 5
b C d 0 5
c a q 5 5
d e f 0 1
e a F 5 N
f 8 f 0 1
g a f 0 1
Soln:

From the above state table e and g generate exactly same next state and same
output for every possible set of inputs. The state e and g go to next states a and fand
have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state g can be removed
and replaced by e.

The reduced state table-1 is shown below.

SR Next state Output
X=0 X=1 X=0 X=1
a a b 0 0
b C d 0 0
C a d 0 0
d e f 0 1
e a f 0 1
f e f 0 1

Reduced state table-1
Now states d and f are equivalent. Both states go to the same next state (e, f)
and have same output (0, 1). Therefore one state can be removed; fis replaced by d.

The final reduced state table-2 is shown below.

Next state Output
Present state
X=0 X=1 =0 X=1
a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

Reduced state table-2
Thus 7 states are reduced into 5 states.

2. Determine a minimal state table equivalent furnished below

Present state Next state

X=0 | X=1
1 1,0 1.0
2 1,1 6,1
3 4,0 5.0
4 1,1 70
5 2,0 3.0
6 4,0 5.0
7 2,0 3.0

1%
=]
—
=]

Present state SlChiale Output
X=0 X=1 X=0 X=1
1 1 1 0 0
2 1 6 1 1
3 4 5 0 0
4 1 7 1 0
5 2 3 0 0
6 4 5 0 0
7 2 3 0 0

From the above state table, 5 and 7 generate exactly same next state and same
output for every possible set of inputs. The state 5 and 7 go to next states 2 and 3 and
have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state 7 can be removed
and replaced by 5.

Similarly, 3 and 6 generate exactly same next state and same output for
every possible set of inputs. The state 3 and 6 go to next states 4 and 5 and have

outputs 0 and 0 for x=0 and x=1 respectively. Therefore state 6 can be removed and

replaced by 3.
The final reduced state table is shown below.
Next state Output
Present state
X=0 X=1 =0 =1
1 1 1 0 0
2 1 3 1 1
3 4 5 0 0
4 1 5 1 0
5 2 3 0 0
Reduced state table

Thus 7 states are reduced into 5 states.

3. Minimize the following state table.

Present state Next state

X=0 X=1

A D,0 G 1

B E 1 A1l

C H, 1 D, 1

D D,0 G 1

E B,0 G, 1

F H, 1 D, 1

G A0 F, 1

H C 0 A1l

I G 1 H,1

Soln
Present state Next state Output
X=0 X=1 X=0 X=1

A D C 0 1
B E A 1 1
C H D 1 1
D D C 0 1
E B G 0 1
F H D 1 1
G A F 0 1
H C A 0 1
[G H 1 1

From the above state table, A and D generate exactly same next state and same
output for every possible set of inputs. The state A and D go to next states D and C and
have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state D can be removed
and replaced by A. Similarly, C and F generate exactly same next state and same
output for every possible set of inputs. The state C and F go to next states Hand D and
have outputs 1 and 1 for x=0 and x=1 respectively. Therefore state F can be removed
and replaced by C.

The reduced state table-1 is shown below.

Present state Next state Output
X=0 X=1 =0 =1
A A C 0 1
B E A 1 1
C H A 1 1
E B G 0 1
G A C 0 1
H C A 0 1
[G H 1 1

From the above reduced state table-1, A and G generate exactly same next state
and same output for every possible set of inputs. The state A and G go to next states
A and C and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state G can
be removed and replaced by A. The final reduced state table-2 is shown below.

Reduced state table-1

Present state ISR Output
X=0 | X=1| X=0 | X=1
A A C 0 1
B E A 1 1
C H A 1 1
E B A 0 1
H C A 0 1
I A H 1 1

Reduced state table-2

Thus 9 states are reduced into 6 states.

4. Reduce the following state diagram.

EnggTree.com www .Poriyaan.in

Soln
Present state Next state Output
X=0 X=1 =0 X=1
a a b 0 0
b C d 0 0
C a d 0 0
d e f 0 1
e a f 0 1
f g f 0 1
g a f 0 1
State table

From the above state table e and g generate exactly same next state and same
output for every possible set of inputs. The state e and g go to next states a and fand
have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state g can be removed

and replaced by e. The reduced state table-1 is shown below.

Present state Next state Output
X=0 X=1 =0 X=1
a a b 0 0
b c d 0 0
C a d 0 0
d e f 0 1
e a f 0 1
f e f 0 1

Reduced state table-1
Now states d and f are equivalent. Both states go to the same next state (e, f)
and have same output (0, 1). Therefore one state can be removed; fis replaced by d.

The final reduced state table-2 is shown below.

Present state Next state Output
X=0 X=1 X=0 X=1
a a b 0 0
b C d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

Reduced state table-2

Thus 7 states are reduced into 5 states.

The state diagram for the reduced state table-2 is,

Downloaded from EgggTree.com

http://www.poriyaan.in/

“}I.'J.f[l
A
Fld 0/
I:'Iﬁ P~ ||.|'r|J
F
0o
oo /
\\ \ 10
141
.
"

‘___/}]f]

Reduced state diagram

3.11 DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUITS:

A synchronous sequential circuit is made up of number of Flip-Flops and
combinational gates. The design of circuit consists of choosing the Flip-Flops and then
finding a combinational gate structure together with the Flip-Flops. The number of
Flip-Flops is determined from the number of states needed in the circuit. The

combinational circuit is derived from the state table.

3.11.1 Design procedure:

1. The given problem is determined with a state diagram.

2. From the state diagram, obtain the state table.

3. Thenumber of states may be reduced by state reduction methods (if
applicable).

4. Assign binary values to each state (Binary Assignment) if the state
table contains letter symbols.

5. Determine the number of Flip-Flops and assign a letter symbol (A, B, C,...)
to each.

6. Choose the type of Flip-Flop (SR, JK, D, T) to be used.

7. From the state table, circuit excitation and output tables.

8. Using K-map or any other simplification method, derive the circuit output
functions and the Flip-Flop input functions.

9. Draw the logic diagram.

State Diag_ram

!

State Table

State Feduction Assignment- if applicable

l

Excitation Table

l Flip-flop Input Function
Frtnap Simplification /

l " Circuit Output Function
Logic DHagram
The type of Flip-Flop to be used may be included in the design specifications
or may depend what is available to the designer. Many digital systems are
constructed with JK Flip-Flops because they are the most versatile available. The

selection of inputs is given as follows.

Flip-Flop Application
JK General Applications
D Applications requiring transfer of
data
T (Ex: Shift Registers)

Application involving
complementation (Ex:
Binary Counters)

3.11.2 Excitation Tables:
Before going to the design examples for the clocked synchronous sequential

circuits we revise Flip-Flop excitation tables.

Present Next Inputs
State
Qn Qn+1 S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

Excitation table for SR Flip-Flop

Present Next Inputs
State State
Qn Qn+1] K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Excitation table for JK Flip-Flop

Present | Next Input
State State
Qn Qn+1 T
0 0 0
0 1 1
1 0 1
1 1 0

Excitation table for T Flip-Flop

Present | Next Input
State State
Qn Qn+1 D
0 0 0
0 1 1
1 0 0
1 1 1

Excitation table for D Flip-Flop

EnggTree.com www .Poriyaan.in

Synchronous Sequential Circuits 3.55

3.11.3 Problems

1. A sequential circuit has one input and one output. The state diagram is shown
below. Design the sequential circuit with a) D-Flip-Flops, b) T Flip-Flops, c) RS
Flip-Flops and d) JK Flip-Flops.

141

ns 1

Solution:
State Table:

The state table for the state diagram is,

Next state Output
Present state
X=0 X=1 =0 X=1
A B AB AB Y Y
0 0 00 10 0 1
0 1 11 00 0 0
1 0 10 01 1 0
1 1 00 10 1 0

State reduction:

As seen from the state table there is no equivalent states. Therefore,

no reduction in the state diagram.

The state table shows that circuit goes through four states, therefore we
require 2 Flip-Flops (number of states= 2m, where m= number of Flip-Flops). Since

two Flip-Flops are required first is denoted as A and second is denoted as B.

http://www.poriyaan.in/

i) Design using D Flip-Flops:

Excitation table:
Using the excitation table for T Flip-Flop, we can determine the excitation
table for the

given circuit as,

Present State Next State Input
Qn Qn+1 D
0 0 0
0 1 1
1 0 0
1 1 1

Excitation table for D Flip-Flop

Present state Input Next state ittt Output
Inputs
D
A B X A B A DB Y
0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1
0 1 0 1 1 1 1 0
0 1 1 0 0 0 0 0
1 0 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 1
1 1 1 1 0 1 0 0
Circuit excitation table
K-map Simplification:
For Flip-flop & For Flip-flop B For Output
& 00 o1 11 10 AQ(00 01 11 10
0 fm o o (1)
1 D Of o
D= A'BX+A'BX'+ ABX+ AB'X’ Dg= A’'BX'+ AB'X Y=A'BX+AX"’
= A® (B®)

Downloaded from EgsggTree.com

EnggTree.com www.Poriyaan.in

Synchronous Sequential Circuits 3.57

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

X

0?7 :x
rm D= D
—oD
QA
Y
DB QB B
[¥)
5.1 B
CLK Qs

Logic diagram of given sequential circuit using D Flip-Flop

ii) Design using T Flip-Flops:
Using the excitation table for T Flip-Flop, we can determine the excitation

table for the given circuit as,

Present State Next State Input
Qn Qn+1 T
0 0 0
0 1 1
1 0 1
1 1 0

Excitation table for T Flip-Flop

http://www.poriyaan.in/

Flip-Flop
Present state Input Next state Output
Inputs
A B X A B TA TB Y
0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1
0 1 0 1 1 1 0 0
0 1 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 1 0 1 1 1 0
1 1 0 0 0 1 1 1
1 1 1 0 0 1 0
Circuit excitation table

K-map Simplification:

For Flip-flop A For Flip-flop B For OQutput
BX BX BX
ANC 00 01 11 10 AN_ 00 01 11 10 AN 00 01 11 10

oomom ol o | o [[1)] o of 0 [(1)] o | o
10U0U o (O JGDL 1) 1 1) o | o (1]

T&=B®x Tp= AB+ AX+ BX Y=A'BX+AX’

Therefore, input functions for,

Ta= B @ x and

Ts= AB+ AX+ BX

Circuit output function, Y = XA’'B’+ X'A

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

Downloaded from EggggTree.com

EnggTree.com www .Poriyaan.in

Synchronous Sequential Circuits 3.59

A

X \
D
B

)

@W

B

v

CLK

Logic diagram of given sequential circuit using T Flip-Flo

iii) Design using SR Flip-Flops:
Using the excitation table for RS Flip-Flop, we can determine the excitation

table for the given circuit as,

Present State | Next State Inputs

Qn Qn+1 S R

0 0 0 X

0 1 1 0

1 0 0 1

1 1 X 0

Excitation table for SR Flip-Flop
P t
resen Input Next state Flip-Flop Inputs Output
state
A B X A B SA RA SB RB Y
0 0 0 0 0 0 X 0 X 0
0 0 1 1 0 1 0 0 X 1
0 1 0 1 1 1 0 X 0 0
0 1 1 0 0 0 X 0 1 0
1 0 0 1 0 X 0 0 X 1
1 0 1 0 1 0 1 1 0 0
1 1 0 0 0 0 1 0 1 1
1 1 1 1 0 X 0 0 1 0
Circuit excitation table

Downloaded from EgpggTree.com

http://www.poriyaan.in/

EnggTree.com www.Poriyaan.in
3.60

Synchronous Sequential Circuits

K-map Simplification:

For Flip-flop A

ForSy ForRy For OQutput
BX BX BX
AN 00 01 11 10 AN_ 00 01 11 10 AN 00 01 11 10

ol o [()] o ()| ofx |0 |[x]o0 of 0 [(1)] o | o
Gl PO oo

S&~ A'BX+A'BX’ Ra= ABX'+ AB’X’ Y=A'BX+AX’
=A’ (B&X)

For Flip-flop B

ForSg ForRg
BX BX
ANOC 00 01 11 10 AN_ 00 01 11 10

Joloo =] of=]=]
10@00 1x0|£11)

Sg= AB'X Ry= AB+ BX

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

A

>

X —0—D¢ R, Qs &

Sa 6.—\ A

=11
|

Y
.

RB QB B

Sg Qs

JU

CLK

Downloaded from EgggTree.com

http://www.poriyaan.in/

EnggTree.com www .Poriyaan.in

Synchronous Sequential Circuits 3.61

ili) Design using JK Flip-Flops:

Using the excitation table for JK Flip-Flop, we can determine the excitation

table for the given circuit as,

Present State | Next State Inputs
Qn Qn+1 J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Excitation table for JK Flip-Flop

Present .
Input Next state Flip-Flop Inputs Output
state
A B X A B JA Ka JB KB Y
0 0 0 0 0 0 X 0 X 0
0 0 1 1 0 1 X 0 X 1
0 1 0 1 1 1 X X 0 0
0 1 1 0 0 0 X X 1 0
1 0 0 1 0 X 0 0 X 1
1 0 1 0 1 X 1 1 X 0
1 1 0 0 0 X 1 X 1 1
1 1 1 1 0 X 0 X 1 0

Circuit excitation table

K-map Simplification:

For Flip-flop &

ForJy ForKy For Output
BX BX BX

AN 00 01 11 10 AN 00 01 11 10 AN 00 01 11 10
m 0| x ﬂ x ﬂ of 0 [(1)] o | o
1| x @ x inJ 1| © LI_J 0 U i 1) o | o |(1]

J=BX'+BX K& BX'+BX Y=ABX+AX’
=B®X =B®X

Downloaded from EgggTree.com

http://www.poriyaan.in/

EnggTree.com www.Poriyaan.in

Synchronous Sequential Circuits 3.62

For Flip-flop B

FO!‘JB ForKB
BX BX
& 00 01 11 10 A 00 01 11 10
S —
0| 0 0 e X o| x X 1
Hias iR Eanin
Jp= AX Kp= A+X
The input functions for,
Ja= BX’+ B’X Js= AX
=B®X
Ka= BX'+ B’X Ke= A+ X
=B®X

Circuit output function, Y= AX'+ A’'B’X
With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

X —¢

AT o

D
— K, QalA

A
Output (Y)

\' JB QB B

—<D
) QB

CLK

Logic diagram of given sequential circuit using JK Flip-Flop

Downloaded from EgpggTree.com

http://www.poriyaan.in/

www .Poriyaan.in
3.63

EnggTree.com
Synchronous Sequential Circuits

2. Design a clocked sequential machine using JK Flip-Flops for the state diagram

shown in the figure. Use state reduction if possible. Make proper state

assignment.
0/0
.eomo (&)
-
Soln:
State Table:
S, Next state Output
X=0 X=1 =0 =1
a a b 0 0
b C b 0 0
C a b 0 1
d a b 0 0

From the above state table a and d generate exactly same next state and same
output for every possible set of inputs. The state a and d go to next statesaand b
and have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state d can be

removed and replaced by a. The final reduced state table is shown below.

Next state Output
Present state
X=0 X=1 X=0 X=1
a a b 0 0
b c b 0 0
c a b 0 1
Reduced State table
Binary Assignment:

Now each state is assigned with binary values. Since there are three states,

number of Flip-Flops required is two and 2 binary numbers are assigned to the states.

a=00; b=0;and c=10

The reduced state diagram is drawn as,

Downloaded from EggggTree.com

http://www.poriyaan.in/

EnggTree.com www .Poriyaan.in

Synchronous Sequential Circuits 3.64

NeoTToLNo

1/0
Reduced State Diagram

Excitation Table:
Present State | Next State Inputs

Qn Qn+1 J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Excitation table for JK Flip-Flop
Present
Input Next state Flip-Flop Inputs Output
state
X A B A B Ja Ka JB KB Y
0 0 0 0 0 0 X 0 X 0
1 0 0 0 1 0 X 1 X 0
0 0 1 1 0 1 X X 1 0
1 0 1 0 1 0 X X 0 0
0 1 0 0 0 X 1 0 X 0
1 1 0 0 1 X 1 1 X 1
0 1 1 X X X X X X X
1 1 1 X X X X X X X
K-map Simplification:
For Flip-flop &
ForJy ForKy For Output

BX BX BX
ANC 00 01 11 10 AN_ 00 01 11 10 AN 00 01 11 10

OOCBX 0(xxx11 ol o [0 | = | 0
oo l=]=| alel=l={1J] afo]o|&]1)

Downloaded from EguggTree.com

http://www.poriyaan.in/

EnggTree.com www.Poriyaan.in

Synchronous Sequential Circuits 3.65

For Flip-flop B

ForJg ForKp
BX BX
AN 00 01 11 10 AN_ 00 01 11 10
ol 0 | x| x| O 0 (x 1 | x x)

fEREIED Iz |0 | x |x

B=X Kg=X"
With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

X — o
—<D
1 Ky Q- } Output (Y)
JB QB B
—<D
"Ml
CLKE
3. Design a clocked sequential machine using T Flip-Flops for the following state

diagram. Use state reduction if possible. Also use straight binary state

assignment.

01

Soln:

State Table:

State table for the given state diagram is,

Downloaded from EgsggTree.com

http://www.poriyaan.in/

EnggTree.com

www .Poriyaan.in

Synchronous Sequential Circuits 3.66
D Next state Output
X=0 X=1 X=0 =1
a a b 0 0
b d C 0 0
C a b 1 0
d b a 1 1
Even though a and c are having same next states for input X=0 and X=1,
as the outputs are not same state reduction is not possible.
State Assignment:
Use straight binary assignments as a= 00, b= 01, c= 10 and d= 11, the
transition table is,
Flip-Flop
Input | Present state Next state Output
Inputs
X A B A B TA TB Y
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 1 0 0 0 1 0 1
0 1 1 0 1 1 0 1
1 0 0 0 1 0 1 0
1 0 1 1 0 1 1 0
1 1 0 0 1 1 1 0
1 1 1 0 0 1 1 1
K-map simplification:
For Flip-flop & For Flip-flop B For OQutput
XAB 00 01 11 10 XAB 00 01 11 10 XAB 00 01 11 10
o o [[t [(T]] 1) ofo|o]o]o0 ol o | o |(M)] 1)
10L1 1J_1J It ENER R 1o |0 1]} o
Ts+= A+B Tpg=X Z=AB+X’'A

Downloaded from EgsggTree.com

http://www.poriyaan.in/

EnggTree.com www.Poriyaan.in

Synchronous Sequential Circuits 3.67

Logic Diagram:

CLK

3.12 STATE ASSIGNMENT:

In sequential circuits, the behavior of the circuitis defined in terms of its inputs,
present states, next states and outputs. To generate desired next state at particular
present state and inputs, it is necessary to have specific Flip-Flop inputs. These Flip-Flop
inputs are described by a set of Boolean functions called Flip-Flopinput functions.

To determine the Flip-Flop functions, it is necessary to represent states in the state

diagram using binary values instead of alphabets. This procedure is known as state

0/0
I oue

141
i

Reduced state diagram with binary states

assignment.

Downloaded from EgyggTree.com

http://www.poriyaan.in/

EnggTree.com www .Poriyaan.in

Synchronous Sequential Circuits 3.68

3.15.1 Rules for state assignments
There are two basic rules for making state assignments.
Rule 1:
States having the same NEXT STATES for a given input condition should

have assignments which can be grouped into logically adjacent cells in a K-map.

Rule 2:
States that are the NEXT STATES of a single state should have assignment

which can be grouped into logically adjacent cells in a K-map.

Next state Output
Present state
X=0 X=1 X=0 X=1
00 01 10 0 0
01 11 10 1 0
10 10 11 0 1
11 00 11 0 0

State table with assignment states

3.15.2 State Assignment Problem:
1. Design a sequential circuit for a state diagram shown below. Use state
assignment rules for assigning states and compare the required combinational

circuit with random state assignment.

l I
1/1
OO =0OR:

0/0

Using random state assignment we assign,

a=000,b=001,c=010,d= 011 and e= 100.

