
1

UNIT I INTRODUCTION TO COMPILERS 9

Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering –

Specification of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular Expressions to

Automata – Minimizing DFA.

INTRODUCTION TO COMPILERS

Translator:

It is a program that translates one language to another.

source code Translator target code

Types of Translator:
1.Interpreter

2.Compiler

3.Assembler

1.Interpreter:

It is one of the translators that translate high level language to low level language.

high level language Interpreter low level language

During execution, it checks line by line for errors.

Example: Basic, Lower version of Pascal.

2.Assembler:

It translates assembly level language to machine code.

assembly language

 machine code

 Assembler

Example: Microprocessor 8085, 8086.

3.Compiler:

It is a program that translates one language(source code) to another language (target
code).

source code

target code

Compiler

It executes the whole program and then displays the errors.

Example: C, C++, COBOL, higher version of Pascal.

UNIT-1 INTRODUCTION TO COMPILERS AND LEXICAL ANALYSIS

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

2

Difference between compiler and interpreter:

Compiler

Interpreter

It is a translator that translates high level to

low level language

It is a translator that translates high level to low

level language

It displays the errors after the whole program is
executed.

It checks line by line for errors.

Examples: Basic, lower version of Pascal. Examples: C, C++, Cobol, higher version of

 Pascal.

PARTS OF COMPILATION

There are 2 parts to compilation:

1. Analysis

2. Synthesis

Analysis part breaks down the source program into constituent pieces and creates

anintermediate representation of the source program.

Synthesis part constructs the desired target program from the intermediate representation.

source code

Analysis

 intermediate code

 Synthesis

 object code

Software tools used in Analysis part:

1) Structure editor:
 Takes as input a sequence of commands to build a source program. 

 The structure editor not only performs the text-creation and modification functions of

an ordinary text editor, but it also analyzes the program text, putting an appropriate

hierarchical structure on the source program. 
 For example , it can supply key words automatically - while …. do and begin….. end. 


2) Pretty printers :

 A pretty printer analyzes a program and prints it in such a way that the structure of

the program becomes clearly visible. 
 For example, comments may appear in a special font. 


3) Static checkers :

 A static checker reads a program, analyzes it, and attempts to discover potential

bugs without running the program. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

3

 For example, a static checker may detect that parts of the source program can never

be executed. 

4) Interpreters :

 Translates from high level language (BASIC, FORTRAN, etc..) into machine language. 

 An interpreter might build a syntax tree and then carry out the operations at the nodes as

it walks the tree. 
 Interpreters are frequently used to execute command language since each operator

executed in a command language is usually an invocation of a complex routine such as

an editor or complier. 

PHASES OF COMPILER

A Compiler operates in phases, each of which transforms the source program from one

representation into another. The following are the phases of the compiler:

Main phases:
1) Lexical analysis

2) Syntax analysis

3) Semantic analysis

4) Intermediate code Generation

5) Code optimization

6) Code generation

Sub-Phases:
1) Symbol table management

2) Error handling

4

Lexical analysis:

 It is the first phase of the compiler. It gets input from the source program and produces

tokens as output. 
 It reads the characters one by one, starting from left to right and forms the tokens. 

 Token : It represents a logically cohesive sequence of characters such as
keywords,operators, identifiers, special symbols etc. 

Example: a +b =20 

Here, a,b,+,=,20 are all separate tokens. 

Group of characters forming a token is called the Lexeme. 
 The lexical analyser not only generates a token but also enters the lexeme into the symbol

table if it is not already there. 

Syntax analysis:

 It is the second phase of the compiler. It is also known as parser. 

 It gets the token stream as input from the lexical analyser of the compiler and generates

syntax tree as the output. 
 Syntax tree: 

It is a tree in which interior nodes are operators and exterior nodes are operands. 
 Example: For a=b+c*2, syntax tree is 

=

a +

b *

c 2

Semantic analysis:

 It is the third phase of the compiler. 

 It gets input from the syntax analysis as parse tree and checks whether the given syntax

is correct or not. 
 It performs type conversion of all the data types into real data types. 

Intermediate code generation:

 It is the fourth phase of the compiler. 

 It gets input from the semantic analysis and converts the input into output as

intermediate code such as three-address code. 
 The three -address code consists of a sequence of instructions, each of which has

atmost three operands. 