Downloaded from EggggTree.com

http://www.poriyaan.in/

EnggTree.com

www.Poriyaan.in

Synchronous Sequential Circuits 3.69
The excitation table with these assignments is given as,
Present state Input Next state Output
An Bn Cn X An+1 Bn+1 Cn+1 Z
0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 1 1 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X
K-map Simplification:
CiX X
4B\ 00 01 11 10 4B\ 00 01 11 10
00| O 1 0 1
01| O 1 0 0
11| X X X P&
10 0 0 X X
DB= KnEnx-" EnCni
G X
4B\ 00 01 11 10
00| 0 0 0 0
01| O 0 1 0
11 X X X X
10| 184 O X X

DC= Knﬁni"’ Bnanx

Z=B,C,X+ A, X

Downloaded from EgpggTree.com

http://www.poriyaan.in/

EnggTree.com www .Poriyaan.in

Synchronous Sequential Circuits 3.70

The random assignments require:
7 three input AND functions
1 two input AND function
4 two input OR functions

12 gates with 31 inputs

Now, we will apply the state assignment rules and compare the results.

l '
11
OO =OR:

0/

State diagram after applving Rules 1 and 2

Rule 1 says that: e and d must be adjacent, and
b and ¢ must be adjacent.

Rule 2 says that: e and d must be adjacent, and
b and ¢ must be adjacent.

Applying Rule 1, Rule 2 to the state diagram we get the state assignment as,

Present state Input Next state Output

1
=]
5
(o)
]
s

An+1 Bn+1 Cn+1

N

o
S
—_

N N === ==
R R R R, OO OO R R,RRRLOOOO
R OO R PR OOR PP OORMROO
, O R OR OFR ORORORO RO
O O X H OO XK X R R M X P RO
O O X X OO X X OFR X X Pk O K
C OX X OO X X R IR XX P R PR

Downloaded from EnggTree.com

http://www.poriyaan.in/

K-map Simplification:

X C,X
Al B0 0L 11 10 AnB\ 00 01 11 10
ool oo 1|1 ool o W1] 1N o
o1] X X 1 1 01| X X 0 1
11| X [X |0 0 11l X | X |0 0
10| X X 0 0 10| X X 0 0
-'\n-*l: D.-\= Kncn Bn+1= DB= :\n§,X+ .‘-_\ani
X C,X
AnBa ABN\ 00 01 11 10
00 oo|lo|o |10
01 o1l X [X |0 0
11| X | X |0 0 11| X@ X | 0 1
10] X X 0 0 10| X% X 1 0
Cll+1= DC = Kll Z= .“&ani"' .&nﬁnx

The state assignments using Rule 1 and 2 require:
4 three input AND functions
1 two input AND function

2 two input OR functions

7 gates with 18 inputs

Thus by simply applying Rules 1 and 2 good results have been achieved.

314 SYNCHRONOUS COUNTERS

Flip-Flops can be connected together to perform counting operations. Such a
group of Flip- Flops is a counter. The number of Flip-Flops used and the way in which
they are connected determine the number of states (called the modulus) and also the
specific sequence of states that the counter goes through during each complete cycle.

Counters are classified into two broad categories according to the way they are
clocked:

#+ Asynchronous counters,

*+ Synchronous counters.

In asynchronous (ripple) counters, the first Flip-Flop is clocked by the external
clock pulse and then each successive Flip-Flop is clocked by the output of the
preceding Flip-Flop.

In synchronous counters, the clock input is connected to all of the Flip-Flops so
that they are clocked simultaneously. Within each of these two categories, counters
are classified primarily by the type of sequence, the number of states, or the number
of Flip-Flops in the counter.

The term ‘synchronous’ refers to events that have a fixed time relationship
with each other. In synchronous counter, the clock pulses are applied to all Flip-

Flops simultaneously. Hence there is minimum propagation delay.

S.No| Asynchronous (ripple) counter Synchronous counter
1 | All the Flip-Flops are not All the Flip-Flops are clocked
clocked simultaneously. simultaneously.
2 | The delay times of all Flip- There is minimum propagation delay.

Flops are added. Therefore
there is considerable

propagation delay.

3 | Speed of operation is low Speed of operation is high.

4 | Logic circuit is very simple Design involves complex logic circuit

even for more number of states. | as number of state increases.

5 | Minimum numbers of logic The number of logic devices is more
devices are needed. than ripple counters.

6 | Cheaperthan synchronous Costlier than ripple counters.
counters.

3.14.1 2-BitSynchronous Binary Counter

In this counter the clock signal is connected in parallel to clock inputs of both the
Flip-Flops (FFoand FF1). The output of FFois connected to J1 and K1 inputs of the second
Flip-Flop (FF1).

HIGH
(Logic 1)
Jo Qo 1 — Q4
> Fho > Fh
Ko Qo} K4 L Q,
CLEK

2-Bit Synchronous Binary Counter

Assume that the counter is initially in the binary O state: i.e., both Flip-Flops
are RESET. When the positive edge of the first clock pulse is applied, FFo will toggle
because Jo= ko= 1, whereas FF1 output will remain 0 because J1= k1= 0. After the first
clock pulse Qo=1 and Q1=0.

When the leading edge of CLK2 occurs, FFowill toggle and Qo will go LOW. Since
FFi1has a HIGH (Qo= 1) on its J1and K1 inputs at the triggering edge of this clock pulse,
the Flip-Flop toggles and Q1 goes HIGH. Thus, after CLK2, Qo= 0 andQ1 = 1.

When the leading edge of CLK3 occurs, FFo again toggles to the SET state (Qo
= 1), and FFiremains SET (Q1= 1) because its J1and K1 inputs are both LOW (Qo =
0). After this triggering edge, Qo = 1 and Q1 = 1.

Finally, at the leading edge of CLK4, Qoand Q1 go LOW because they both have
a toggle condition on their J1 and K1 inputs. The counter has now recycled to its

original state, Qo = Q1 = 0.

1 2 3 4
CLK
| | |
| ! | |
Qo o 1 1 0

s r : '

| !

| |

1]

Timing diagram

3.142 3-BitSynchronous Binary Counter

A 3 bit synchronous binary counter is constructed with three JK Flip-Flops
and an AND gate. The output of FFo (Qo) changes on each clock pulse as the counter
progresses from its original state to its final state and then back to its original state.
To produce this operation, FFo must be held in the toggle mode by constant HIGH,

on its Jo and Ko inputs.

HIGH
(Logic 1)
Jo Qo J1 Q4 J Qi — Q-
> Fh > Fh > FPR
Ko - K4 - L K- -

CLK

3-Bit Synchronous Binary Counter

The output of FF1 (Q1) goes to the opposite state following each time Qo= 1.
This change occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes the
counter to recycle. To produce this operation, Qo is connected to the J1 and K1 inputs
of FF1. When Qo= 1 and a clock pulse occurs, FF1is in the toggle mode and therefore
changes state. When Qo= 0, FF1is in the no-change mode and remains in its present
state.

The output of FF2 (Q2) changes state both times; it is preceded by the unique
condition in which both Qoand Q1 are HIGH. This condition is detected by the AND
gate and applied to the]2 and Kz inputs of FF3. Whenever both outputs Qo= Q1= 1,

the output of the AND gate makes the J2= K2= 1 and FF2toggles on the following clock
pulse. Otherwise, the J2 and Kz inputs of FF2 are held LOW by the AND gate output,

FF2 does not change state.

CLOCK Pulse Q2 Q1 Qo
Initially 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 (recycles) 0 0 0
1 2 3 4 5 6 7 8
CLK
| I I | I | I
| ! | | | ! | |
Q, 0| 0 1 0 1 0 1 0
| |
| ! | ' | : | |
| [| !
Q.00 1 | 0 i 1 | 0
! ! I ! | |
I | | i 1 i
Q.0 0 0 10 1 : : l 0
I ! ! ' | | |

Timing diagram

3.14.3 4-BitSynchronous Binary Counter

This particular counter is implemented with negative edge-triggered Flip-
Flops. The reasoning behind the] and K input control for the first three Flip- Flops is
the same as previously discussed for the 3-bit counter. For the fourth stage, the Flip-
Flop has to change the state when Qo= Q1= Q2= 1. This condition is decoded by AND
gate Gs.

HIGH

FF,
10 Qo
op
K,

CLK

FFy
Ty
o>
LK, g

FF;
) Q] Gz
op
K. 5

4-Bit Synchronous Binary Counter

Therefore, when Qo= Q1= Q2= 1, Flip-Flop FF3 toggles and for all other times it

is in a no-change condition. Points where the AND gate outputs are HIGH are

indicated by the shaded areas.

Qo

!

Qo1

Qo

Qs

|
|
I
L
)
I
|
|
I

] L L m——

|
|
|
L
I
|
|
|
|

|
Timing diagram

3.144 4-Bit Synchronous Decade Counter: (BCD Counter):

BCD decade counter has a sequence from 0000 to 1001 (9). After 1001 state it

must recycle back to 0000 state. This counter requires four Flip-Flops and AND/OR

logic as shown below.

HIGH

o QOAL:DT _ s Qs
1Ko B 1Ko 65
CLK
4-Bit Synchronous Decade Counter
CLOCK Pulse Q3 Q2 Q1 Qo

Initially 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10(recycles) 0 0 0 0

1. First, notice that FFo (Qo) toggles on each clock pulse, so the logic equation

for its Jo and Ko inputs is

Jo=Ko=1
This equation is implemented by connecting Jo and Ko to a constant HIGH level.
2. Next, notice from table, that FF1 (Q1) changes on the next clock pulse each
time Q0 = 1 and Q3 = 0, so the logic equation for the J1 and Ki inputs is
Ji= K1= QoQ3’
This equation is implemented by ANDing Qo and Q3 and connecting the gate
output to the J1 and K1 inputs of FF1.
3. Flip-Flop 2 (Qz) changes on the next clock pulse each time both Qo= Q1 =

1. This requires an input logic equation as follows:

J2= Kz2= QoQ1
This equation is implemented by ANDing Qo and Q1 and connecting the gate

output to the]2 and Kz inputs of FFs.

4. Finally, FF3(Q3) changes to the opposite state on the next clock pulse each timeQo
=1,Q1=1,and Q2= 1 (state 7), or when Qo= 1 and Q1= 1 (state 9).The equation

for this is as follows:

J3= K3= QoQ1Q2+ QoQs3
This function is implemented with the AND/OR logic connected to the J3 and

K3 inputs of FFs.

axdt L J2 _[s] _[4 sl le] s s |9l _Juol
| | | | | ! ! : ! !
QODI | '[]
| | | | |
Q.1 0 ln
| | I
Q.0 0 IU
| |
Qs 0 1'_0

Timing diagram

3.14.5 Synchronous UP/DOWN Counter

An up/down counter is a bidirectional counter, capable of progressing in
either direction through a certain sequence. A 3-bit binary counter that advances
upward through its sequence (0, 1, 2, 3,4, 5, 6, 7) and then can be reversed so that it
goes through the sequence in the opposite direction (7, 6,5, 4, 3,2, 1,0) is an
illustration of up/down sequential operation.

The complete up/down sequence for a 3-bit binary counter is shown in table
below. The arrows indicate the state-to-state movement of the counter for both its UP
and its DOWN modes of operation. An examination of Qo for both the up and down
sequences shows that FFotoggles on each clock pulse. Thus, the Joand Koinputs of FFo

are,

Jo=Ko=1

CLOCK PULSE UP O O1 Qo DOWN

0 0 0 0

1 (: B @ i D
2 C 0 1 0 D
3 C O I A D
= C 1 0 0 D
5 C . @ 1 t)
6 (: 1 1T 0 D
7 (: { ER (O | D

To form a synchronous UP/DOWN counter, the control input (UP/DOWN)is

used to allow either the normal output or the inverted output of one Flip-Flop to the

J and K inputs of the next Flip-Flop. When UP/DOWN= 1, the MOD 8 counter will count

from 000 to 111 and UP/DOWN= 0, it will count from 111 to 000.

When UP/DOWN-= 1, it will enable AND gates 1 and 3 and disable AND gates 2

and 4. This allows the Q0 and Q1 outputs through the AND gates to the] and K inputs

of the following Flip-Flops, so the counter counts up as pulses are applied.

When UP/DOWN= 0, the reverse action takes place.

J1= K1= (Qo.UP)+ (Qo’.DOWN)

J2= Kz2= (Qo. Q1.UP)+ (Qo’.Q1.DOWN)

Jz
> FF:
K-

UP Qo. UP
1
HIGH |—:>_0 ’—
Jo Qo Ji Q4
UP/DOWN
— P FR ' — FR
Ko Qo Ky ﬁio—l_
DOWN | 2) —
%_/’ Qo.DOWN
CLK

3-bit UP/DOWN Synchronous Counter

3.14.6 MoODULUS-N-COUNTERS

The counter with ‘n’ Flip-Flops has maximum MOD number 2n. Find the
number of Flip-Flops (n) required for the desired MOD number (N) using the
equation,

2n2N
(i) For example, a 3 bit binary counter is a MOD 8 counter. The basic counter can
be modified to produce MOD numbers less than 2n by allowing the counter to

skin those are normally part of counting sequence.

n= 3
N=8
2n=23=8=N

(ii) MOD 5 Counter:
2n=N
2n=5
22= 4 less than N.
23= 8> N(5)
Therefore, 3 Flip-Flops are required.

(iiij MOD 10 Counter:
2n= N= 10
23= 8 less than N.
24=16 > N(10).

To construct any MOD-N counter, the following methods can be used.

1. Find the number of Flip-Flops (n) required for the desired MOD number

(N) using the equation,
2n 2 N.

2. Connect all the Flip-Flops as arequired counter.

3. Find the binary number for N.

4. Connect all Flip-Flop outputs for which Q= 1 when the count is N, as inputs
to NAND gate.

5. Connect the NAND gate output to the CLR input of each Flip-Flop.

When the counter reaches N state, the output of the NAND gate goes LOW,

resetting all Flip-Flops to 0. Therefore the counter counts from 0 through N-1.

For example, MOD-10 counter reaches state 10 (1010). i.e., Q3Q2Q1Qo=101 0. The
outputs Q3 and Q1 are connected to the NAND gate and the output of the NAND gate
goes LOW and resetting all Flip-Flops to zero. Therefore MOD-10 counter counts from

0000 to 1001. And then recycles to the zero value.

The MOD-10 counter circuit is shown below.

HIGH
(Logic 1)) - }
Fh FF FF. FF; J CLR
I L 6 U LS W AR LSy W Qs
CLK ——op D> > —|—0>
Ko B K1 B K2 B x| Ks B
Yok ECLR fCLR] IR

MOD-10 (Decade) Counter

3.15 SHIFT REGISTERS:

A register is simply a group of Flip-Flops that can be used to store a binary
number. There must be one Flip-Flop for each bit in the binary number. For instance,
aregister used to store an 8-bit binary number must have 8 Flip-Flops.

The Flip-Flops must be connected such that the binary number can be entered
(shifted) into the register and possibly shifted out. A group of Flip-Flops connected to
provide either or both of these functions is called a shift register.

The bits in a binary number (data) can be removed from one place to another
in either of two ways. The first method involves shifting the data one bit at a time in
a serial fashion, beginning with either the most significant bit (MSB) or the least

significant bit (LSB). This technique is referred to as serial shifting. The second

method involves shifting all the data bits simultaneously and is referred to as parallel

shifting.

There are two ways to shift into a register (serial or parallel) and similarly two

ways to shift the data out of the register. This leads to the construction of four basic

register types—

i Serial in- serial out,

ii. Serial in- parallel out,

—

i

i Parallel in- serial out,

iv. Parallel in- parallel out.

Data in —p

La Data out

Data in —p

3.15.1 Serial-In Serial-Out Shift Register:

(i) Serial in- serial out

T1

;

!

Data out

(iii) Serial in- parallel out

e

Data out

(iii) Parallel in- serial out

Data in

TI171

Data out

(iv) Parallel in- parallel out

The serial in/serial out shift register accepts data serially, i.e., one bit at a time
on a single line. It produces the stored information on its output also in serial form.

FF,
Dl Q‘l

FF->

D, Q:

Serial FFo
data —{Dp Qo
Input

> (1)
CLK

> @

> (3

S

erial-In Serial-Out Shift Register
The entry of the four bits 1010 into the register is illustrated below, beginning with

FF;
D; Qs — Serial
data
P> @ Output

the right-most bit. The register is initially clear. The 0 is put onto the data input line,

making D=0 for FFo. When the first clock pulse is applied, FFo is reset, thus storing the0.

Next the second bit, which is a 1, is applied to the data input, making D=1 for
FFoand D=0 for FF1because the D input of FF1is connected to the Qooutput. When

the second clock pulse occurs, the 1 on the data input is shifted into FFO0, causing FFO
to set; and the 0 that was in FFO is shifted into FFI.

The third bit, a 0, is now put onto the data-input line, and a clock pulse is
applied. The 0 is entered into FFo, the 1 stored in FFo is shifted into FFi, and the 0

stored in FF1 is shifted into FF2.

The last bit, a 1, is now applied to the data input, and a clock pulse is applied. This

time the 1 is entered into FFO, the O stored in FFO is shifted into FF], the 1 storedin FF1

is shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completesthe serial

entry of the four bits into the shift register, where they can be stored for any length of

time as long as the Flip-Flops have dc power.

Data
input

CLK

FF,

FFy

Dy Qo

P (D

Dl Q‘l

> (@

1st data
bit=0

CLK

FF,

FFy

D, Qo

D Q.

2rd data
bi=1

CLK

3rddata
bit=0

CLK

4th data
bit=1

CLK

FF:

D Qe

L &

FF;
D; Qs —Data
output
40,
FF;
D; Qs | 0
> @ After CLK 1
FF;s
D; Qs | &
D> () | After CLK 2
FF;
D; Qs O
D> (3) | AfterCLK 3
FF;
D; Qs L
After CLK 4

)

Four bits (1010) being entered serially into the register

To get the data out of the register, the bits must be shifted out serially and taken
off the Q3 output. After CLK4, the right-most bit, 0, appears on the Q3 output.

When clock pulse CLK5 is applied, the second bit appears on the Q3 output.
Clock pulse CLK6 shifts the third bit to the output, and CLK7 shifts the fourth bit to
the output. While the original four bits are being shifted out, more bits can be shifted

in. All zeros are shown being shifted out, more bits can be shifted in.

FF, FF4 FF: FF;
T D, 0 1 Ip, Qi ° Ip. Q| ! Ip; Q| ? 1ctdatabit
input
P @ D> @ D> @ D> @ After CLK 4
CLK
FF. FF4 FF: FF;
—1Ip, Qo O D, Qq 1 D; Q g D; Qs B 2nd data bit
0 | @ | PO | @ | recs
CLK
FF, FF4 FF> FF;
Dy, Qo O D, 0 D Q 1 D; Qs 0 Jrd data bit
O | @ | @ | @ | arecxs
CLK
. FF FF, FF> FF;
D Q| 9 Ip, Qi O Ip, Q@ % Ip; Qi1 46 databit
D | —® | — O | @ | arecicr
CLK
FF, FF4 FF: FF;
— Ipg Q| % Ip, Qi O Jp, Q@ O lp, QO
D | @ | O | P @ |asmaxs
CLK

Four bits (1010) being entered serially-shifted out of the register and replaced by all zeros

3.15.2 Serial-In Parallel-Out Shift Register:

In this shift register, data bits are entered into the register in the same as serial-

in serial-out shift register. But the output is taken in parallel. Once the data arestored,

each bit appears on its respective output line and all bits are available simultaneously

instead of on a bit-by-bit.

Qo Q, Qs
s FF; FFy FF: FF;
data —{Dy Qo D, D, @ D; Qs seriat
Input data
> @ > @ P> @ P @ . Output
CLK
Serial-In parallel-Out Shift Register
4] 0 0 0
FF, FF4 J FF: FF; J
Data D Qo D, Q| | D, Qe D; Qs Data
input output
> (D > (@ > & > O
CLK
1 0 0 0
FF, J FF; l FE. FF; J
Da=12JDg @l | Ip, Q@ L |p @ D; Qs

CLK

> (@

)

After CLK 1

1 1
FFs J FF, FF; FFs
Du=1—1 Ip; @] | Ip, O D, Q| 9 lp, Qi

> (1) > (2) > (3) > () | AfterCLK 2

CLK
1 1 1
FF, FF4 FF. FF;
Du=1—1 [N D, Q D Q Dy QO
> @ > @ > @ | P @ | arecixs
CLK

1 1 1 1
FF, J FF, FF, J FF, J
Da=1 - D, Qo D; @ D; Q D;: Qs

> @ > @ >.@ > @ After CLK 4

CLK

Four bits (1111) being serially entered into the register

3.15.3 Parallel-In Serial-Out Shift Register:

In this type, the bits are entered in parallel i.e., simultaneously into their
respective stages on parallel lines.

A 4-bit parallel-in serial-out shift register is illustrated below. There are four
data input lines, Xo, X1, X2and X3 for entering data in parallel into the register. SHIFT/
LOAD input is the control input, which allows four bits of data to load in parallel into
the register.

When SHIFT/LOAD is LOW, gates G1, G2, Gz and G4 are enabled, allowing each
data bit to be applied to the D input of its respective Flip-Flop. When a clock pulse is
applied, the Flip-Flops with D = 1 will set and those with D = 0 will reset, thereby

storing all four bits simultaneously.

i Xo xl. x:

G,

FF;

> (®

D; Qs

@

CLK

Parallel-In Serial-Out Shift Register

Serial

[data

out

When SHIFT/LOAD is HIGH, gates G1, Gz, G3and Gsare disabled and gates Gs,

Ge and G7 are enabled, allowing the data bits to shift right from one stage to the next.

The OR gates allow either the normal shifting operation or the parallel data- entry

operation, depending on which AND gates are enabled by the level on the

SHIFT/LOAD input.

3.15.4 Parallel-In Parallel-Out Shift Register:

In this type, there is simultaneous entry of all data bits and the bits appear on

parallel outputs simultaneously.

CLK

FParallel data inputs

Xo X1 X: X

L FF, L FFy L FF; \— FF;
Do Qol. Dy Qi) D, Q| Dy Qs

> (1) > (2) > (9 RO

Qo Qi Q2 Qs

Parallel data outputs

Parallel-In Parallel-Out Shift Register

3.15.5 UNIVERSAL SHIFT REGISTERS

If the register has shift and parallel load capabilities, then it is called a shift

register with parallel load or universal shift register. Shift register can be used for

converting serial data to parallel data, and vice-versa. If a parallel load capability is

added to a shift register, the data entered in parallel can be taken out in serial fashion

by shifting the data stored in the register.

The functions of universal shift register are:

1.
2.
3.

A clear control to clear the register to 0.

A clock input to synchronize the operations.

A shift-right control to enable the shift right operation and the serial input
and output lines associated with the shift right.

A shift-left control to enable the shift left operation and the serial input and
output lines associated with the shift left.

A parallel-load control to enable a parallel transfer and the n input lines
associated with the parallel transfer.

‘n’ parallel output lines.

A control line that leaves the information in the register unchanged

even though the clock pulses re continuously applied.

[t consists of four D-Flip-Flops and four 4 input multiplexers (MUX). Soand S1

are the two selection inputs connected to all the four multiplexers. These two

selection inputs are used to select one of the four inputs of each multiplexer.

The input 0 in each MUX is selected when S1So=00 and input 1 is selected when

S1So= 01. Similarly inputs 2 and 3 are selected when SiSo= 10 and Si1So= 11

respectively. The inputs S1 and SO control the mode of the operation of the register.

Parallel outputs

A Ay Ao
Q Q Q Q
Clear — o FF; FF: FF, FFo
A D A D A D AN D
CLK
S1—p ax1 M 1x1 » ax1 » 4x1
MUX MUX MUX MUX
SO—-} ; [[
3210 3210 2 251°0 3210
I I] |
Serial
input for L Serial
Shift-right input for
Is I i Shift- left

In

Parallel Inputs
4-Bit Universal Shift Register

When S1So= 00, the present value of the register is applied to the D-inputs of the

Flip-Flops. This is done by connecting the output of each Flip-Flop to the 0 input of

the respective multiplexer. The next clock pulse transfers into each Flip-Flop, the

binary value is held previously, and hence no change of state occurs.

When S1So= 01, terminal 1 of the multiplexer inputs has a path to the D inputs of

the Flip-Flops. This causes a shift-right operation with the lefter serial input

transferred into Flip-Flop FFs.

When S1So= 10, a shift-left operation results with the right serial input going into

Flip-Flop FFu.

Finally when S1So= 11, the binary information on the parallel input lines (I3, I2,

[3 and I4) are transferred into the register simultaneously during the next clock pulse.

The function table of bi-directional shift register with parallel inputs and parallel

outputs is shown below.

Mode Control)
Operation
S1 So
0 0 No change
0 1 Shift-right
1 0 Shift-left
1 1 Parallel load

3.15.6 BI-DIRECTION SHIFT REGISTERS:

A bidirectional shift register is one in which the data can be shifted either left
or right. It can be implemented by using gating logic that enables the transfer of a
data bit from one stage to the next stage to the right or to the left depending on the
level of a control line.

A 4-bit bidirectional shift register is shown below. A HIGH on the RIGHT /LEFT
control input allows data bits inside the register to be shifted to the right, and a LOW
enables data bits inside the register to be shifted to the left.

When the RIGHT/LEFT control input is HIGH, gates Gi, G2, G3 and G4 are
enabled, and the state of the Q output of each Flip-Flop is passed through to the D
input of the following Flip-Flop. When a clock pulse occurs, the data bits are shifted
one place to the right.

When the RIGHT/LEFT control input is LOW, gates Gs, Ge, G7 and Gs are
enabled, and the Q output of each Flip-Flop is passed through to the D input of the
preceding Flip-Flop. When a clock pulse occurs, the data bits are then shifted one

place to the left.

RIGHT/

— r\‘
LEFT P
Serial
datain — l
Gi| |G G| |Gs Gs G, Gs
FF; FF4 FF: FF;
Dy Qo D Q4 D, Q- D; o
Qs
> (D > (2) > > (©
CLK
4-bit bi-directional shift register

UNIT IV
ASYNCHRONOUS SEQUENTIAL CIRCUITS

41 INTRODUCTION

A sequential circuit is specified by a time sequence of inputs, outputs and
internal states. In synchronous sequential circuits, the output changes whenever a
clock pulse is applied. The memory elements are clocked flip-flops.

Asynchronous sequential circuits do not use clock pulses. The memory

elements in asynchronous sequential circuits are either unclocked flip-flops (Latches)or

time-delay elements.

S.No | Synchronous sequential circuits Asynchronous sequential circuits
Memory elements are either
Memory elements are clocked flip-
1 unclocked flip-flops or time delay
flops
elements.
The change in input signals can The change in input signals can
2 affect memory element upon affect memory element at any
activation of clock signal. instant of time.
The maximum operating speed of
clock depends on time delays Because of the absence of clock, it
3 involved. Therefore synchronous can operate faster than synchronous
circuits can operate slower than circuits.
asynchronous.
4 Easier to design More difficult to design

X]—»| S
2 —¥ ——® Z2
ninput : : m output
variables variables
% : :
- Combinational Zm
1 Circuit Yl
Ksecondary K excitation
variables v2) variables
(present state) {next state)
o &
¥k
Delay
Delay
Delay

Block diagram of Asynchronous sequential circuits

The block diagram of asynchronous sequential circuit is shown above. It
consists of a combinational circuit and delay elements connected to form feedback
loops. There are ‘n’ input variables, ‘m’ output variables, and ‘K’ internal states.

The delay elements provide short term memory for the sequential circuit. The
present-state and next-state variables in asynchronous sequential circuits are called
secondary variables and excitation variables, respectively.

When an input variable changes in value, the ‘y’ secondary variable does not
change instantaneously. It takes a certain amount of time for the signal to propagate
from the input terminals through the combinational circuit to the ‘Y’ excitation
variables where the new values are generated for the next state. These values
propagate through the delay elements and become the new present state for the
secondary variables.

In steady-state condition, excitation and secondary variables are same, but during
transition they are different.

To ensure proper operation, it is necessary for asynchronous sequential
circuits to attain a stable state before the input is changed to a new value. Because of

unequal delays in wires and combinational circuits, it is impossible to have two or

more input variable change at exactly same instant. Therefore, simultaneous changes
of two or more input variables are avoided.

Only one input variable is allowed to change at any one time and the time
between input changes is kept longer than the time it takes the circuit to reach stable

state.

Types:
According to how input variables are to be considered, there are two types
@ Fundamental mode circuit

® Pulse mode circuit.

Fundamental mode circuit assumes that:
¥* The input variables change only when the circuit is stable.
% Only one input variable can change at a given time.

* Inputs are levels (0, 1) and not pulses.

Pulse mode circuit assumes that:
* Theinputvariables are pulses (True, False) instead of levels.
* The width of the pulses is long enough for the circuit to respond to the input.
#* The pulse width must not be so long that it is still present after the new state

is reached.

4.2 Analysis of Fundamental Mode Circuits

The analysis of asynchronous sequential circuits consists of obtaining a table
or a diagram that describes the sequence of internal states and outputs as a function

of changes in the input variables.

421 Analysis procedure
The procedure for obtaining a transition table from the given circuit diagram
is as follows.

1. Determine all feedback loops in the circuit.

2. Designate the output of each feedback loop with variable Y1 and its
corresponding inputs y1, y2,....yk, where k is the number of feedback loops in
the circuit.

3. Derive the Boolean functions of all Y’s as a function of the external inputs
and the y’s.

4. PloteachY function in a map, using y variables for the rows and the external
inputs for the columns.

5. Combine all the maps into one table showing the value of Y= Y1, Y2,....Yk
inside each square.

6. Circle all stable states where Y=y. The resulting map is the transition table.

42.2 Problems
1. Anasynchronous sequential circuit is described by the following excitation and
output function,
Y= xix2+ (X1+x2) y
=Y
a) Draw the logic diagram of the circuit.
b) Derive the transition table, flow table and output map.
c) Describe the behavior of the circuit.
Soln:
i) The logic diagram is shown as,

X1

)
@ ! _J — =2

=

Logic diagram

y X1 X2 X1X2 (x1+x2)y Y= x1xz2+ (x1+x2)y Z=Y
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
0 1 0 1 1 1
1 1 0 0 1 1 1
1 1 1 1 1 1 1
Transition table:
Unstable state
Y\ 00 01 11 AJ Circle represents
0 @ @ 1* @/’/ stlanéle stfte
e | OO
Output map:

Output is mapped for all stable states. For unstable states output is

mapped unspecified.

Flow table:

Assigna=0;b=1

iif)

X1X2
y 00 01 11 10
o O 0 | — 0
1 | = 1 1 1
X1X2

y 00 01 11 10
HOICIRALS,

®

®

The circuit gives carry output of the full adder circuit.

2. Design an asynchronous sequential circuit that has two internal states and one

output. The excitation and output function describing the circuit are as follows:

Y1= xX1X2+ X1y2+ X2y1
Y2= x2+ X1y1y2+ X1y1
Z= x2+ y1.
a) Draw the logic diagram of the circuit.
b) Derive the transition table, output map and flow table.
Soln:

i) The logic diagram is shown as,

X1
. L3
b4 . %
%
1>
) D> :
Logic Diagram
ii)
=
> > S > e % ¥ =1 > > >
v N v S\l — — ~ ai — - ~N -
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 1 1 1

Map for Y2
00 01 11 10

X1X2

yiy?2

Map for Y1
X1X2
yiy2 00 01 11 10

00

01

11

10

00

01

11

10

11 10

00 01

X1X2

y1y2

10

11 | (00)

o1 00 11

Map for Y1Y2
00 01 11

X1X2
yiy2

Transition table and Output map

00

01

11

10

10

01

11

01

11

00

1100@@@

10| 00

Output map

Transition table

Primitive Flow table

X1X2

y1y2

00

g1 EE

®

a

®
©|©

3. Anasynchronous sequential circuit is described by the excitation and output

functions,

Y=x1x2"+ (x1+x2’) y

Z=Y

a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

Soln:
%)
X24|>£ “ - — Y=Z
LogicEi-agram
ii)

y X1 X2 x2’ xix2' | (x1+x2')y | Y=xix2'+ (x1+x2’)y Z=Y
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 1 1 0 1 1
0 1 1 0 0 0 0 0
1 0 0 1 0 1 1 1
1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1

Transition table:

X1X2
¥y 00 01 11 10

0 | ©|@|©@)] 1
1| O] 0 |O]O

Transition Table

Output map:

Output is mapped for all stable states. For unstable states output is

mapped unspecified.

1 1 — 1 1
Output map
Flow table:
Assigna=0; b=1
X1X2

¥ 00 01 11 10

0 |[D|®|@)] ¢
1| ®) = | ®|®

4. Anasynchronous sequential circuitis described by the excitation and output
functions, B= (A1’Bz) b+ (A1+B2) C=B
a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

s>

Logic Diagram

Soln:

—C=B

b A1 B2 A1 | (A’B2)b| A1+B2 | B=(A1'Bz) b+ (A1+B2) C=B
0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 0 0 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 0 0 0 0
0 1 1 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 1
Transition table
A1B2
b 00 01 11 10
o @) 1| 1|1
10 | OO
Output map

Output is mapped for all stable states.

A1B2

b 00 01 11 10
B 0 | = | = | =
1 = 1 1 1

Flow table
Assigna=0;b=1

A1Bz

b 00 01 11 10
o|[(@)| b | b |0

5. An asynchronous sequential circuit is described by the excitation and output

functions,

X= (Y1Z1'W2) x + (Y1'Z1W?2’)

S=

X'

a) Draw the logic diagram of the circuit

b) Derive the translation table and output map

Soln:
W2 l— >
= 1D e
o 1>
|
} >_I>..»_ ;
x
jad
S I N O O B =

> = = > = N N ; ; < v
0 0 1 0 1 0 1 0 0 0 1
0 0 1 0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0 0 1
0 1 0 0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0 0 0 1
0 1 0 1 0 1 0 0 0 0 1
1 0 1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1 0
1 0 1 1 0 0 1 0 0 0 1
1 0 1 1 0 1 0 0 0 0 1

1 1 0 0 1 0 1 0 0 0 1
1 1 0 0 1 1 0 0 0 0 1
1 1 0 1 0 0 1 1 0 1 0
1 1 0 1 0 1 0 0 0 0 1
Map for X Map for S
Y1Z41 Y121
XW: 00 01 11 10 xXW> 00 01 11 10
00| O 1 0 0 oo| 1 0 1 1
01| O 0 0 0 01| 1 1 1 1
11] 0 0 0 1 11| 1 1 1 0
10| O 1 0 0 10| 1 0 1 1
Transition table and Output map:
Map for XS
Y171 Smp it a2 Y121
xW» 00 01 11 10 xW2 00, 01, 21 130
ool 01| 10 | 01 01 00| — = = -
01 oi] 1] 1|1]
10| 01 01 | o1 dgl= | @ [= | =
Transition table Output map

4.3 Analysis of Pulse Mode Circuits

Pulse mode asynchronous sequential circuits rely on the input pulses rather
than levels. They allow only one input variable to change at a time. They can be
implemented by employing a SR latch.

The procedure for analyzing an asynchronous sequential circuit with SR

latches can be summarized as follows:

1. Label each latch output with Yi and its external feedback path (if any) with
yi for
i=12,.,k

2. Derive the Boolean functions for the Si and Ri inputs in each latch.

3. Check whether SR = 0 for each NOR latch or whether S'R' = 0 for each NAND
latch. If either of these condition is not satisfied, there is a possibility that the
circuit may not operate properly.

4. Evaluate Y = S + R’y for each NOR latch or Y = S' + Ry for each NAND latch.

5. Construct a map with the y’s representing the rows and the x inputs
representing the columns.

6. Plotthe value of Y=Y1Y2 Yk in the map.

7. Circle all stable states such that Y =y. The resulting map is the transition
table.

The analysis of a circuit with latches will be demonstrated by means of the

below example.

1. Derive the transition table for the pulse mode asynchronous sequential circuit

shown below.

x1 >

— Y1

¥2

D‘L >—Y2

Sz

X2

Example of a circuit with SR latches

Soln:
There are two inputs x1 and x2 and two external feedback loops giving rise
to the secondary variables y1and yz.

Step 1:

The Boolean functions for the S and R inputs in each latch are:

S1=x1y2 S2= x1X2

R1= x1'x2’ Rz=x2"y1

Step 2:
Check whether the conditions SR= 0 is satisfied to ensure proper operation of the
circuit.

S1R1=x1y2 x1'x2" =0

S2R2=x1x2X2'y1=0

The result is 0 because x1x1’ = x2x2" = 0

Step 3:
Evaluate Y1 and Y2. The excitation functions are derived from the relation Y= S+
R’y. Y1= S1+ R1'y1 = x1y2 +(x1'x2")" y1
= X1y2 +(X1+ X2) y1 = X1y2 +X1y1+
x2y1 Y2= S2+ R2’y2 = xix2+ (x2'y1)’y2

= x1x2+ (Xx2+ y1') y2 = X1x2+ x2y2+ y1'y2

y1 y2 X1 X2 X1y2 | X1y1 | X2y1 | Xix2 | x2y2 | y1'y2 | Y1 Y2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 0 0 1 1 1
0 1 1 1 1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 1 0

1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 1 0 1 1
1 1 1 0 1 1 0 0 0 0 1 0
1 1 1 1 1 1 1 1 1 0 1 1
Step 4:
Maps for Y1 and Y.
Map for Y1 Map for Yo
X1X2 X1X2
yiy2 00 01 11 10 yiy2 o0 01 11 10
oo| O 0 0 0 oo| O 0 1 0
01| O 0 1 1 01| 1 1 1 1
11| 0 1 1 1 11| 0 1 1 0
10 0 1 1 1 10 0 0 1 0
Step 5:
Transition table
Map for Y1Y
X130 a or 1112
y1y2 00 01 11 10
00 01
u[0 | @@
10| 00 1

44 RACES:

A race condition is said to exist in an asynchronous sequential circuit when
two or more binary state variables change value in response to a change in an input
variable.

Races are classified as:
i. Non-critical races

ii. Critical races.

Non-critical races:

If the final stable state that the circuit reaches does not depend on the order in
which the state variables change, the race is called a non-critical race.

If a circuit, whose transition table (a) starts with the total stable state y1y2x=
000 and then change the input from 0 to 1. The state variables must then change from
00 to 11, which define a race condition.

The possible transitions are:

06— 11
06— 0}— 11
00 10— 11

In all cases, the final state is the same, which results in a non-critical condition. In (a),

the final state is (y1y2x= 111), and in (b), it is (y1yz2x= 011).

X X

0 1 0 1
Vivz Viyz

01 11 01
11 @ 11 01

10 11 10 11
(a) Possible transitions: (b) Possible transitions:
00 11 00 —11—01
00 — 01 — 11 00 — 01
00 — 10 — 11 00 10— 11— 01

Examples of Non-critical Races

Critical races:

A race becomes critical if the correct next state is not reached during a state
transition. If it is possible to end up in two or more different stable states, depending
on the order in which the state variables change, then it is a critical race. For proper
operation, critical races must be avoided.

The below transition table illustrates critical race condition. The transition
table (a) starts in stable state (y1y2x= 000), and then change the input from 0 to 1. The
state variables must then change from 00 to 11. If they change simultaneously, the
final total stable state is 111. In the transition table (a), if, because of unequal
propagation delay, Y2 changes to 1 before Y1 does, then the circuit goes to the total
stable state 011 and remains there. If, however, Y: changes first, the internal state
becomes 10 and the circuit will remain in the stable total state 101.

Hence, the race is critical because the circuit goes to different stable states,

depending on the order in which the state variables change.

X X
0 1 0 1
ivz viyz
01 01 i |
@ [@
19 19
(a) Possible transitions: (b) Possible transitions:
00 — 11 00 —11
00 — 01 00 — 01 — 11
00 — 10 00 —10

Examples of Critical Races

4,5 CYCLES

Races can be avoided by directing the circuit through intermediate
unstable states with a unique state-variable change. When a circuit goes through a

unique sequence of unstable states, it is said to have a cycle.

Again, we start with y1y2= 00 and change the input from 0 to 1. The transition table
(a) gives a unique sequence that terminates in a total stable state 101. The tablein (b)
shows that even though the state variables change from 00 to 11, the cycleprovides a
unique transition from 00 to 01 and then to 11, Care must be taken when using a cycle
that terminates with a stable state. If a cycle does not terminate with a
stable state, the circuit will keep going from one unstable state to another, making the

entire circuit unstable. This is demonstrated in the transition table (c).