Example: t1=t2+t3 

Code optimization:

 It is the fifth phase of the compiler. 
 It gets the intermediate code as input and produces optimized intermediate code as

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

5

output. 
 This phase reduces the redundant code and attempts to improve the intermediate code so

that faster-running machine code will result. 
 During the code optimization, the result of the program is not affected. 

 To improve the code generation, the optimization involves 
- deduction and removal of dead code (unreachable code).

- calculation of constants in expressions and terms.

- collapsing of repeated expression into temporary string.

- loop unrolling.

- moving code outside the loop.

- removal of unwanted temporary variables.

Code generation:

 It is the final phase of the compiler. 

 It gets input from code optimization phase and produces the target code or object code

as result. 
 Intermediate instructions are translated into a sequence of machine instructions

that perform the same task. 
 The code generation involves 

- allocation of register and memory

- generation of correct references

- generation of correct data types

- generation of missing code

Symbol table management:

 Symbol table is used to store all the information about identifiers used in the program. 

 It is a data structure containing a record for each identifier, with fields for the attributes

of the identifier. 
 It allows to find the record for each identifier quickly and to store or retrieve data

from that record. 
 Whenever an identifier is detected in any of the phases, it is stored in the symbol table. 

Error handling:

 Each phase can encounter errors. After detecting an error, a phase must handle the

error so that compilation can proceed. 
 In lexical analysis, errors occur in separation of tokens. 
 In syntax analysis, errors occur during construction of syntax tree. 

 In semantic analysis, errors occur when the compiler detects constructs with

right syntactic structure but no meaning and duringtype conversion. 
 In code optimization, errors occur when the result is affected by the optimization. 

 In code generation, it shows error when code is missing etc. 

To illustrate the translation of source code through each phase, consider the statement

a=b+c*2. The figure shows the representation of this statement after each phase:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

6

Symbol Table

a id1
b id2
c id3

a=b+c*2

Lexical analyser

 id1=id2+id3*2
Syntax analyser

=

id1 +

id2 *

 id3 2

Semantic analyser =

=

id1 +

id2 *

 id3 inttoreal

2

 Intermediate code generator

 temp1=inttoreal(2)

 temp2=id3*temp1

 temp3=id2+temp2

 id1=temp3

Code optimizer

temp1=id3*2.0

id1=id2+temp1

Code generator

MOVF id3,R2

MULF #2.0,R2

MOVF id2,R1

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

7

LEXICAL ANALYSIS

Lexical analysis is the process of converting a sequence of characters into a sequence of

tokens. A program or function which performs lexical analysis is called a lexical analyzer or

scanner. A lexer often exists as a single function which is called by a parser or another function.

THE ROLE OF THE LEXICAL ANALYZER

As the first phase of a compiler, the main task of the lexical analyzer is to read the input

characters of the source program, group them into lexemes, and produce as output a sequence of

tokens for each lexeme in the source program. The stream of tokens is sent to the parser for

syntax analysis. It is common for the lexical analyzer to interact with the symbol table as well.

When the lexical analyzer discovers a lexeme constituting an identifier, it needs to enter that

lexeme into the symbol table. In some cases, information regarding the These interactions are

suggested in Fig. 3.1. Commonly, the interaction is implemented by having the parser call the

lexical analyzer. The call, suggested by the getNextToken command, causes the lexical analyzer

to read characters from its input until it can identify the next lexeme and produce for it the next

token, which it returns to the parser.

Since the lexical analyzer is the part of the compiler that reads the source text, it may perform

certain other tasks besides identification of lexemes.

 One such task is stripping out comments and whitespace (blank, newline, tab, and perhaps other

characters that are used to separate tokens in the input).

Another task is correlating error messages generated by the compiler with the source program.

For instance, the lexical analyzer may keep track of the number of newline characters seen, so it

can associate a line number with each error message.

 In some compilers, the lexical analyzer makes a copy of the source program with the error

messages inserted at the appropriate positions. If the source program uses a macro-preprocessor,

the expansion of macros may also

be performed by the lexical analyzer.

8

Issues in lexical analysis:

1. Simplicity of design : It is the most important consideration. The separation of lexical and

syntactic analysis often allows us to simplify at least one of these tasks. For example, a parser

that had to deal with comments

and whitespace as syntactic units would be considerably more complex than one that can assume

comments and whitespace have already been removed by the lexical analyzer. If we are

designing a new language, separating lexical and syntactic concerns can lead to a cleaner overall

language design.

2. Compiler efficiency is improved: A separate lexical analyzer allows us to apply specialized

techniques that serve only the lexical task, not the job of parsing. In addition, specialized

buffering techniques for reading input

characters can speed up the compiler significantly.