X X X
0 1 0 1 0 1
Vivz Vive yivz
01 11 01 - 11 01 11

11 10 11 {11) 11 10
10 10 10 01

(a) State transition: (b) State transition: (c) Unstable:
00 —» 01— 11— 10 00 — 01— 11 |——>01—->11—»-10—|

Examples of Cycles
Debounce Circuit:

Input binary information in binary information can be generated manually be
means of mechanical switches. One position of the switch provides a voltage equivalent
to logic 1, and the other position provides a second voltage equivalent to logic 0.
Mechanical switches are also used to start, stop, or reset the digital system. A common
characteristic of a mechanical switch is that when the arm is thrown fromone position to
the other the switch contact vibrates or bounces several times before coming to a final
rest. In a typical switch, the contact bounce may take several milliseconds to die out,
causing the signal to oscillate between 1 and 0 because the switch contact is vibrating.

A debounce circuit is a circuit which removes the series of pulses that result
from a contact bounce and produces a single smooth transition of the binary signal

from O to 1 or from 1 to 0. One such circuit consists of a single-pole, double-throw

switch connected to an SR latch, as shown below. The center contact is connected to

ground that provides a signal equivalent to logic 0. When one of the two contacts, A
or B, is not connected to ground through the switch, it behaves like a logic-1 signal.
When the switch is thrown from position A to position B and back, the outputs of the
latch produce a single pulse as shown, negative for Q and positive for Q’. The switch
is usually a push button whose contact rests in position A. When the pushbutton is

depressed, it goes to position B and when released, it returns to position A.

[T

Ql

Ground A—3B— 9 A—»

Debounce Circuit

The operation of the debounce circuit is as follows: When the switch resets in
position A, we have the condition S=0, R =1and Q =1, Q" = 0. When the switch is
moved to position B, the ground connection causes R to go to 0, while S becomes a 1
because contact A is open. This condition in turn causes output Q to go to 0 and Q' to
go to 1. After the switch makes an initial contact with B, it bounces several times. The
output of the latch will be unaffected by the contact bounce because Q' remains 1 (and
Q remains 0) whether R is equal to 0 (contact with ground) or equal to 1 (no contact
with ground). When the switch returns to position A, S becomes 0 and Q returns to
1. The output again will exhibit a smooth transition, even if there is a

contact bounce in position A.

4.6 DESIGN OF FUNDAMENTAL MODE SEQUENTIAL CIRCUITS

The design of an asynchronous sequential circuit starts from the statement of
the problem and concludes in a logic diagram. There are a number of design steps
that must be carried out in order to minimize the circuit complexity and to produce a

stable circuit without critical races.

The design steps are as follows:
1. State the design specifications.
Obtain a primitive flow table from the given design specifications.

Reduce the flow table by merging rows in the primitive flow table.

Bw N

Assign binary state variables to each row of the reduced flow table to obtain the

transition table. The procedure of state assignment eliminates any possible critical

races.

5. Assign output values to the dashes associated with the unstable states to
obtain the output maps.

6. Simplify the Boolean functions of the excitation and output variables and

draw the logic diagram.

1. Design a gated latch circuit with inputs, G (gate) and D (data), and one output, Q.
Binary information present at the D input is transferred to the Q output when G is
equal to 1. The Q output will follow the D input as long as G= 1. When G goestoO,
the information that was present at the D input at the time of transitionoccurred
is retained at the Q output. The gated latch is a memory element that accepts the
value of D when G=1 and retains this value after G goes to 0, a changein D does not
change the value of the output Q.

Soln:

Step 1:
From the design specifications, we know that Q=0 if DG= 01

and Q=1 if DG= 11
because D must be equal to Q when G= 1.
When G goes to 0, the output depends on the last value of D. Thus, if the transition
is from 01 to 00 to 10, then Q must remain 0 because D is 0 at the time ofthe transition

from 1 to 0 in G.

If the transition of DG is from 11 to 10 to 00, then Q must remain 1. This

information results in six different total states, as shown in the table.

State Inputs Output Comments
D G Q

a 0 1 0 D= Q because G=1
b 1 1 1 D= Q because G=1
C 0 0 0 After state a or d
d 1 0 0 After state c
e 1 0 1 After state b or f
f 0 0 1 After state e

Step 2: A primitive flow is a flow table with only one stable total state in each row.

It has one row for each state and one column for each input combination.

Step 3:

DG
00 01 11 10
c,— @,0) S
=g a, — @;1 2, —
Gy o, |2 | me

C, = A b,— @,0
b [omis| By [@R
Bl la-|=,=|e=-

Primitive flow table

The primitive flow table has only stable state in each row. The table can be

reduced to a smaller number of rows if two or more stable states are placed in the

same row of the flow table. The grouping of stable states from separate rows into one

common row is called merging.

00 01 11 10 00 01 11 10
alc - ;0 b,_ SRS b - a, — @;1 e, —
C @0 a, — el ot d,_ e f,_ Ry e b,_ @xl
dl o= |--|b- |@0 FIBLa- |- —|e-

States that are candidates for merging

Thus, the three rows a, c, and d can be merged into one row. The second row
of the reduced table results from the merging of rows b, e, and f of the primitive flow
table.

DG
00 01 11 10

a ¢ d|(@0((@,0] b- Do
befl(B1l |a- (B 1]@1

Reduced table-1

The states ¢ & d are replaced by state a, and states e & f are replaced by state b

DG
00 01 11 10

a|(@,0|(@),0| b,- |(@),0
bk 1| a—- |[(By1|E1

Reduced table- 2

Step 4:

Assign distinct binary value to each state. This assignment converts the flow
table into a transition table. A binary state assignment must be made to ensure that
the circuit will be free of critical races.

Assign 0 to state a, and 1 to state b in the reduced state table.

Transition table and output ma

Step 5:

o>
i

Gated-Latch Logic diagram

The diagram can be implemented also by means of an SR latch. Obtain the

Boolean function for S and R inputs.

y Y S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

SR Latch excitation table
From the information given in the transition table and from the latch

excitation table conditions, we can obtain the maps for the S and R inputs of the latch.

Maps for S and R

DG DG

¥_ 00 01 YN 00 01 11 10
ol 0 | o ol x W=xW o] x
1] % 0 1] O 0 0

S = DG R=DG
The logic diagram consists of an SR latch using NOR latch and the gates

required to implement the S and R Boolean functions. With a NAND latch, we must
use the complemented values for S and R.

S’=(DG)’ and R =(D'G)

D—y g D)O S
Q —
G G
R ‘Do;)3 R
Logic diagram with NOR latch Logic diagram with NAND latch

2. Design a negative-edge triggered T flip-flop. The circuit has two inputs, T (toggle)
and G (clock), and one output, Q. the output state is complemented if T= 1 and the
clock changes from 1 to 0 (negative-edge triggering). Otherwise, underany other
input condition, the output Q remains unchanged.

Step 1:

Starting with the input condition TC= 11 and assign it to a. The circuit goes to state

b and output Q complements from 0 to 1 when C changes from 1 to 0 while T remains a 1.

Another change in the output occurs when the circuit changes from state c to
state d. In this case, T=1, C changes from 1 to 0, and the output Q complements from

1 to 0. The other four states in the table do not change the output, because T is equal

to 0. If Q is initially O, it stays at 0, and if initially at 1, it stays at 1 even though the

clock input changes.

Inputs Output

State Comments

Initial outputis 0

After state a

Initial outputis 1

After state c

After state d or f

After state e or a

=il K==) N==} Nl Ny B o)

After state b or h

olo|lo|lolr|r|--] -
—lolr|lololr|o~R

Sl || |S|lo|o|o

1 After stategorc

Specifications of total states

Step 2: Merging of the flow table

The information for the primitive flow table can be obtained directly from the
condition listed in the above table. We first fill in one square in each row belonging
to stable state in that row as listed in the table.

Then we enter dashes in those squares whose input differs by two variables
from the input corresponding to the stable state.

The unstable conditions are then determined by utilizing the information
listed under the comments in the above table.

TC
00 01 11 10

Step 3: Compatible pairs 5 | -, — f- @,0 b,—

bl|g=|==|e=|®)1

¢|—-,—| h- @1 d,—

d a;= I a, — @;0
e @:0 f;_ e e d,_

fle- |B)0|a-|-,-
g ,1 h-|-,—-| b,-
h|g— |01 e-|-/-

Primitive flow table

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

b | acx

¢ X b,d %

4 | bdx X a,c X

e | bdx Zfi}; thx |

| o | il s | | ¥

gl thx | v |bdx Z’fi’; X fefz

[[fa el <]
a b c d e f g

Implication table

The implication table is used to find the compatible states. The only difference
is that when comparing rows, we are at liberty to adjust the dashes to fit any desired
condition. The two states are compatible if in every column of the corresponding
rows in the primitive flow table, there are identical or compatible pairs and if there is
no conflict in the output values.

A check mark () d/esignates a square whose pair of states is compatible. Those
states that are not compatible are marked with a cross (x). The remaining squares are
recorded with the implied pairs that need further investigation.

The squares that contain the check marks define the compatible pairs: (a,

f) (b, g) (b, h) (c,h) (d, e) (d,f) (e f) (g h)

Step 4: Maximal compatibles
Having found all the compatible pairs, the next step is to find larger set of
states that are compatible. The maximal compatible is a group of compatibles that

contain all the possible combinations of compatible states. The maximal compatible

can be obtained from a merger diagram.

The merger diagram is a graph in which each state is represented by a dot
placed along the circumference of a circle. Lines are drawn between any two
corresponding dots that form a compatible pair. All possible compatibles can be
obtained from the merger diagram by observing the geometrical patterns in
which states are connected to each other.

e Alinerepresents a compatible pair

e Atriangle constitutes a compatible with three states

e Ann-state compatible is represented in the merger diagram by an n-sided

polygon with all its diagonals connected.

a

e
Merger Diagram

The merger diagram is obtained from the list of compatible pairs derived from
the implication table. There are eight straight lines connecting the dots, one foreach
compatible pair. The lines form a geometrical pattern consisting of two triangles
connecting (b, g, h) & (d, e, f) and two lines (a, f) & (c, h). The maximal compatibles
are:

(@f) (b,gh) (ch) (def)

TC
00 01 11 10

afle—- [(F)0 D |7
bg h|@1 M, 1| c- |B)1
oh| 8- W@ 1] d-
def|@0|H0|a- |0

Reduced Flow table

The reduced flow table is drawn. The compatible states are merged into one row
that retains the original letter symbols of the states. The four compatible set of states
are used to merge the flow table into four rows.

TC
00 01 11 10

ald- [(@,0|@),0]b,-
b|®B,1|Br1 e [B)1
| b-|@1@1]|d-
dl@ol@o|a-|@o

Final Reduced Flow table

Here we assign a common letter symbol to all the stable states in each merged
row. Thus, the symbol f is replaced by a; g & h are replaced by b, and similarly for

the other two rows.

Step 5: State Assignment and Transition table

Find the race-free binary assignment for the four stable states in the reduced

flow table. Assign a= 00, b=01, c= 11 and d= 10.

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

Transition Table and Output Map

TC TC

yiy2\ 00 01 11 10 yiy2\ 00 01 11 10
ool 10 01 olo | ol o] x
01 1 or| 1| 1|1 |1
11| 01 @ @ 10 17 | < 1 1 X
10 00 10l 0] 00 o0

Transition table Output map Q= vy

Logic Diagram:

TC TC

¥yiy2\ 00 01 11 10 ¥yiy2\ 00 01 11 10
00 00| 0 | X X
ol o 1l o o1 x | 0 | x

o
o
o

01
11| O X XH X 11 L 1 0 0 0
WX X |0 | X 10/ 0|0 0
S1= y:TC+ y'2T'C’ Ri= y:T'C'+ y2'TC
TC TC
yiy2 00 01 11 10 yiy2 00 01 11 10
ool 0] 0o oo X | x| x]|o
of| x| x|= o1l 00| o]o
11| X X X 0 11 0 0 0
10 0 0 0 0 10 X | X | X
5:= y'TC’ Rz=y1TC’

Maps for Latch Inputs

Sz

3. Develop a state diagram and primitive flow table for a logic system that has two
inputs, X and Y, and a single output X, which is to behave in the following manner.
Initially, both inputs and output are equal to 0. Whenever X= 1 and Y= 0, the Z
becomes 1 and whenever X= 0 and Y= 1, the Z becomes 0. When inputs are zero,
i.e. X=Y= 0 or inputs are one, i.e. X= Y= 1, the output Z does not change; it remains
in the previous state. The logic system has edge triggered inputs withouthaving a
clock. The logic system changes state on the rising edges of the two inputs. Static
input values are not to have any effect in changing the Z
output.

Soln:

The conditions given are,

Initially both inputs X and Y are 0.

WhenX=1,Y=0;Z=1

WhenX=0,Y=1;Z=0

When X= Y= 0 or X= Y= 1, then Z does not change, it remains in the previous
state.

Step 1:

The above state transitions are represented in the state diagram as,

State diagram

Step 2:

A primitive flow table is constructed from the state diagram. The primitive
flow table has one row for each state and one column for each input combination.
Only one stable state exists for each row in the table. The stable state can be easily
identified from the state diagram. For example, state A is stable with output 0 when
inputs are 00, state C is stable with output 1 when inputs are 10 and so on.

We know that both inputs are not allowed to change simultaneously, so we can
enter dash marks in each row that differs in two or more variables from the input
variables associated with the stable state. For example, the first row in the flowtable
shows a stable state with an input of 00. Since only one input can change at anygiven
time, it can change to 01 or 10, but not to 11. Therefore we can enter two dashes in
the 11 column of row A.

The remaining places in the primitive flow table can be filled by observing
state diagram. For example, state B is the next state for present state A when input
combination is 01; similarly state C is the next state for present state A when input

combination is 10.

E @Jl B,_ TEAX C:_
F e s B,— ®1 C,—

Primitive flow table

Step 3:

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

B v

C | AE X g’;:

D| v v |BFX

E|AEX|AEX| v

F| v |[DpFXx| v |DFx| v
A B C D E

The squares that contain the check marks (¥") define the compatible pairs:

(A,B) (A,D) (A F)(B,D) (CE) (CF)(DE)(EF)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived
from the implication table. There are eight straight lines connecting the dots, one for
each compatible pair. The lines form a geometrical pattern consisting of two triangles

connecting (A, B, D) & (C, E, F) and two lines (A, F) & (D, E). The maximal

compatibles are:

(A, B, D) (G E, F)

Closed covering condition:

The condition that must be satisfied for merging rows is that the set of chosen
compatibles must cover all the states and must be closed. The set will cover all the states if

it includes all the states of the original state table. The closure condition is

(A, F)

(D, E)

Merger diagram

satisfied if there are no implied states or if the implied states are included within the
set. A closed set of compatibles that covers all the states is called a closed covering.

If we remove (A, F) and (D, E), we are left with a set of two compatibles:
(A, B, D) (C,E, F)

All six states from the primitive flow table are included in this set. Thus, the set
satisfies the covering condition.

The reduced flow table is drawn as below.

XY
00 01 11 10

ABD|@&0| @& 0| Dol -
CEF|®),1| B~ |®1]|C)1

Reduced flow table

Here we assign a common letter symbol to all the stable states in each merged
row. Thus, the symbol B & D is replaced by A; E & F are replaced by C.

XY
00 01 11 10

Al@E0| @0 @& 0] ¢, -
G @,1 & - @,1 @,1

Step 5:

Find the race-free binary assignment for the four stable states in the reduced
flow table. Assign A= 0 and C=1

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

XY XY
q 00 01 11 10 q 0o 01 11 10

ol 0 | o |0 ﬂ ol oo | o ﬂ
] o [DI E@io]
Q=qY'+XY'+gX 2=Q

Transition table and output ma

Step 6:

2t

q
Gated-Latch Logic diagram

4. Design a circuit with inputs X and Y to give an output Z= 1 when XY= 11 but
only if X becomes 1 before Y, by drawing total state diagram, primitive flow

table and output map in which transient state is included.

Soln:
Step 1:
The state diagram can be drawn as,
State table
Step 2:

A primitive flow table is constructed from the state table as,

D|—,— B,_ @JO c:_
E|-;—|B- [®),1] c-

Primitive flow table

Step 3:
The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

Bl ¥

C| v |DEX

D| v | v |DEX

E|l v |[DEX| , |DEX

A B C D
Implication table

The squares that contain the check marks (¥") define the compatible pairs:

(A,B) (A, C)(A,D)(A E) (B, D) (C E)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived
from the implication table. There are six straight lines connecting the dots, one for
each compatible pair. The lines form a geometrical pattern consisting of one triangle
connecting (A, B, D) & aline (C, E). The maximal compatibles are:

(A, B, D) (C,E)

C
Merger diagram

The reduced flow table is drawn as below.

XY
00 01 11 10

AEBD|@E0[E@0|Bo]|cC -
CE| A~ | B- |E),1](C)0

Reduced flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B & D is replaced by A; E is replaced by C.

XY
00 01 11 10

&) @0 @0 ®0|c -

Cla-|a-|C)yi|C)o

Transition table

5. Design a circuit with primary inputs A and B to give an output Z equal to 1 when A
becomes 1 if B is already 1. Once Z= 1 it will remain so until A goes to 0. Draw
the total state diagram, primitive flow table for designing this circuit.

Soln:

Step 1:

The state diagram can be drawn as,

State diagram

Step 2:
A primitive flow table is constructed from the state table as,
AB
00 01 11 10

Al@EO|B- |-, -|C-

BYY| —serm B:— @'1 FJ_

E=,~ B~ |(E)0| e-
Fla- [-,-|D=|E1

Primitive flow table

6. Design an asynchronous sequential circuit that has two inputs X2 and X1 and one
output Z. When X1= 0, the output Z is 0. The first change in X2 that occurs while X1
is 1 will cause output Z to be 1. The output Z will remain 1 until X1 returns to 0.

Soln:

Step 1:

The state diagram can be drawn as,

State diagram

Step 2:
A primitive flow table is constructed from the state table as,

X2 X1
00 01 11 10

AlE0|B- |-, —|C-

D|—:— F,_‘ @;1 C;_

E|-,—-|E- [E),0] C-
Fla- |[B1l|p-|-,-

Primitive flow table

Step 3:
The rows in the primitive flow table are merged by obtaining all compatible

pairs of states. This is done by means of the implication table.

C| v |DE x

D |BF x| BF x |[DFx

BF X
E | BF X DE x v |DE X

F [BFX|BFX|DEx| v |DE X

A B C D E

Implication table

The squares that contain the check marks (¥') define the compatible pairs:

(A, B) (A Q) (CE) (D, F)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived
from the implication table. There are four straight lines connecting the dots, one for

each compatible pair. It consists of four lines (A, B), (A, C), (C, E) and (D, F).
A
m
E w C
D

Merger diagram

The maximal compatibles are:

(A, B) (CE) (D, F)
This set of maximal compatible covers all the original states resulting in the reduced

flow table.

The reduced flow table is drawn as below.

X2 X1
00 01 11 10

AB|l@0[E0|D-|C -
CE|A- | E- [®E),0[C)0

D,F|A- |®1|D1|c-

Flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B is replaced by A; E is replaced by C and F is replaced by D.

X2 X1
00 01 11 10

Al@0|@E0|D-|C-
c|a-|D-|Cro|Cro
D|A- |D1|@1|c-

Reduced Flow table

Step 5:

Find the race-free binary assignment for the four stable states in the

reduced flow table. Assign A= So, C= S1 and D= Sa.

X2 X1
00 01 11 10

So @,0 @,U S2,— | 51, -
S1 So,— S:, o @:0 @:0
52 (S, - [G1 &)1 51, -

Now, if we assign So= 00, S1 = 01 and Sz = 10, then we need one more state S3=
11 to prevent critical race during transition of So —»S1 or S2 —»S1. By introducing S3
the transitions S+—» S2 and S2—» S1 are routed through Ss.

Thus after state assignment the flow table can be given as,

Next state for Inputs X2 X1,

Present State Output

F:F;| 00 01 | 11 10
So—» 00 @,U @,0 S2:0= [Bap—
S1—> 01| Ss,— | S5, - |(53:0 (B0
S;—»10 [S5,- &1 &)1 S5, -

Ss—»11|~,~ |5, | =, - |51, -

r

Flow table with state assignment

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

Next state for Inputs X2 X1,

Present State Output

F. F, [00 01 | 11 10

0 o |000(0d0]10,- |01, -
0 1 |00~ |1%,-|(@Do |@Do
10 |00~ |@O1|{Ag1|1L-

11 |=,~|10,-|~-,-|01-

K- Map simplification:

For Fo* For F1* For Z
XXy XaXa Xa2Xs
F:F 00 01 1 10 F:hR 00 o1 11 10 FE:HR 00 01 11 10

-

ool O | O 0l ool O[O O[Tl ool 0| 0| X | X

010rf 0010E31 o1l x [x| o o

) | e (=]
)

11XLE/ 011XOX111(XXXX]
100L1(1)1)10000\1_/1°LX11XJ

Bt = FXoXi + PG X +BXa+ BRX: Fi* = BRXi+ Xo Xa Z=F

Logic Diagram:

Y(v[v]y

X2 X1 F F1

}
}

— Fy

7. Obtain a primitive flow table for a circuit with two inputs x1 and x2 and

two outputs z1 and z2 that satisfies the following four conditions.

I

il

When x1x2 = 00, output z1z2 = 00.
When x1= 1 and x2 changes from 0 to 1, the output z1z2 = 01.
When x2= 1 and x1 changes from 0 to 1, the output z1z2 = 10.

Otherwise the output does not change.

The state diagram can be drawn as,

State diagram

Step 2: A primitive flow table is constructed from the state table as,

X1X2
00 01 11 10

al@o00|B- | -.- | C-

F|l &= [®10| D= | ==
ar| B, | mpim E - @,10
H| &- ®,01 D= e
1| &= | -,- | E- 01

Primitive flow table

4.7 HAZARDS

Hazards are unwanted switching transients that may appear at the output of a
circuit because different paths exhibit different propagation delays.

Hazards occur in combinational circuits, where they may cause a temporary
false-output value. When this condition occurs in asynchronous sequential circuits, it

may result in a transition to a wrong stable state.

Hazards in Combinational Circuits:

A hazard is a condition where a single variable change produces a momentary

output change when no output change should occur.

Types of Hazards:
¥ Static hazard
#¥Dynamic hazard

4.7.1 Static Hazard
In digital systems, there are only two possible outputs, a ‘0’ or a ‘1’. The hazard

may produce a wrong ‘0’ or a wrong ‘1’. Based on these observations, there are three

types,
B Static- 0 hazard,
B Static- 1 hazard,

Static- 0 hazard:

When the output of the circuit is to remain at 0, and a momentary 1 output is
possible during the transmission between the two inputs, then the hazard is called a

static 0-hazard.

Static- 1 hazard:
When the output of the circuit is to remain at 1, and a momentary 0 output is
possible during the transmission between the two inputs, then the hazard is called a

static 1-hazard.

/ Mormentary 1 output
1

'\ Momentary 0 output

{a) Static 0-hazard (b) Static 1-hazard

The below circuit demonstrates the occurrence of a static 1-hazard. Assume
that all three inputs are initially equal to 1 i.e., X1X2X3= 111. This causes the output of
the gate 1 to be 1, that of gate 2 to be 0, and the output of the circuit to be equal to 1.
Now consider a change of X2from 1 to 0 i.e., X1X2X3= 101. The output of gate 1 changes
to 0 and that of gate 2 changes to 1, leaving the output at 1. The output may
momentarily go to 0 if the propagation delay through the inverter is taken into
consideration.

The delay in the inverter may cause the output of gate 1 to change to 0 before
the output of gate 2 changes to 1. In that case, both inputs of gate 3 are momentarily
equal to 0, causing the output to go to 0 for the short interval of time that the input
signal from X2 is delayed while it is propagating through the inverter circuit.

Thus, a static 1-hazard exists during the transition between the input states
X1X2X3= 111 and X1X2X3= 101.
Ki=1

1
T D—i—»o
K |d=k0 :} 3 > 1—»0—+1 _
»Y
o1, 0—»1
2
X3=1

Circuit with static-1 hazard

Now consider the below network, and assume that the inverter has an
appreciably greater propagation delay time than the other gates. In this case there is
a static 0-hazard in the transition between the input states X1X2X3= 000 and X1X2X3=
010 since it is possible for a logic-1 signal to appear at both input terminals of the

AND gate for a short duration.

The delay in the inverter may cause the output of gate 1 to change to 1 before
the output of gate 2 changes to 0. In that case, both inputs of gate 3 are momentarily
equal to 0, causing the output to go to 1 for the short interval of time that the input
signal from Xz is delayed while it is propagating through the inverter circuit.

Thus, a static 0-hazard exists during the transition between the input states
X1X2X3= 000 and X1X2X3= 010.

X1=0

1
pev— T

O=-1 T N\ o100 _

3 >Y
1—0 —J

Circuit with static-0 hazard

A hazard can be detected by inspection of the map of the particular circuit. To
illustrate, consider the map in the circuit with static 0-hazard, which is a plot of the
function implemented. The change in Xz from 1 to 0 moves the circuit from minterm

111 to minterm 101. The hazard exists because the change in input results in a

different product term covering the two minterrns.

X2X3 X2X3
X1 00 01 11 10 X1 00 01 11 10

0|0 m 0o | o o0 m 0 | o
InGian ERE0on
Y= X1Xo+ X2'X3 Y= X1Xo+ Xo" X3+ XaX3

Maps demonstrating a Hazard and its Removal

The minterm 111 is covered by the product term implemented in gate 1 and
minterm 101 is covered by the product term implemented in gate 2. Whenever the
circuit must move from one product term to another, there is a possibility of a
momentary interval when neither term is equal to 1, giving rise to an undesirable 0
output.

The remedy for eliminating a hazard is to enclose the two minterms in

question with another product term that overlaps both groupings. This situation is

shown in the map above, where the two terms that causes the hazard are combined into

one product term. The hazard- free circuit obtained by this combinational is shown below.

Hazard-free Circuit
a1

K2

B
LI
_F

The extra gate in the circuit generates the product term X1Xs. The hazards in
combinational circuits can be removed by covering any two minterms that may
produce a hazard with a product term common to both. The removal of hazards

requires the addition of redundant gates to the circuit.

4.7.2 Dynamic Hazard

A dynamic hazard is defined as a transient change occurring three or more times

at an output terminal of a logic network when the output is supposed to change only
once during a transition between two input states differing in the valueof one variable.
Now consider the input states X1X2X3= 000 and X1X2X3= 100. For the first input

state, the steady state output is 0; while for the second input state, the steady state
output is 1. To facilitate the discussion of the transient behavior of this network,
assume there are no propagation delays through gates G3 and Gs and that the
propagation delays of the other three gates are such that Gi can switch faster than G2

and G2 can switch faster than Ga4.

K1

K2

T }3Y

e)

Circuit with Dyvnamic hazard

When X1 changes from 0 to 1, the change propagates through gate G1 before
gate G2 with the net effect that the inputs to gate G3 are simultaneously 1 and the
network output changes from 0 to 1. Then, when X1 change propagates through gate
Gz, the lower input to gate Gz becomes 0 and the network output changes back to 0.

Finally, when the X1= 1 signal propagates through gate Gs, the lower input to gate
Gs becomes 1 and the network output again changes to 1. It is therefore seen that during
the change of X1variable from 0 to 1 the output undergoes the sequence,

0— O 1,which results in three changes when it should have undergoneonly

a single change.

/ Momentary 1 output

Dynamic hazard

473 Essential Hazard

An essential hazard is caused by unequal delays along two or more paths that
originate from the same input. An excessive delay through an inverter circuit in
comparison to the delay associated with the feedback path may cause such a hazard.
Essential hazards elimination:

Essential hazards can be eliminated by adjusting the amount of delays in the
affected path. To avoid essential hazards, each feedback loop must be handled with
individual care to ensure that the delay in the feedback path is long enough compared

with delays of other signals that originate from the input terminals.

4.8 Design Of Hazard Free Circuits

1. Design a hazard-free circuit to implement the following function.
F(A B CD)=Ym(1,3,6,7,13,15)

Soln:

a) K-map Implementation and grouping

cD
AEN 00 01 11 10

00| 0 [(1 [1N

01| 0 | 0 [(T] 1%
18
0

L Group 1

| Group 2

| Group 3

110E

10 O 0

F=A'B’'D+ A’'BC+ ABD

b) Hazard- free realization

The first additional product term A’CD, overlapping two groups (group 1 &
2) and the second additional product term, BCD, overlapping the two groups

(group 2 & 3).

cD
AENC 00 01 11 10

01| 0 | O @i@
!
1| 0 [Li13] o

F=A’'B'D+ A’'BC+ ABD+ A’CD+ BCD

2. Design a hazard-free circuit to implement the following function.
F(A B,C,D)=Ym(0,2,6,7,8,10,12).
Soln:

a) K-map Implementation and grouping

cD
AEN 00 01 11

10
o[Falo s
Group 3 o1l O 0 Eﬁ
\ 0 0
0 1

Group 2

Group 1

11 “a 0

10 1)o7

F=B'D’+ A’BC+ AC'D’

b) Hazard- free realization

The additional product term, A’CD’ overlapping two groups (group 1 & 2) for
hazard free realization. Group 1 and 3 are already overlapped hence they do not

require additional minterm for grouping.

cD
AEN 00 01 11

00_1J00
01| O OE
0
0

'[.._-L—\H
<

i

11?]0
10&]}0

ﬂo

F=B'D’+ A’'BC+ AC'D’+ A’CD’

3. Design a hazard-free circuit to implement the following function.
F(A,B,C,D)=Ym(1,3,4,5,6,7,9,11, 15).

a) K-map Implementation and grouping

cD
AEN 00 01 11 10

00| o1 |[1])] o

Group 2
Group 3 01 (1 1 1 l’j'f
@ Group 1
0 0 1 0
™
10 B\{ 1 (1)l o

F=CD+ A’B+ B’D

b) Hazard- free realization

The additional product term, A’'D overlapping two groups (group 2 & 3) for
hazard free realization. Group 1 and 2 are already overlapped hence they do not

require additional minterm for grouping.

cD
ABN 00 01 11 10
R £ 7 axrnore
00| 0 L”l LJ| o
i i
orf(1 [[[1]] 1)
1110 o [[1]] o
0] 0 [T @) o

F=CD+ A’'B+ B'D+ A’'D

4. Design a hazard-free circuit to implement the following function.
F(AB,CD)=Ym(0,2,4,5,6,7,8,10,11, 15).
Soln:

a) K-map Implementation and groupin

cD
ABNC 00 DL 11 10

oo_lﬂma_ﬁo b

01’(}, I TT Group 1
GmupS//l/l/O 0)@/0/

10| 10 |l

R Group 2

F=B'D’+ A’B+ ACD

b) Hazard- free realization

AB

00| 1| o | o t
1

I ENERE

11| 0 0 FD(0

10? 0 d_l_]__:(-_f}r_

F=B'D’+ A’'B+ ACD+ A’C’'D’+ BCD+ AB’C

5. Design a hazard-free circuit to implement the following function.
F(A B CD)=Ym(0,1,5,6,7,9, 11).

a) K-map Implementation and groupin

cD
AEN 00 01 11 10

T o | 0] o
Gmupt.l/Ol/ 0 u@?f SRR

11| O 0 0 0 | —~Groupl

0l 0 [[<T) o

F= AB’'D+ A’BC+ A’'BD+ A’'B'C’

b) Hazard- free realization:

AB

11| © 0

0] 0 1]

0

01| © T‘ 1
0
B

F=AB'D+ A’BC+ A’'BD+ A’B’C’'+ A'C’'D+ B’C'D

UNIT V LOGIC FAMILIES AND
PROGRAMMABLE LOGIC DEVICES

51 INTRODUCTION

A memory unit is a collection of storage cells with associated circuits needed
to transfer information in and out of the device. The binary information is transferredfor
storage and from which information is available when needed for processing. When data
processing takes place, information from the memory is transferred to selected registers
in the processing unit. Intermediate and final results obtained in the processingunit are

transferred back to be stored in memory.

5.2 Units of Binary Data: Bits, Bytes, Nibbles and Words

As a rule, memories store data in units that have from one to eight bits. The
smallest unit of binary data is the bit. In many applications, data are handled in an 8-
bit unit called a byte or in multiples of 8-bit units. The byte can be split into two 4-bit
units that are called nibbles. A complete unit of information is called a word and
generally consists of one or more bytes. Some memories store data in 9-bit groups; a

9-bit group consists of a byte plus a parity bit.

5.3 Basic Semiconductor Memory Array

Each storage elementin a memory can retain eithera 1 ora 0 and is called a cell.
Memories are made up of arrays of cells, as illustrated in Figure below using 64 cellsas an
example. Each block in the memory array represents one storage cell, andits location can

be identified by specifying a row and a column.

1 1 1[]
2 2 2[]
3 3 3[]
4 4 4[]
5 5 5[]
6 6 6] |
7 X | o
1 I
8 13 13| |
1 2345678 14 14
(a) 8x38amay 15 150
16 16| |
1

1 2 3 4
{(b)16 x4 array {c) 64 x1 amay

A 64-cell memory array organized in three different ways

54 Memory Address and Capacity

The location of a unit of data in a memory array is called its address. For
example, in Figure (a), the address of a bit in the 3-dimensional array is specified by
the row and column. In Figure (b), the address of a byte is specified only by the row
in the 2-dimensional array. So, as you can see, the address depends on how the
memory is organized into units of data. Personal computers have random-access
memories organized in bytes. This means that the smallest group of bits that can be

addressed is eight.

L -1 & RN -
@ 1A AW R

1 234 5 67 8 1 234567 8

(a) The address of the bit is {b) The address of the bit is row 3
row 5, column 8

Examples of memory address

The capacity of a memory is the total number of data units that can be stored.
For example, in the bit-organized memory array in Figure (a), the capacity is 64 bits.
In the byte-organized memory array in Figure (b), the capacity is 8 bytes, which is
also 64 bits. Computer memories typically have 256 MB (megabyte) or more of

internal memory.
5.5 Basic Memory Operations

Since a memory stores binary data, data must be put into the memory and data
must be copied from the memory when needed. The write operation puts data into a
specified address in the memory, and the read operation copies data out of a specified
address in the memory. The addressing operation, which is part of both thewrite and

the read operations, selects the specified memory address.

Data units go into the memory during a write operation and come out of the
memory during a read operation on a set of lines called the data bus. As indicated in

Figure, the data bus is bidirectional, which means that data can go in either

directional (into the memory or out of the memory).

Address
decoder

Address bus [: n:?2n j Data bus l,:

Memory array

YyYYyYvy

Yy

f f

Read Write
Block diagram of memory operation

For a write or a read operation, an address is selected by placing a binary code
representing the desired address on a set of lines called the address bus. The address code
is decoded internally and the appropriate address is selected. The number oflines in the
address bus depends on the capacity of the memory. For example, a 15-bit address code
can select 32,768 locations (215) in the memory; a 16-bit address code can select 65,536

locations (216) in the memory and so on.

In personal computers a 32-bit address bus can select 4,294,967,296 locations

(232), expressed as 4GB.

5.5.1 Write Operation

To store a byte of data in the memory, a code held in the address register is placed
on the address bus. Once the address code is on the bus, the address decoder decodes the
address and selects the specified location in the memory. The memory then gets a write
command, and the data byte held in the data register is placed on the data bus and stored
in the selected memory address, thus completing the write operation. When a new data
byte is written into a memory address, the current data byte stored at that address is

overwritten (replaced with a new data byte).

Address register Data register
(1]0]1] [2lofofof1]1]o]1]
Byte-organized memory array
&
Add 0 Ljjofojojfipijoju
ress
oot TGS
Address Bus
3 Oftjojiiftjoj1jo
4 LILJOJIflofi1fi1]0]A,
5 LJOfOfoftjfrjofl[h———"
o| —LoJlo L]fo][a], Databus
7 L1 flofajfrfrfoje
Write

Illustration of the Write operation

5.5.2 Read Operation

A code held in the address register is placed on the address bus. Once the address
code is on the bus, the address decoder decodes the address and selects the specified
location in the memory. The memory then gets a read command, and a "copy" of the data
byte that is stored in the selected memory address is placed on the data bus and loaded
into the data register, thus completing the read operation. Whena data byte is read from
a memory address, it also remains stored at that address. This is called nondestructive

read.

Downloaded from EsnggTree.com

Address register Data register

O1]1] [1[1]ofoofofo[1]
Byte-organized memmory array
add 0 i1 gfoffofrjtryoyt
1ess
secoter | PSS
Address Bus G
3 1ffroffofojjofoyt Diatats
4 S S L L 0 L
5 Lojoffoftrpryof1
o) oo effaffayryof1
7 trffofafftrfog1
Read

Illustration of the Read operation

5.6 Classification of Memories

There are two types of memories that are used in digital systems:

#+ Random-Access Memory (RAM),
#+ Read-Only Memory (ROM).

RAM (random-access memory) is a type of memory in which all addresses are
accessible in an equal amount of time and can be selected in any order for a read or write

operation. All RAMs have both read and write capability. Because RAMs losestored data

when the power is turned off, they are volatile memories.

ROM (read-only memory) is a type of memory in which data are stored permanently
or semi permanently. Data can be read from a ROM, but there is no write operation
as in the RAM. The ROM, like the RAM, is a random-access memorybut the term RAM
traditionally means a random-access read/write memory. Because ROMs retain stored

data even if power is turned off, they are nonvolatile memories.

Memory
I
! {

Read-Only Memory (ROM) Random-Access Memory (RAM)

| |
— T T i I l

Masked PROM EPROM FEEPROM Static RAM Dynamic RAM
ROM

Classification of memories

5.61 RANDOM-ACCESS MEMORIES (RAMS)

RAMs are read/write memories in which data can be written into or read
from any selected address in any sequence. When a data unit is written into a given
address in the RAM, the data unit previously stored at that address is replaced by
the new data unit. When a data unit is read from a given address in the RAM, the
data unit remains stored and is not erased by the read operation. This
nondestructive read operation can be viewed as copying the content of an address

while leaving the content intact.

A RAM is typically used for short-term data storage because it cannot retain

stored data when power is turned off.

The two categories of RAM are the static RAM (SRAM) and the dynamic RAM
(DRAM). Static RAMs generally use flip-flops as storage elements and can therefore
store data indefinitely as long as dc power is applied. Dynamic RAMs use capacitors as

storage elements and cannot retain data very long without the capacitors being

recharged by a process called refreshing. Both SRAMs and DRAMs will lose stored

data when dc power is removed and, therefore, are classified as volatile memories.

Data can be read much faster from SRAMs than from DRAMs. However, DRAMs
can store much more data than SRAMs for a given physical size and cost because the
DRAM cell is much simpler, and more cells can be crammed into a givenchip area than
in the SRAM.

5.6.1.1 Static RAM (SRAM)

Storage Cell:
All static RAMs are characterized by flip-flop memory cells. As long as dc
power is applied to a static memory cell, it can retain a 1 or 0 state indefinitely. If

power is removed, the stored data bit is lost.

The cell is selected by an active level on the Select line and a data bit (1 or 0) is
written into the cell by placing it on the Data in line. A data bit is read by taking it off

the Data out line.

Basic SRAM Organization:

Basic Static Memory Cell Array

The memory cells in a SRAM are organized in rows and columns. All the cells
in a row share the same Row Select line. Each set of Data in and Data out lines go to
each cell in a given column and are connected to a single data line that serves as both

an input and output (Data I/0) through the data input and data output buffers.

SRAM chips can be organized in single bits, nibbles (4 bits), bytes (8 bits), or
multiple bytes (16, 24, 32 bits, etc.). The memory cell array is arranged in 256 rows
and 128 columns, each with 8 bits as shown below. There are actually 215 = 32,768
addresses and each address contains 8 bits. The capacity of this example memory is

32,768 bytes (typically expressed as 32 Kbytes).

e
Memory array
256)
e 256 rows x
128 columns x
8 biis
\ g
~ . »— 8hits
128 colurans

Memory array configuration

Operation:

The SRAM works as follows. First, the chip select, CS, must be LOW for the
memory to operate. Eight of the fifteen address lines are decoded by the row decoder
to select one of the 256 rows. Seven of the fifteen address lines are decoded by the

column decoder to select one of the 128 8-bit columns.