3. Compiler portability is enhanced: Input-device-specific peculiarities can be restricted to the

lexical analyzer.

Tokens, patterns, and lexemes:
When discussing lexical analysis, we use three related but distinct terms:

Token:

A token is a pair consisting of a token name and an optional attribute value. The token name is an

abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence of

input characters denoting an identifier. The token names are the input symbols that the parser

processes. In what follows, we shall generally write the name of a token in boldface. We will

often refer to a token by its token name.

Pattern:

A pattern is a description of the form that the lexemes of a token may take. In the case of a

keyword as a token,the pattern is just the sequence of characters that form the keyword. For

identifiers and some other tokens,

the pattern is a more complex structure that is matched by many strings.

Lexeme:

A lexeme is a sequence of characters in the source program that matches the pattern for a token

and is identified by the lexical analyzer as an instance of that token.

9

1.Tokens are treated as terminal symbols in the grammar for the source language using boldface

names to represent tokens.

2.The lexemes matched by the pattern for the tokens represent the strings of characters in the

source program that can be treated together as a lexical unit

3.In most of the programming languages keywords, operators identifiers , constants , literals and

punctuation symbols are treated as tokens.

4. A pattern is a rule describing the set of lexemes that can represent a particular token in the

source program.

5. In many languages certain strings are reserved i.e their meanings are predefined and cannot

be changes by the users

6. If the keywords are not reserved then the lexical analyzer must distinguish between a

keyword and a user-defined identifier

Attributes for tokens:

When more than one lexeme can match a pattern, the lexical analyzer must provide the

subsequent compiler phases additional information about the particular lexeme that matched. For

example, the pattern for token number matches both 0 and 1, but it is extremely important for the

code generator to know which lexeme was found in the source program. Thus, in many cases the

lexical analyzer returns to the parser not only a token name, but an attribute value that describes

the lexeme represented by the token; the token name influences parsing decisions, while the

attribute value influences translation of tokens after the parse. We shall assume that tokens have

at most one associated attribute, although this attribute may have a structure that combines

several pieces of information. The most important example is the token id, where we need to

associate with

the token a great deal of information. Normally, information about an identifier - e.g., its lexeme,

its type, and the location at which it is first found (in case an error message about that identifier

must be issued) - is kept in the symbol table. Thus, the appropriate attribute value for an

identifier is a pointer to the symbol-table entry for that identifier.

Example : The token names and associated attribute values for the Fortran statement

are written below as a sequence of pairs.

<id, pointer to symbol-table entry for E>

< assign-op >

<id, pointer to symbol-table entry for M>

<mult -op>

<id, pointer to symbol-table entry for C>

<exp-op>

<number , integer value 2 >

Note that in certain pairs, especially operators, punctuation, and keywords, there is no need for

an attribute value. In this example, the token number has been given an integer-valued attribute.

In practice, a typical compiler would instead store a character string representing the constant

and use as an attribute value for number a pointer to that string.

Errors in lexical analysis:It is hard for a lexical analyzer to tell, without the aid of other

components, that there is a source-code error. For instance, if the string f i is encountered for the

first time in a C program in the context: a lexical analyzer cannot tell whether f i is a misspelling

10

of the keyword if or an undeclared function identifier. Since f i is a valid lexeme for the token id,

the lexical analyzer must return the token id to the parser and let some other phase of the

compiler - probably the parser in this case - handle an error due to transposition of the letters.

However, suppose a situation arises in which the lexical analyzer is unable to proceed because

none of the patterns for tokens matches any prefix of the remaining input.

Panic mode :

The simplest recovery strategy is "panic mode" recovery. We delete successive characters from

the remaining input, until the lexical analyzer can find a well-formed token at the beginning of

what input is left. This recovery technique may confuse the parser, but in an interactive

computing environment it may be quite adequate.

Other possible error-recovery actions are:

1. Delete one character from the remaining input.

2. Insert a missing character into the remaining input.

3. Replace a character by another character.

4. Transpose two adjacent characters.

INPUT BUFFERING:

During lexical analyzing , to identify a lexeme , it is important to look ahead atleast one

additional character. Specialized buffering techniques have been developed to reduce the amount

of overhead required to process a single input character

An important scheme involves two buffers that are alternatively reloaded

Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 4096 bytes.