4 I 2 |-}
Bl
—= |
I
_D: i Memory array
Address _‘I,s\: Row |
Lines i I 256 rows x
—D: | 128 columns x
l 8 biis
D= I
_{}: :
» —D: =
[|
 (Y/Oe-1/0O5)
Din ,--:’{>_ Column I/O _DiDouf
Lploutety Column decoder
Output buffers
WE . % v/
Z 23 :a Gy —
OE Address Lines

Memory block diagram

Read:

In the READ mode, the write enable input, WE is HIGH and the output
enable, OE_is LOW. The input tri state buffers are disabled by gate G1, and the
column output tristate buffers are enabled by gate Gz. Therefore, the eight data bits
from the selected address are routed through the column 1/0 to the data lines (I/01

through [/07), which are acting as data output lines.

Write:

In the WRITE mode, WE‘ is LOW and OE' is HIGH. The input buffers are
enabled by gate G1, and the output buffers are disabled by gate G2. Therefore the
eight input data bits on the data lines are routed through the input data control and

the column [/0 to the selected address and stored.

Read and Write Cycles:

For the read cycle shown in part (a), a valid address code is applied to the
address lines for a specified time interval called the read cycle time, twc. Next, the
chip select (CS) and the output enable (DE) inputs go LOW. One time interval after
the DE input goes LOW; a valid data byte from the selected address appears on the

data lines. This time interval is called the output enable access time, tco. Two other
access times for the read cycle are the address access time, taq, measured from the

beginning of a valid address to the appearance of valid data on the data lines and the
chip enable access time, teq, measured from the HIGH-to-LOW transition of CS to

the appearance of valid data on the data lines.

During each read cycle, one unit of data, a byte in this case is read from the

memory.

A

tre

Address Valid address

i
o Yﬁtm—’!
CS (Chip Select)) | /
|
— le——too—>
OE {Output Enable) 1 | /
I
|
|
|

A

-+
*
Lo

O (Data out)

Valid data —

{a) Read Cycle { WE HIGH)

For the write cycle shown in Figure (b), a valid address code is applied to the
address lines for a specified time interval called the write cycle time, twe . Next, the
chip select (CS) and the write enable (WE) in puts go LOW. The required time interval
from the beginning of a valid address until the WE input goes LOW is called the
address setup time, t sa). The time that the WE input must be LOW is the write pulse
width. The time that the input WE must remain LOW after valid data are applied to
the data inputs is designated t wp; the time that the valid input data must remain on

the data lines after the WE input goes HIGH is the data hold time, th().

During each write cycle, one unit of data is written into the memory.

twe

Address X Valid address

|
|
|
CS (Chip Select '
(Chip Select) i \ 4
— ; l i
WE (Write Enable) : Kk \ ,fl

__>4_1!_

" ot
| le—twp | = :l
I {Data in))K Valid data *
}

(b) Write cycle (WE LOW)

5.6.2 READ- ONLY MEMORIES (ROMS)

A ROM contains permanently or semi-permanently stored data, which can be
read from the memory but either cannot be changed at all or cannot be changed
without specialization equipment. A ROM stores data that are used repeatedly in
system applications, such as tables, conversions, or programmed instructions for
system initialization and operation. ROMs retain stored data when the power is OFF

and are therefore nonvolatile memories.

The ROMs are classified as follows:
i. Masked ROM (ROM)
ii. Programmed ROM (PROM)
iii. ~ Erasable PROM (EPROM)
iv. Electrically Erasable PROM (EEPROM)

5.6.2.1 Masked ROM

The mask ROM is usually referred to simply as a ROM. It is permanently
programmed during the manufacturing process to provide widely used standard
functions, such as popular conversions, or to provide user-specified functions. Once

the memory is programmed, it cannot be changed.

Most IC ROMs utilize the presence or absence of a transistor connection at a
row/column junction to representa 1 or a 0. The presence of a connection from a
row line to the gate of a transistor represents a 1 at that location because when the

row line is taken HIGH; all transistors with a gate connection to that row line turn on

and connect the HIGH (1) to the associated column lines.

Column Column

Row -—— * o ROW e T
+Vpp +Vpp

1 1
- | 15|

| |
Storinga 1 Storing a 0

ROM Cells

Atrow/column junctions where there are no gate connections, the column lines

remain LOW (0) when the row is addressed.

5.6.2.2 PROM (Programmable Read-Only Memory)

The PROM (Programmable Read-only memory), comes from the manufacturer

unprogrammed and are custom programmed in the field to meet the user’s needs.

A PROM uses some type of fusing process to store bits, in which a memory link
is burned open or left intact to represent a 0 or a 1. The fusing process is irreversible;

once a PROM is programmed, it cannot be changed.

The fusible links are manufactured into the PROM between the source of each
cell's transistor and its column line. In the programming process, a sufficient current
is injected through the fusible link to bum it open to create a stored O. The link is left

intact for a stored 1. All drains are commonly connected to Vbp.

i L%—Q +Vop L%—Q +Vop —|—|%—~O +Voo
S N

g

T g b

PROM array with fusible links

Three basic fuse technologies used in PROMs are metal links, silicon links,

and pn junctions. A brief description of each of these follows.

1. Metal links are made of a material such as nichrome. Each bit in the memory
array is represented by a separate link. During programming, the link is either
"blown" open or left intact. This is done basically by first addressing a given cell
and then forcing a sufficient amount of current through the link to cause it to open.
When the fuse is intact, the memory cell is configured as alogic 1 and whenfuse is

blown (open circuit) the memory cell is logic 0.

2. Silicon links are formed by narrow, notched strips of polycrystalline silicon.
Programming of these fuses requires melting of the links by passing a sufficient
amount of current through them. This amount of current causes a high temperature
at the fuse location that oxidizes the silicon and forms insulation

around the now-open link.

3. Shorted junction, or avalanche-induced migration, technology consists basically
of two pn junctions arranged back-to-back. During programming, one of thediode
junctions is avalanched, and the resulting voltage and heat causealuminum ions
to migrate and short the junction. The remaining junction is then used as a

forward- biased diode to represent a data bit.

5.6.2.3 EPROM (Erasable Programmable ROM)
An EPROM is an erasable PROM. Unlike an ordinary PROM, an EPROM can be

reprogrammed if an existing program in the memory array is erased first.

An EPROM uses an NMOSFET array with an isolated-gate structure. The isolated
transistor gate has no electrical connections and can store an electrical charge for
indefinite periods of time. The data bits in this type of array are represented by the
presence or absence of a stored gate charge. Erasure of a data bitis a process that removes

the gate charge.

Two basic types of erasable PROMs are the ultraviolet erasable PROM (UV
EPROM) and the electrically erasable PROM (EEPROM).

e UV EPROM:

You can recognize the UV EPROM device by the transparent quartz lid on the
package, as shown in Figure below. The isolated gate in the FET of an ultraviolet
EPROM is "floating" within an oxide insulating material. The programming process
causes electrons to be removed from the floating gate. Erasure is done by exposure of
the memory array chip to high-intensity ultraviolet radiation through the quartz

window on top of the package.

The positive charge stored on the gate is neutralized after several minutes to an
hour of exposure time. In EPROM's, it is not possible to erase selective information,

when erased the entire information is lost. The chip can be reprogrammed.

[tis ideally suited for product development, college laboratories, etc.

Ultraviolet Erasable PROM

During programming, address and datas are applied to address and data pins
of the EPROM. The program pulse is applied to the program input of the EPROM.
The program pulse duration is around 50msec and its amplitude depends on EPROM

IC. It is typically 11.5V to 25V.

In EPROM, it is possible to program any location at any time- either
individually, sequentially or at random.

5.6.24 EEPROM (Electrically Erasable PROM)

The EEPROM (Electrically Erasable PROM), also uses MOS circuitry. Data is
stored as charge or no charge on an insulating layer, which is made very thin (< 2004).
Therefore a voltage as low as 20- 25V can be used to move charges across thethin

barrier in either direction for programming or erasing ROM.

An electrically erasable PROM can be both erased and programmed with
electrical pulses. Since it can be both electrically written into and electrically erased,
the EEPROM can be rapidly programmed and erased in-circuit for reprogramming.

It allows selective erasing at the register level rather than erasing all the
information, since the information can be changed by using electrical signals.

It has chip erase mode by which the entire chip can be erased in 10 msec.
Hence EEPROM's are most expensive.

Advantages of RAM:

1. Fast operating speed (< 150 nsec),
2. Low power dissipation (< 1mW),
3. Economy,

4. Compatibility,

5. Non-destructive read-out.

Advantages of ROM:

1. Ease and speed of design,

2. Faster than MSI devices (PLD and FPGA)

3. The program that generates the ROM contents can easily be structured to
handle unusual or undefined cases,

4. AROM's function is easily modified just by changing the stored pattern,
usually without changing any external connections,

5. More economical.

Disadvantages of ROM:

1. For functions more than 20 inputs, a ROM based circuit is impractical
because of the limit on ROM sizes that are available.

2. For simple to moderately complex functions, ROM based circuit may be
costly: consume more power; run slower.

Comparison between RAM and ROM:

S.No RAM ROM

1 RAMs have both read and write ROMs have only read operation.
capability.

2 | RAMs are volatile memories. ROMs are non-volatile memories.
They lose stored data when the They retain stored data even if power is

’ power is turned OFF. turned off.

A RAMs are available in both RAMs are available in both bipolar and
bipolar and MOS technologies. MOS technologies.

5 | Types: SRAM, DRAM, EEPROM | Types: PROM, EPROM.

Comparison between SRAM and DRAM:

S.No

Static RAM

Dynamic RAM

1

[t contains less memory cells

per unit area.

It contains more memory cells per unit area.

2 Its access time is less, hence Its access time is greater than static RAM
faster memories.

3 [t consists of number of flip- It stores the data as a charge on the capacitor.
flops. Each flip-flop stores It consists of MOSFET and capacitor for each
one bit. cell.

4 | Refreshing circuitry is not Refreshing circuitry is required to maintain

required.

the charge on the capacitors every time after
every few milliseconds. Extra hardware is

required to control refreshing.

Cost is more

Cost is less.

Comparison of Types of Memories:

Memory One- Transistor In-system
Non- Volatile High Density

type cell writability
SRAM No No No Yes
DRAM No Yes Yes Yes
ROM Yes Yes Yes No
EPROM Yes Yes Yes No
EEPROM Yes No No Yes

5.8 PROGRAMMABLE LOGIC DEVICES:

5.8.1 INTRODUCTION:

A combinational PLD is an integrated circuit with programmable gates divided
into an AND array and an OR array to provide an AND-OR sum of product
implementation. The PLD’s can be reprogrammed in few seconds and hence gives
more flexibility to experiment with designs. Reprogramming feature of PLDs also

makes it possible to accept changes/modifications in the previously design circuits.

The advantages of using programmable logic devices are:

Reduced space requirements.
Reduced power requirements
Design security.

Compact circuitry.

Short design cycle.

Low development cost.

Higher switching speed.

e N o U1k W e

Low production cost for large-quantity production.

According to architecture, complexity and flexibility in programming in PLD‘s are

classified as—

e PROMs : Programmable Read Only memories,

e PLAs : Programmable Logic Arrays,

e PAL : Programmable Logic Array,

e FPGA : Field Programmable Gate Arrays,

e CPLDs : Complex Programmable Logic Devices.

Programmable Arrays:

All PLDs consists of programmable arrays. A programmable array isessentially
a grid of conductors that form rows and columns with a fusible link at each cross

point. Arrays can be either fixed or programmable.

The OR Array:

[t consists of an array of OR gates connected to a programmable matrix with
fusible links at each cross point of a row and column, as shown in the figure below.
The array can be programmed by blowing fuses to eliminate selected variables from
the output functions. For each input to an OR gate, only one fuse is left intact in order
to connect the desired variable to the gate input. Once the fuse is blown, it cannot be
reconnected.

Another method of programming a PLD is the antifuse, which is the opposite of the
fuse. Instead of a fusible link being broken or opened to program a variable, a
normally open contact is shorted by —meltingl the antifuse material to form a

connection.

b
Wl
us)
wl
-
Wl
=
wl

-

-

oy

:i Dn T * Dxﬁm
::z' D—\(T fa D—xfﬁfé
‘2,1: D*@) ‘e,\ D—-Xs=A+§

(2) Unprogrammed (b) Programmed

-

-

-

ST

-

ST LT LTS

e

An example of a basic programmable OR arra

The AND Array:

This type of array consists of AND gates connected to a programmable matrix
with fusible links at each cross points, as shown in the figure below. Like the OR array,
the AND array can be programmed by blowing fuses to eliminate selected variables
from the output functions. For each input to an AND gate, only one fuse is left intact
in order to connect the desired variable to the gate input. Also, like the ORarray, the

AND array with fusible links or with antifuses is one-time programmable.

A A B B A A B B

1\2’\
L

x1 H

Xz

FEE R
Egrgrgrgr gy

WL LSS

LSS LS LTS

ha

Sjsle
Slvle

(2) Unprogrammed (b) Programmed

An example of a basic programmable AND arra

5.8.2 Classification of PLDs

There are three major types of combinational PLDs and they differ in
the placement of the programmable connections in the AND-OR array. The

configuration of the three PLDs is shown below.

1. Programmable Read-Only Memory (PROM):

A PROM consists of a set of fixed (non-programmable) AND array
constructed
as a decoder and a programmable OR array. The programmable OR gates

implement the Boolean functions in sum of minterms.

Fixed Fuses Fused
Inputs ———» AND array Q /O—>»| programmable |— Outputs
. OR array

(a) Programmable read- only memory (PROM)

2. Programmable Logic Array (PLA):

A PLA consists of a programmable AND array and a programmable OR

array.

The product terms in the AND array may be shared by any OR gate to provide
the required sum of product implementation.

The PLA is developed to overcome some of the limitations of the PROM. The
PLA is also called an FPLA (Field Programmable Logic Array) because the user in the

field, not the manufacturer, programs it.

Fuses Fused Fuses Fused
Inputs —Q fO—»| programmable —Q /)| programmable |— Outputs
AND array OR array

Programmable Logic Array (PLA)

3. Programmable Array Logic (PAL):

The basic PAL consists of a programmable AND array and a fixed OR array.

The AND gates are programmed to provide the product terms for the Boolean

functions, which are logically summed in each OR gate.

Itis developed to overcome certain disadvantages of the PLA, such as longer
delays due to the additional fusible links that result from using two programmable

arrays and more circuit complexity.

Fuses Fused :
Inputs QO »| programmable ———~ Fixed — Outputs
OR array
AND array *

Programmable Array Logic (PAL)

Array logic Symbols:

PLDs have hundreds of gates interconnected through hundreds of
electronic fuses. It is sometimes convenient to draw the internal logic of such

device in a compact form referred to as array logic.

A B C D
A Qo
B O o - ¥
C O o
D Qo / \
Fuse intact Fuse blown
(Connectiomn) Mo Connectiomn)

A
A A

A B C D
Y H%—F Y

Hard- wired

[B o T = « B3

5.8.3 PROGRAMMABLE ROM:

PROMs are used for code conversions, generating bit patterns for characters

and as look-up tables for arithmetic functions.

As a PLD, PROM consists of a fixed AND-array and a programmable OR array.
The AND array is an n-to-2n decoder and the OR array is simply a collection of
programmable OR gates. The OR array is also called the memory array. The decoder
serves as a minterm generator. The n-variable minterms appear on the 2 lines at the
decoder output. The 2noutputs are connected to each of the _m‘ gates in the OR array

via programmable fusible links.

2™ Product Terms

. n-to-2" :
'n' input Decoder . Programmable | | 'm'output
lines . (AND array) : OR amnay . lines

2nx m PROM

5.84 Implementation of Combinational Logic Circuit using PROM
1. Using PROM realize the following expression

F1(A,B,C)=¥Ym (0,1,3,5,7)

F2(A,B,C)=¥m(1,2,5,6)

Step1: Truth table for the given function

A B C F1 F2
0 0 0 1 0
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 0

Step 2: PROM diagram

a—3

B3

D a— I—_—\;m
| |mao
1
LT
7\ e
] 1
| m3
L TF
!_\lnli
=
D o
lﬂﬂné x
1=
|_\!m,
|

2. Design a combinational circuit using PROM. The circuit accepts 3-bit binary and

generates its equivalent Excess-3 code.

Step1: Truth table for the given function

B2 B1 Bo E3 E2 E1 Eo
0 0 0 0 0 1 1
0 0 1 0 1 0 0
0 1 0 0 1 0 1
0 1 1 0 1 1 0
1 0 0 1 1 1

0 1 1 0 0 0
1 1 0 1 0 0 1
1 1 1 1 0 1 0

Step 2: PROM diagram

_

-

. Product terms

\Q/: Fﬁl

| |mg
1) F
Ho)= X
j—
! \ lm>
=R
| lms
| L4
: ,} X —XK—XK—
! jms x
=%
' ms
i ,i X xX—
| \ jmz
L

5.85 PROGRAMMABLE LoGIC ARRAY: (PLA)

The PLA is similar to the PROM in concept except that the PLA does not provide
full coding of the variables and does not generate all the minterms.

The decoder is replaced by an array of AND gates that can be programmed to
generate any product term of the input variables. The product term are then
connected to OR gates to provide the sum of products for the required Boolean
functions. The AND gates and OR gates inside the PLA are initially fabricated with
fuses among them. The specific boolean functions are implemented in sum of

products form by blowing the appropriate fuses and leaving the desired connections.

n Xk fuses
fuses
k product m sum
terms —Q /T O—» terms
P! Q/‘o_.. {AND gates; kX m (OR gates) m
n fuses cutput

PLA block diagram

The block diagram of the PLA is shown above. It consists of _n‘ inputs, _m‘ outputs,
_k‘ product terms and _m‘ sum terms. The product terms constitute a group of _k‘ AND
gates and the sum terms constitute a group of _m* OR gates. Fuses are inserted between all
_n‘inputs and their complement values to each of the AND gates. Fuses are also provided

between the outputs of the AND gate and the inputs of the OR gates.

Another set of fuses in the output inverters allow the output function to be generated
either in the AND-OR form or in the AND-OR-INVERT form. With the inverter fuse in place,
the inverter is bypassed, giving an AND-OR implementation. With the fuse blown, the inverter

becomes part of the circuit and the function is implemented in the AND-OR- INVERT form.

58.6 Implementation of Combinational Logic Circuit using PLA

1. Implement the combinational circuit with a PLA having 3 inputs, 4
product terms and 2 outputs for the functions.
F1(A,B,C)=Y¥m (0, 1,2,4)
F2 (A,B,C)=Ym (0,5,6,7)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2
0 0 1 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0

1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1
Step 2: K-map Simplification
EC
A 11 10

Fi= A'B’'+ A'C'+ B'C/ Fo= AC+ AB+ A'B'C’

With this simplification, total number of product term is 6. But we require only 4

product terms. Therefore find out F1‘ and F2".

11

10

Fi'= AC+ BC+ AB F2'= A'C+ A'B+ A'B'CY

Now select, F1‘and Fz, the product terms are AC, AB, BC and A‘B‘C’

Step 3: PLA Program table:

Input
Product s Outputs
term A B C F1(C) | F2(T)
AB 1 1 1 - 1 1
AC 2 1 - 1 1 1
BC 3 - 1 1 1 -
A‘BC’ 4 0 0 0 - 1

Downloaded from EgnggTree.com

In the PLA program table, first column lists the product terms numerically as
1, 2, 3, and 5. The second column (Inputs) specifies the required paths between the
AND gates and the inputs. For each product term, the inputs are marked with 1, 0,
or - (dash). If a variable in the product form appears in its normal form, the
corresponding input variable is marked with a 1. If it appears complemented, the
corresponding input variable is marked with a 0. If the variable is absent in the
product term, it is marked with a dash (-). The third column (output) specifies the
path between the AND gates and the OR gates. The output variables are marked with

1‘s for all those product terms that formulate the required function.

Step 4: PLA Diagram

|8
S —
py

N2 AB

e e B e e St
X

w BC

L

U

—— A'B'C’

—X
—X
—X

>
>+

74

The PLA diagram uses the array logic symbols for complex symbols. Each input
and its complement is connected to the inputs of each AND gate as indicatedby the
intersections between the vertical and horizontal lines. The output of the AND gate are
connected to the inputs of each OR gate. The output of the OR gate goes toan EX-OR gate

where the other input can be programmed to receive a signal equal to either logic 1 or 0.

The output is inverted when the EX-OR input is connected to 1 ie, (x ®1= x’).

The output does not change when the EX-OR input is connected to 0 ie., (x ®0= x).

2. Implement the combinational circuit with a PLA having 3 inputs, 4
product terms and 2 outputs for the functions.
F1 (A, B,C)=Ym (3,5,6,7)
F2(A,B,C) =¥Ym (0,2,4,7)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2
0 0 0 0 1
0 0 1 0 0
0 1 0 0 1
0 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 1 0
1 1 1 1 1

Step 2: K-map Simplification

11 10

AN_ 00 01 11 10 A

Fi= AC+ AB+ BC F.=B'C'+ A'C'+ ABC

With this simplification, total number of product term is 6. But we require only 4

product terms. Therefore find out F1‘ and F2".

Fi'=B'C'+ A'C'+ A'B’

E.'= A'C+ B'C+ ABC’

Now select, F1‘ and F2, the product terms are B’'C’, A’C’, A'B’ and
ABC. Step 3: PLA Program table

Input
Product s Outputs
term A B C F1(C) | F2(T)
B‘C’ 1 - 0 0 1
A‘C’ 2 0 - 0 1
A‘B’ 3 0 0 - 1
ABC 4 1 1 1 -
Step 4: PLA Diagram
A
B
B— 3
&8
[)
B'C
XX —X%
A'Ct
X S F—X——X%
) A'B'
XX) X
YT T
C C BB AA

th

b

>

~

3. Implement the following functions using PLA.
F1(A,B,C)=Ym (1,2, 4, 6)
F2 (A,B,C)=¥m (0, 1, 6, 7)
F3 (A, B,C) =Ym (2, 6)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2 F3
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 1 0 1
0 1 1 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 0 1 0

Step 2: K-map Simplification

F;= A'B'C+ AC'+ BC’ F:= A'B'+ AB

BC
A 00 01 11

Step 3: PLA Program table

Input
Product s Outputs
term A| B | C |Fi(T) [F2(T)] Fz (D)
A‘B‘C 1 0 0 1 1 - -
AC’ 2 1 - 0 1 - -
BC’ 3 - 1 0 1 - 1
AB* 4 0| o i 1 i
AB 5 1| 1 S 1 i
Step 4: PLA Diagram
A
B
B3
¢ 3
-
b) X—aBC
X X } X AC
XX B %— BC
x+x—) X aB
3
T Y717 v
C C BB AA %*)1% 0

wivlv,

4. A combinational circuit is designed by the function

Fi (A,B,C)=¥m (3,5,7)
Fz(A,B,C)=¥m (4,5,7)

Downloaded from BsnggTree.com

EnggTree.com www.Poriyaan.in

Programmable Logic Devices, Memory 5.36

Solution:

Step 1: Truth table for the given functions

A B C F1 F2
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 1
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1
Step 2: K-map Simplification
BC EC
AN_ 00 01 11 10 AN_ 00 01 11 10
0] 0 0 1 0 0] 0|0 0 0
1[0 1 1 0 1 Ll 1 1 0
Fi= AC+ BC F.= AB'+ AC
Step 3: PLA Program table
Input
Product s Outputs
term A B C F1(C) | F2(T)
AC 1 1 - 1 1 1
BC 2 - 1 1 1 -
AB' 3 1 0 - - 1

Step 4: PLA Diagram

Downloaded from BsnggTree.com

http://www.poriyaan.in/

]2
s8]
¢
X D)k % ac
XX) %—BC
(T
C C" BB AA 0

5. A combinational circuit is defined by the
functions, F1 (A,B,C)=Ym (1, 3, 5)
F2(A,B,C)=Ym (5,6,7)
Implement the circuit with a PLA having 3 inputs, 3 product terms and 2
outputs.
Solution:

Step 1: Truth table for the given functions

A B C F1 F2
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 0 1

Step 2: K-map Simplification

EC BC
AN_ 00 01 11 10 AN_ 00 01 11 10
0 olo |0 [0] O
1 110

Fi=B'C+A'C F.= AC+ AB

With this simplification, total number of product term is 5. But we require only 3

product terms. Therefore find out F1‘ and F2".

11 10

P’1'= CI+ AB P2'= AI+ Blcl

Now select, F1‘ and F2, the product terms are AC, AB and C'.

Step 3: PLA Program table

Input
Product s Outputs
term A B C | F1(C) | F2(T)
AB 1 1 1 - 1 1
C 2 - - 0 1 -
AC 3 1 - 1 _ 1

Step 4: PLA Diagram

— 3
B[
|

VAR D—aL—JHAB
X) % —c
IR

vivil =N

6. A combinational circuit is defined by the
functions, F1(A,B,C)=Ym (0, 1, 3, 4)
F2(A,B,C)=Ym (1,2, 3,4,5)
Implement the circuit with a PLA having 3 inputs, 4 product terms and 2
outputs.
Solution:

Step 1: Truth table for the given functions

=1
-
=1
N

=l R R R o o o of B
= o=l o o] R Rr| o o] =
R o R, O] Rr| ©Of Rr| S| O
o| o o ~r| Rr| of R| =
ol ol Rr| | R Rr| R,| ©

Downloaded from BgnggTree.com

Step 2: K-map Simplification

Fi=B'C'+ A'C

11 10

F.= AB'+ A'C+ A'B

The product terms are B’C’, A’C, AB’ and A’B.

Step 3: PLA Program table

Input
Product s Outputs
e A| B C | F1(T) | F2(T)
B‘C’ 1 - 0 0 1 -
A‘C 2 0 - 1 1 1
AB‘ 3 1 0 - - 1
A'B 4 0 1 - - 1
Step 4: PLA Diagram
s—T3
-
B— 3
B
XX) X— B'C
—X S J—X——>K——AC
XK —% AB
) A'B
P

C C" BB AA

Dh

F

7. A combinational logic circuit is defined by the function,
F(AB,C,D)=Ym(3,4,5,7,10, 14, 15)
G(ABCD)=Ym(1,5,7,11,15)

Implement the circuit with a PLA having 4 inputs, 6 product terms and 2 outputs.

Solution:

Step 1: Truth table for the given functions

RlRrlRrm]Rr|Rr[Rr[r|lo|lo|lo|o|o|o|lo|lo|®
mRlm Rk |lo|lo|lo|lo|RrR|R|IR|IR|lolo|lo|lo|®®
L = = K= = N E=R K= N N =R =2 e}
=l = R = R = R = N = A =R A K= =)
Rk |lo|lo|lo|lr|lo|lo|lr|o|lrRr|rRr|IRrR|lolo|lo|™=
=l k= k= k=l =R k=l = k= = K= K= =R N E=R [2]

Step 2: K-map Simplification
CD FOI F

00

o1l

11

10

F= A'BC'+ A'CD+ BCD+ ACD’ G=A'C'D+ BCD+ ACD

The product terms are A‘BC‘, A‘CD, BCD, ACD‘, A‘C'D, ACD

Step 3: PLA Program table

A

Product Inputs Outputs
! A | B C D | F(T) |G(T)
A‘BC’ 1 0 1 0 - 1 R
A‘CD 2 0 - 1 1 1 -
BCD 3 - 1 1 1 1 1
ACD? 4 1 - 1 0 1 -
A‘CD 5 0 - 0 1 - 1
ACD 6 1 - 1 1 - 1
Step 4: PLA Diagram
B
B
A'BC
¥ =k
} A'CD
—XKTX X— 2%
[=SR
BCD
—XKTXK 1K —X—X
N2\ N :)ae——acn-
)
A'C'D
—X X xX— } X
[)\
— KX X } X ACD
DD'C C' BB' A A’ 0

8. Design a BCD to Excess-3 code converter and implement using suitable PLA.

Solution:

Step 1: Truth table of BCD to Excess-3 converter is shown below,

Decimal BCD code Excess-3 code

B3 B2 B1 Bo E3 B Fi1 o
0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 5
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

Step 2: K-map Simplification

B. B, B B B, By For E2
B:BE\ 00 01 11 10

Es=B;s;+ B:By + BBy E:=B:B1'Bo"+ B2"Bo+ B2"B:
B, B, For E1 For Eo
B:B.\ 00 01 11 10 01 11

oog1 0 1 0

Ei= B1'Bo"+ B1Bs Eo=B,’
The product terms are B3, B2Bo, B2B1, B2B1'Bo’, B2’Bo, B2’B1, B1'Bo’, B1Bo, Bo’

Step 3: PLA Program table

Product Inputs Outputs
terms B3 B2 B1 Bo E3 (T) | E2 (T) | E1(T) [Eo (T)
B3 1 1 - - - 1 - - -
B2Bo 2 - 1 - 1 1 - - -
B2B1 3 - 1 1 - 1 - - -
B2B1‘Bo’
4 - 1 0 0 - 1 - -
B2'B
2o 5 o | - 1 i 1 i :
B2B1
6 - 0 1 - - 1 - -
B1‘Bo’
7 - - 0 0 - - 1 -
BiBo 3 - - 1 1 - - T -
Bo
9 - - - 0 - - - 1

Step 4: PLA Diagram

Downloaded from ExnggTree.com

JUUUUUUU

B‘l’BO,

B1Bo

By’ ;E;E;E;F

74
A

Comparison between PROM, PLA, and PAL:

>
)

) >
) >

S.No PROM PLA PAL
AND array is fixed Both AND and OR OR array is fixed and
1 |and ORarray is arrays are AND array is
programmable programmable programmable
Cheaper and simpler))
2 Costliest and complex Cheaper and simpler

to use

E:

E:

Eo

All minterms are
decoded

AND array can be
programmed to get

desired minterms

AND array can be
programmed to get

desired minterms

Only Boolean
functions in standard
SOP form can be
implemented using
PROM

Any Boolean functions
in SOP form can be

implemented using PLA

Any Boolean
functions in SOP form
can be implemented

using PLA

5. DIGITAL LOGIC FAMIIEES

& Integrated circuits

Integrated Circuits are used for producing several different circuit configurations and
production technologies. The semiconductor chip consists of electronic components
used for constructing circuits. Integrated circuits are classified into

@ Linear Integrated Circuits

Digital Integrated Circuits

Both operate with continuous and discrete signals respectively and are used to
construct various electronic circuits.

There are different levels of Integration, based on the number of logic gates in a
single IC package.

Small scale Integration (SSI)

These IC"s contain fewer logic gates (0 to 10).The input and output pins can be
directly connected to the pins in the package.

& Medium Scale Integration (MSI)

These IC“s have approximately around 10 to 1000 gates in one package, which
performs some specific functions.

(Ex: adders, multiplexers)

@ Large Scale Integration (LSI)

These IC"s contain thousands of gates in a single package.

(Ex: processors, memory chips and programmable logic devices)

& Very Large Scale Integrated Devices (VLSI)

These IC"s contain hundreds of thousands of gates in a single package.

(Ex: memory arrays, computer chips)

& Classification of Logic Families

Based on the circuit technology digital IC"s are classified into various types

@ RTL (Resistor Transistor Logic)
@ DTL (Diode Transistor Logic)

@ TTL (Transistor Transistor Logic)
ECL (Emitter Coupled Logic)

MOS (Metal Oxide Semiconductor Logic)
& Characteristics of Logic Families

The following are the important characteristics of digital IC’s
Propagation Delay (or) Operating Speed
Voltage and Current parameters
& Power Dissipation
@ Fan-in
@ Fan-out
Noise Margin
Operating Temperature

@ Power Supply Requirements

® Prop: Input ___ / _ \.
Propage 0 _—
when it: — , | |
Output _\ A
Propage = = Iy\ ! :
0 . BN

S0%
spond

trn : Propagation delay time from low level(0) to high level(1)

trHL : Propagation delay time from high level(1) to low level(0)

The delay in output is a measure of relative speed of logic circuits.
Average propagation delay Pp avg = (tetn + tprL)/2

& Voltage and Current Parameters:

Digital logic gates have a certain range of voltage and current levels
corresponding to O(low level)) and 1(high level)

& Voltage and current levels:

High level input voltage and current: The minimum input voltage recognised as logic
1(high level) by the logic gates (2V — 3V range) and the corresponding current is high
level input current.

Low level input voltage and current: The maximum input voltage recognised as logic
O(low level) by the logic gates (around 0.8V) and the corresponding current is low
level input current.

High level output voltage and current: The minimum voltage available at the output
corresponding to logic 1 and the corresponding current is high level output current.

Low level output voltage and current: The minimum voltage available at the output
corresponding to logic 0 and the corresponding current is low level output current.

& Power Dissipation:

Power dissipation is the measure of power consumed by the logic gate
when fully driven by all its inputs. It is expressed in milliwatts or nanowatts.

Average power dissipation Pdc avg =Vcc X Tavg
Ve - DC supply voltage

Tavg — Average current taken from the supply

& Fan-in:
Fan-in is the number of inputs available in a gate
@ Fan-out:

Fan-out is the number of similar logic gates that the output of a gate can drive

without affecting the normal operation.
& Noise Margin:

Noise margin is the maximum external noise voltage added to the input signal that

does not cause any undesirable change in the circuit operation.
& Operating Temperature:

All integrated circuits are semiconductor devices sensitive to temperature
Operating range
00C to +700° for consumer applications
@ -550 to +1250°C for military applications

& Power Supply Requirements:

The amount of power required by the IC.

5.1 RESISTOR TRANSISTOR LOGIC (RTL)

The following diagram shows the Resistor Transistor Logic (RTL) of NOR logic

function.
V4
%R
o Y=(A+B+C)'
A B C
Ry Rz%@ Ry
Do, T, T,
L

& Basic diagram of RTL NOR consists of transistor and resistors.
Here it is three input NOR gates logic diagram using RTL [i.e., A, B, C].

This follows the NOR gates truth table in its operation. i.e., whenever any one of the
input is “"HIGH” then it produce low output (or) all inputs are low, it produces “Low”

output. This is similar to NOR logic truth table shown below.

INPUT OUTPUT
A B Y=(A+B)
0 0 1
0 1 0
1 0 0
1 1 0

& Operation:
When all inputs are zero (or) low, then output Q= 0.

Since, all these transistors Q1, Q2, Q3 are in OFF condition; its collector output is
high.

When any one of the input is high (ort all inputs are high, then its corresponding
transistor is going to ON condition. Also, it is connected with ground and collector
potential which is approximately zero.

Anyhow, the base current is practically independent of the emitter junction
characteristic. When the resistors increase the input resistance and reduce the
switching speed of the circuit. This reduces the rise and fall times of any input pulse.

In practice, this approach to increase the speed of an RTL is to connect a capacitor
called a speed-up capacitor which is parallel to resistance connected in base.

& Operation Table

Inputs Transistor Status Output

A B C Q1 Q2 Q3 (Y=A+B+C)’
0 0 OFF OFF OFF 1(HIGH)

1 Oorl Ooril ON ON or OFF ON or OFF 0(LOW)

& Drawbacks:
In this logic family, some disadvantages are there, they are:

(i) It reduces current-hogging by load transistors, which is purely because of
mismatch of junction voltages. Hence it permits large fan-out.

(ii) One more problem is that load transistor in a RTL gate are driven heavily into
saturation. Hence it results in long-turn-off delays.

& Characteristics of RTL Family

1. Speed of operation is low, i.e., Propagation delay is of the order 500 ns. Hence it

cannot operate the system speed above 4 MHz.
2. For switching delay of 50 ns, the fan-in is 4 (or) 5 and fan-out is 4.

3. Because of Base resistor in transistor, the power dissipation is more. This can be
reduced by introducing DCTL (Direct coupled transistor logic).

4. It is highly sensitive to temperature.

5. Poor in nose immunity

& 5.2 DIODE TRANSISTOR LOGIC (DTL)

This DTL logic family reduces the problem of decreasing output voltage with

increasing load.

The following diagram shows the DTL NAND logic circuit using diode and transistor.

+V
!
R Ra2
D
. Iq Y=(A.B)'
s—1 >

& A and B are the inputs.

D1 D2 forms AND equivalent circuit and transistor (Q) acts as a inverter. Therefore,
the combinations of AND and NOT gates forms a logical NAND circuit hence it
follows the following NAND truth table.

INPUT OUTPUT
A B Y=(A.B)'
0 0 1
0 1 1
1 0 1
1 1 0

& Operation:

As per the above circuit diagram, the operation is as follows:
WhenA=B=1

Diodes D1 D2 are in reverse biased conditions [i.e., acts as open circuit].

Therefore D3 conduct. Hence the transistor base gets current flow and which is turned
ON.

Q output in low cut-off
WhenA=B=0(or) A=0andB=*(0or1)

When all inputs are zero, the D1 and D2 is in ON condition. Hence there is no input
current to base of the transistor. Q, hence it is in OFF condition. Thereby the output
in collector terminal of transistor Q is high, called saturated state.

Similarly if any one of the input is low (0) that makes the above operation. So output
is high (1)

Therefore, the final expression is Y = (A.B)” Then above operation is tabulated by
using functional operation table

& Operation table

Inputs Device Status Output
A B D1 D2 D3 Q (Y=A.B)
0 0 ON ON OFF OFF 1(HIGH)
0 1 ON OFF OFF OFF 1(HIGH)
1 0 OFF ON OFF OFF 1(HIGH)
1 1 OFF OFF ON ON 0(LOW)

Characteristics of DTL Family
& Propagation Delay:

The turn-off delay is considerably more than the turn-on-delay. Hence propagation
delay is 25 ns.

Fan-in and Fan-out.

Fan-in is less than 8.

Fan-out is high i.e., upto 8.

@ Noise immunity:

Noise margin is high. This is due to the additional diodes.

& Anyhow, whatever the drawbacks, can be reduced (or) improved in TTL family.

&% 5.3 TRANSISTOR TRANSISTOR LOGIC (TTL)

The speed limitation of DTL is overcome by TTL family. It is the commonly used
saturating family and hence operating speed is high.

Basic gate for TTL logic is NAND gate

& 2-Input TTL NAND Gate

130 2

Q3

AR

DI
ey ¥
Y =(A.B)

w >

Q4

The figure shows the circuit diagram of 2-input NAND gate. Its input structure
consists of multiple-emitter transistor and output structure consists of totem-pole
output. Here, Q1 is an NPN transistor having two emitters, one for each input to
the gate. Although this circuit looks complex, we can simplify its analysis by using
the diode equivalent of the multiple-emitter transistor Q1, as shown in figure.

Diodes D2 and D3 represent the two E-B junctions of Q1 an d4 is the collector- base

(C-B) junction.

& Diode equival i
4 kQ

R 1

1] / >
e D)

,: D Dy |

I |

[}]
Bo——] |

]

I |}

@ The input voltages A and B are either LOW (ideally grounded) or HIGH (ideally + 5
volts). If either A or B or both are low, the corresponding diode conducts and the
base of Q1 is pulled down to approximately 0.7 V. This reduces the base voltage of
Q2 to almost zero. Therefore, Q2 cuts off. With Q2 open, Q4 goes into cut-off and
the Q3 base is pulled HIGH. Since Q3 acts as an emitter follower, the Y output is
pulled up to a HIGH voltage. On the other hand, when A and B both are HIGH, the
emitter diode of Q1 are reversed biased making them off. This causes the collector
diode D4 to go into forward conduction. This forces Q2 base to go HIGH. In turn,

Q4 goes into saturation producing a low output.

Without diode D1 in the circuit, Q3 will conduct slightly when the output is low. To
prevent this diode is used; its voltage keeps the base-emitter diode of Q3 revere

biased only Q4 conducts when output is low.

@ 3-input TTL NAND Gate

VECQSV

130 §2

Q3

AR A
v ¥

Dl
——o Y

Y=(A.B.C)

w >
QI

Q4

The figure shows the three input TTL NAND gate. The operation of three input TTL
NAND is same as that of two output TTL NAND gate except that is Q1 (NPN)
transistor has three emitters instead of two. For three input NAND gate if all the

inputs are logic 1 then and then only output is logic 0; otherwise output is logic 1.

The operation is similar to the 2-input NAND gate. The table show the truth table
for 3-input NAND gate.

Inputs Device Status Output
A B C Q1 Q2 Q3 04 (Y=A.B.CY
0 0 0 ON OFF ON OFF 1(HIGH)
0 Oorl | Oorti ON OFF ON OFF 1(HIGH)
1 1 1 OFF ON OFF ON 0(LowW)
& Totem-Pole Output
Vec ®5V
2 l}lsc)
I $1.6k0
$4kn 03
1 ld
DI
B P | Y=(AB)
Ly

AA AR

«=Totem pole output

& The figure shows a highlighted output configuration.

Transistor Q3 and Q4 form a totem-pole. Such a configuration is known as active

pull-up or totem pole output.
& The active pull-up formed by Q3 and Q4 has specific advantage.
& Totem-pole transistors are used because they produce LOW output impedance
Either Q3 acts as a emitter follower (HIGH output) or Q4 is saturated (LOW output)

£ When Q3 is conducting, the output impedance is approximately 70Q; when Q4 is
saturated, the output impedance is only 12Q.

Either way, the output impedance is low. This means that the output voltage can
change quickly from one state to the other because any stray output capacitance is
rapidly charged or discharged through the low output impedance. Thus the
propagation delay is low in totem-pole TTL logic.

& Open-Collector Output

One problem with totem pole output is that two outputs cannot be tied together.
See the figure, where the totem pole outputs of two separate gates are connected
together at point X. Suppose that the output of gate A is high (Q3A ON and Q4A
OFF) and the output of gate B is low (Q3B OFF and Q4B ON). In this situation
transistor Q4B acts as a load for Q3A. Since Q4B is a low resistance load, it draws
high current around 55 mA. This current might not damage Q3A or Q4B
immediately, but over a period of time can cause overheating and deterioration in

performance and eventual device failure.

1 X
Qual
|
output stage —1 !
of Gate A] 1

Totem pole Totem poie
output stage
of Gate B

- r——————-‘-—"-

—————————-—_-1
I
|
0 |
TR]
-l ————————
————— — - .————5————'
@ |
1)
|
|
|
- —

Some TTL devices provide another type of output called open collector output. The
outputs of two difference gates with open collector output can be tied together.
This known as wired logic. Figure shows a 2-input NAND gate with an open-collector

output eliminates the pull-up transistor Q3, D1 and R4. The output is taken from
the open collector terminal of transistor Q4.

Vccgsv

& Because the collector of Q4 is open, a gate like this will not work properly until you connect

an external pull-up resistor, as shown in fig. When Q4 is ON, output is low and when Q4

is OFF output is tied to VCC through an external pull up resistor.

Comparison between Totem-Pole and Open-Collector Outputs

Totem-pole

Open collector

Output stage consists of pull-up transistor
(Q3), diode resistor and pull-down
transistor (Q4)

Output stage consists of only pull-down
transistor.

External pull-up resistor is not required.

External pull-up resistor is required for
proper operation of gate.

Output of two gates cannot be tied
together.

Output of two gates can be tied together
using wired AND technique.

Operating speed is high.

Operating speed is low.

Table summarizes the difference between totem-pole and open collector outputs.

Tri-Slate TTL Inverter

& The tristate configuration is a third type of TTL output configuration. It utilizes the high-

speed operation of the totem-pole arrangement while permitting outputs to be wired-

ANDed (connected together). It is called tristate TTL because it allows three possible output

stages: HIGH, LOW and high impedance. We know the transistor Q3 is ON when output is
HIGH and Q4 is ON when output is LOW. In the high impedance state both transistors,

transistors Q3 and Q4 in the totem-pole arrangement are turned OFF. As a result, the

output is open or floating, it is neither LOW nor HIGH.

- D,
Enable(E) o J #Z

0 +5V

>|

—
ENABLE

Logic symbol for active
high enable input

A A
Output ENABLE j

Logic symbol for active
low enable input

& The figure shows the simplified circuit for tristate inverter. It has two inputs A and E.

&

A is the normal logic output whereas E is an ENABLE input. When ENABLE input is
HIGH, the circuit works as a normal inverter. Because when E is HIGH, the state of the
transistor Q1 (either ON or OFF) depends on the logic input A, and the additional
component diode is open circuited as its cathode is at logic HIGH. When ENABLE input is
LOW, regardless of the state of logic input A, the base-emitter junction of Q1 is forward
biased and as a result it turns ON. This shunts the current through R1 away from Q2
making it OFF. As Q2 is OFF, there is no sufficient drive for Q4 to conduct and hence Q4
turns off. The LOW at ENABLE input also forward-biases diode D2 which shunt the current
away from the base of Q3, making it OFF. In this way, when ENABLE input is LOW, both
transistors are OFF and output is at high impedance state. Fig shows the logic symbols for
tristate inverter. In above case circuit operation is enabled when ENABLE input is HIGH.
Therefore, ENBLE input is active high. The logic symbol for high enable input is shown in
figure. In some circuits ENABLE input can be active LOW, i.e. circuit operates when ENABLE
input is LOW. The logic symbol for active low ENABLE input is shown in the figure.

The internal temperature — and voltage -compensated bias network supplies a
reference voltage (Bias voltage Vgs = -1.3 V) to the differential amplifier. The best

noise immunity is obtained by connecting Vcc to ground and Vee to -5.2 V.
5.4 ECL — Emitter coupled logic:

@ Emitter Coupled Logic (ECL) is a non saturated digital logic family. It achieves the
propagation delay of 2ns. Its required high speed system operation. The output
provides both OR and NOR functions. Each input is connected to the base of
transistor. The two voltage levels are about -0.8 V for the high state and -1.8V for

the low state.

Internal tem perature- and
-woltage-compensated

Differential-amplifier ‘bias network section Emitter-follower
input and logic section ilone supplies sewveral : output section
rdifferential amplifiers) H
: Moz O E Weor OW
z z
220% 245.: 90?.: :
: as
: 1 =)
H A+B
rn:ls
Q.a__‘. ~ (A+B)
—_———
—1.29%W
at 25 *C
- H
§6.1 k 4.98 %k MECL 10K series
H 2-input OR/MOR

& The circuit consists of

@ Differential amplifier
& Temperature — and voltage -compensated bias network

& Emitter follower

@ The Emitter follower output requires a pull down resistor for current to flow. This is
obtained from the input resistor, R, of other similar gates or from an external

resistor connected to a negative voltage supply.

Working:

@ If any of the input is high the corresponding input transistor is turned ON and
transistor Qs is OFF.

@ Ex: if Va = -0.8V, the transistor Qi starts conducting, So the Vge(Q:1) = 0.8V. Now
VE(Q1) = Va- Vee(Q1) = -0.8V - 0.8V = -1.6V

% Next to find the Vee(Q3). Vee(Q3) = Va(Q3) — VE(Q3) = -1.3 —(-1.6) =0.3V. Thus the
transistor Qs is OFF. So the transistor Q1 is remains ON. The output voltage of the
transistor Q1 is low. So the input voltage of transistor Q6 is Low. Since the transistor
Q6 is a Emitter follower so the output of the transistor Q6 is also Low. This output
produce the NOR output of the circuit.

@ The transistor Qs is OFF. The output voltage of the transistor Q3 is high. So the
input voltage of transistor Q5 is high. Since the transistor Q5 is a Emitter follower
so the output of the transistor Q5 is also high. This output produce the OR output
of the circuit.

@ 2. If both the inputs are low, transistors Q1 and Q2 are turned OFF and transistor
Qs is ON.

@ Ex: if Va = VB = -1.8V, the transistor Q1 and Q. = OFF, the transistor Qs is ON. So
the VBE(Q3) = 0.8V. Now VE(Q3) = Vpg - VBE(Q1) =-1.3V-0.8V = -2.1V

Next to find the Vee(Q1) or Vee(Q2) . Vee(Qi) = VB(Qi) — VE(Q1) = -1.8 —(-2.1)
=0.3V. Thus the transistor Q: is OFF. So the transistor Qs is remains ON. The output
voltage of the transistor Qs is low. So the input voltage of transistor Qs is Low. Since
the transistor Q5 is a Emitter follower so the output of the transistor Q5 is also Low.
This output produce the OR output of the circuit.

@ The transistor Q1 is OFF. The output voltage of the transistor Q1 is high. So the
input voltage of transistor Q6 is high. Since the transistor Q6 is a Emitter follower
so the output of the transistor Q6 is also high. This output produce the NOR output
of the circuit.

Operation Table

INPUT NOR OR
QL1 Q21 Q3 1 Q| Q8 | oyrpyr | ouTPUT
Va Ve
-1.8V -1.8V OFF | OFF | ON | OFF | ON | HIGH LOW
-1.8V -0.8V OFF | ON | OFF | ON | oFf | LOW HIGH
-0.8V 1.8V ON | OFF | OFF | ON | oFF | LOW HIGH
-0.8V 0.8V ON | ON | OFF | ON | oFr | LOW HIGH

5.5 CMOS Families

@ Complementary MOS (CMQS) logic uses the MOSFET in complementary pairs as

its basic element.

@ A complementary pair uses both p-channel and n-channel enhancement MOSFETs

& CMOS AS INVERTER

Input ——=

+irl|:|.[:.

Source (5)
III. tll

[Jnu (D)
¢ Output

[Jrl nil)

Gate (G) Source (5)

Q1 Q2 Y
PMOS | NMOS

ON OFF 1

OFF ON 0

CMOS AS NAND LOGIC

When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off.

The output is pulled HIGH through the on resistance of Q1 and Q2 in parallel.

When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are
off.

{
1= i
|—[|_T ._‘-l Output
03
Input A j
(h
Input B
A B Q1 Q2 Q3 Q4 Y
(Q1 & (Q2& | PMOS | PMos A= NMOS | NMOsS
Q3) Q4)
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1 OFF OFF ON ON 0

The output is pulled HIGH through the low on resistance of Q1.

When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are

on.
@ The output is pulled HIGH through the low on resistance of Q2.
When both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on.

@ The output is pulled LOW through the on resistance of Q3 and Q4 in series to

ground.

CMOS AS NOR LOGIC
When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off.

The output is pulled HIGH through the on resistance of Q1 and Q2 in series.

+ ‘m

Input A >

| Q,
}—-

TE{QZ
d |
Jaos e

Output

A B Q1 Q2 Q3 Q4 Y
(Q1 & (Q2& | PMOS | PMOS | NMOS | NMOS
Q3) Q4)
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 0
1 0 OFF ON ON OFF 0
1 1 OFF OFF ON ON 0

@ When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are

off.

The output is pulled LOW through the low on resistance of Q4 to ground.

When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are

on.

The output is pulled LOW through the on resistance of Q3 to ground.

When both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on. The

output is

pulled LOW through the on resistance of Q3 and Q4 in parallel to ground.

	EC3352-DIGITAL SYSTEM DESIGN II YEAR – III SEMESTER – R2021
	Introduction:
	Boolean Functions:
	Minimization of Boolean Expressions:
	(A+ B) (A’+ C) (B+ C) = (A+ B) (A’+ C)]
	9. AB + (AC)' + AB’C (AB + C)
	[B’+B=1]

	Complement Of A Function:
	(A+B+C+D+…+F)’=A’B’C’D’…F’

	Canonical and Standard Forms:
	F (A, B, C) = AB’C+ ABC+ ABC’
	KARNAUGH MAP MINIMIZATION:
	Grouping cells for Simplification:
	Simplification of Sum of Products Expressions: (Minimal Sums)
	3. F=A’C+A’B+AB’C+BC
	F=C+A’B
	F=A’C+B’
	Y = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D + AB’C’D + A’B’CD’
	3. F= A’B’C’+ B’CD’+ A’BCD’+ AB’C’
	F= B’D’+ B’C’+ A’CD’.
	Y= AB+ AC+ AD’.
	Y= AB+ AC+ AD+BCD.
	Y = A’C’D+ A’BC+ ABD+ ACD.

	Simplification of Sum of Products Expressions: (Minimal Sums) (1)
	1. Y= (A+ B+ C’) (A+ B’+ C’) (A’+ B’+ C’) (A’+ B+ C) (A+ B+ C)
	Y’ = B’C’+ A’C+ BC.
	Y = (B+ C). (A+C’). (B’+ C’)
	Y’ = B’C’D’+ AB+ BC
	Y’ = A’B’D’+ A’B’C+ ABD+ AC’
	= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)
	Y’ = BD’+ CD+ AB
	= (B’+ D). (C’+ D’). (A’+ B’)

	Don’t care Conditions:
	Five- Variable Maps:
	F (A, B, C, D, E) = A’B’E’+ BE+ AD’E
	F (A, B, C, D, E) = C’D’E’+ A’B’CD’E+ A’B’CDE’+ AB’D’E’+ ABE+ BC’
	F (A, B, C, D, E) = B’C’D’+ A’D’E’+ BC’E’+ A’BC’D+ AC’D’+ AB’CE’
	F (A, B, C, D, E) = BCD’E’+ ABCE+ A’B’C’E’+ A’C’D’E+ A’B’CD

	Logic Gates

	UNIT II COMBINATIONAL LOGIC CIRCUITS:
	Arithmetic Circuits – Basic Building Blocks:

	Code Converters:
	Decoders:
	Application:
	Implementation of Boolean Function using MUX:
	3.2 Classification of Logic Circuits
	3.3.1 SR Latch:
	SR latch using NOR gates:
	Case 1: S= 0 and R= 0
	Case 2: S= 0 and R= 1
	Case 3: S= 1 and R= 0
	Case 4: S= 1 and R= 1
	SR latch using NAND gates:
	Gated SR Latch:

	3.3.2 D Latch

	3.5.1 S-R Flip-Flop
	3.5.2 J-K Flip-Flop:
	J=K=0
	J=0,K=1
	J=1,K=0
	J=K=0 (1)
	Characteristic table and Characteristic equation:
	Characteristic table and Characteristic equation: (1)

	3.5.4 T Flip-Flop
	Characteristic table and Characteristic equation:

	3.5.5 Master-Slave JK Flip-Flop
	3.6.1 SR Flip-Flop:
	3.6.2 JK Flip-Flop:
	3.6.3 D Flip-Flop
	3.6.4 T Flip-Flop
	3.7.2 SR Flip-Flop to JK Flip-Flop
	3.7.4 JK Flip-Flop to T Flip-Flop
	JK Flip-Flop to D Flip-Flop
	D Flip-Flop to T Flip-Flop
	T Flip-Flop to D Flip-Flop
	3.8.1 Moore model:

	3.8.2 Mealy model:

	3.8.3 Difference between Moore and Mealy model
	3.9.1 State Diagram
	State diagram is a pictorial representation of a behavior of a sequential circuit.

	3.9.2 State Table
	State table represents relationship between input, output and Flip-Flop states.

	3.9.4 Analysis Procedure
	3.9.5 Analysis of Mealy Model
	JA= B+ x JB= A’+ x’
	State table:
	DA= Ax+ Bx
	Y= (A+ B) x’.
	Soln:
	State Diagram:
	Soln: (1)
	State Table:
	State Diagram: (1)
	JA = Bx + B' y'
	z = Ax' y' + Bx' y'
	State diagram:
	State Equation:
	KA= Bx’
	Logic diagram:
	State table: (1)

	3.9.6 Analysis of Moore Model
	Soln:
	State table:
	TA= Bx TB= x
	Step 1: Determine the state table for given state diagram
	Step 2: Find equivalent states
	Soln: (1)
	Soln: (2)
	Soln: (3)

	3.11 Design of Synchronous Sequential Circuits:
	3.11.1 Design procedure:
	3.11.2 Excitation Tables:
	3.11.3 Problems
	State Table:
	State reduction:
	Excitation table:
	K-map Simplification:
	ii) Design using T Flip-Flops:
	iii) Design using SR Flip-Flops:
	K-map Simplification: (1)
	iii) Design using JK Flip-Flops:
	K-map Simplification: (2)
	Soln:
	Binary Assignment:
	Excitation Table:
	K-map Simplification: (3)
	State Table: (1)
	State Assignment:

	3.12 State Assignment:
	3.15.1 Rules for state assignments
	Rule 1:
	Rule 2:
	3.15.2 State Assignment Problem:

	3.14 SYNCHRONOUS COUNTERS
	3.14.1 2-Bit Synchronous Binary Counter
	3.14.2 3-Bit Synchronous Binary Counter
	3.14.3 4-Bit Synchronous Binary Counter
	3.14.4 4-Bit Synchronous Decade Counter: (BCD Counter):
	3.14.5 Synchronous UP/DOWN Counter
	J1= K1= (Q0.UP)+ (Q0’.DOWN)
	(ii) MOD 5 Counter:
	(iii) MOD 10 Counter:

	3.15.1 Serial-In Serial-Out Shift Register:
	3.15.2 Serial-In Parallel-Out Shift Register:
	3.15.3 Parallel-In Serial-Out Shift Register:
	3.15.4 Parallel-In Parallel-Out Shift Register:
	UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS
	Types:

	4.2 Analysis of Fundamental Mode Circuits
	4.2.1 Analysis procedure
	Y= x1x2+ (x1+x2) y Z= Y
	Soln:
	Transition table:
	Flow table:
	Soln: (1)
	Logic Diagram
	Transition table and Output map
	Primitive Flow table
	Y= x1x2’+ (x1+x2’) y Z= Y
	Soln: (2)
	Transition table: (1)
	Flow table: (1)
	Soln: (3)
	Transition table
	Flow table
	X= (Y1Z1’W2) x + (Y1’Z1W2’) S=X’
	Soln: (4)

	4.3 Analysis of Pulse Mode Circuits
	Soln:
	Non-critical races:
	4.5 CYCLES
	Step 5:
	Step 2: Merging of the flow table
	Step 3: Compatible pairs
	Step 4: Maximal compatibles
	Step 5: State Assignment and Transition table
	Transition Table and Output Map
	Logic Diagram:

	Soln:
	(A, B, D) (C, E, F) (A, F) (D, E)
	(A, B, D) (C, E, F)
	Soln: (1)
	Soln: (2)
	Soln: (3)
	(A, B) (C, E) (D, F)
	K- Map simplification:
	Soln: (4)
	4.7 HAZARDS
	Hazards in Combinational Circuits:
	Types of Hazards:

	4.7.1 Static Hazard
	Static- 0 hazard:
	Static- 1 hazard:
	When the output of the circuit is to remain at 1, and a momentary 0 output is possible during the transmission between the two inputs, then the hazard is called a static 1-hazard.

	4.7.3 Essential Hazard
	Essential hazards elimination:

	4.8 Design Of Hazard Free Circuits
	Soln:
	Soln: (1)
	Soln: (2)

	UNIT V LOGIC FAMILIES AND PROGRAMMABLE LOGIC DEVICES
	5.2 Units of Binary Data: Bits, Bytes, Nibbles and Words
	5.4 Memory Address and Capacity
	5.5 Basic Memory Operations
	5.5.1 Write Operation
	5.5.2 Read Operation

	5.6 Classification of Memories
	5.6.1.1 Static RAM (SRAM)
	Operation:
	Read:
	Write:
	Read and Write Cycles:

	5.6.2.2 PROM (Programmable Read-Only Memory)
	5.6.2.3 EPROM (Erasable Programmable ROM)
	 UV EPROM:

	5.6.2.4 EEPROM (Electrically Erasable PROM)
	Advantages of RAM:
	Advantages of ROM:
	Disadvantages of ROM:
	Comparison between RAM and ROM:
	Comparison of Types of Memories:
	Programmable Arrays:
	The OR Array:
	The AND Array:

	5.8.2 Classification of PLDs
	2. Programmable Logic Array (PLA):
	Array logic Symbols:
	1. Implement the combinational circuit with a PLA having 3 inputs, 4 product terms and 2 outputs for the functions.
	Solution:
	2. Implement the combinational circuit with a PLA having 3 inputs, 4 product terms and 2 outputs for the functions.
	Solution: (1)

	4. A combinational circuit is designed by the function F1 (A, B, C) = ∑m (3, 5, 7)
	8. Design a BCD to Excess-3 code converter and implement using suitable PLA.
	Comparison between PROM, PLA, and PAL:
	Integrated circuits
	Classification of Logic Families
	Characteristics of Logic Families
	5.1 RESISTOR TRANSISTOR LOGIC (RTL)
	5.2 DIODE TRANSISTOR LOGIC (DTL)
	5.3 TRANSISTOR TRANSISTOR LOGIC (TTL)

	5.4 ECL – Emitter coupled logic:
	5.5 CMOS Families
	CMOS AS NAND LOGIC
	CMOS AS NOR LOGIC