Using one system read command we can read N characters into a buffer, rather than using one

system call per character. If fewer than N characters remain in the input file, then a special

character, represented by eof marks the end of the source file and is different from any possible

character of the source program.

Two pointers to the input are maintained:

I. Pointer lexemeBegin, marks the beginning of the current lexeme, whose extent we are

attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact strategy whereby this

determination is made will be covered in the balance of this chapter.

Once the next lexeme is determined, forward is set to the character at its right end. Then, after

the lexeme is recorded as an attribute value of a token returned to the parser, 1exemeBegin is set

to the character immediately after the lexeme just found. In Fig. 3.3, we see forward has passed

the end of the next lexeme, ** (the Fortran exponentiation operator), and must be retracted one

position to its left.

Advancing forward requires that we first test whether we have reached the end of one of the

buffers, and if so, we must reload the other buffer from the input, and move forward to the

beginning of the newly loaded buffer. As long as we never need to look so far ahead of the

actual lexeme that the sum of the lexeme's length plus the distance we look ahead is greater than

N, we shall never overwrite the lexeme in its buffer before determining it.

11

Sentinels

If we use the scheme of Section 3.2.1 as described, we must check, each time we advance

forward, that we have not moved off one of the buffers; if we do, then we must also reload the

other buffer. Thus, for each character read, we make two tests: one for the end of the buffer, and

one to determine what character is read (the latter may be a multiway branch). We can combine

the buffer-end test with the test for the current character if we extend each buffer to hold a

sentinel character at the end. The sentinel is a special character that cannot be part of the source

program, and a natural choice is the character eof. Figure 3.4 shows the same arrangement as

Fig. 3.3, but with the sentinels added. Note that eof retains its use as a marker for the end of the

entire input. Any eof that appears other than at the end of a buffer means that the input is at an

end. Figure 3.5 summarizes the algorithm for advancing forward. Notice how the first test,

which can be part of a multiway branch based on the character pointed to by forward, is the only

test we make, except in the case where we actually are at the end of a buffer or the end of the

input.

12

SPECIFICATION OF TOKENS :

Regular languages are an important notation for specifying lexeme patterns

Strings and Languages:

 An alphabet is any finite set of symbols ex: Letters, digits and punctuation

 The set {01) is the binary alphabet

 A string over an alphabet is a finite sequence of symbols drawn from the alphabet

 The length of the string s,represented as |s| , is the number of occurrences of symbols in s

.

 The empty string denoted as € is the string of length 0

 A language is any countable set of strings over some fixed alphabet ex: abstract

languages

 If x and y are strings ten the concatenation of x and y denoted by xy is the string formed

by appending y to x for ex if x=cse and y=department , then xy=csedepartment .

Operation on Languages:

In lexical analysis, the most important operations on languages are union, concatenation, and

closure, which are defined formally in Fig. 3.6. Union is the familiar operation on sets. The

concatenation of languages is all strings formed by taking a string from the first language and a

string from the second language, in all possible ways, and concatenating them. The (Kleene)

closure of a language L, denoted L*, is the set of strings you get by concatenating L zero or more

times. Note that Lo, the "concatenation of L zero times," is defined to be {E), and inductively,

L~ is Li-'L. Finally, the positive closure, denoted L+, is the same as the Kleene closure, but

without the term Lo. That is, E will not be in L+ unless it is in L itself.

Example ': Let L be the set of letters {A, B, . . . , Z, a, b, . . . , z) and let D be the set of digits

{0,1,.. .9). We may think of L and D in two, essentially equivalent, ways. One way is that L and

D are, respectively, the alphabets of uppercase and lowercase letters and of digits. The second

way is that L and D are languages, all of whose strings happen to be of length one. Here are

some other languages that can be constructed from languages L and D, using the operators of the

Fig:

1. L U D is the set of letters and digits - strictly speaking the language

with 62 strings of length one, each of which strings is either one letter or

one digit.

2. LD is the set df 520 strings of length two, each consisting of one letter

followed by one digit.

3. L4 is the set of all 4-letter strings.

4. L* is the set of ail strings of letters, including e, the empty string.

13

5. L(L U D)* is the set of all strings of letters and digits beginning with a

letter.

6. D+ is the set of all strings of one or more digits.

Regular expressions:

Suppose we wanted to describe the set of valid C identifiers. It is almost exactly the language

described in item (5) above; the only difference is that the underscore is included among the

letters.

In Example 3.3, we were able to describe identifiers by giving names to sets of letters and digits

and using the language operators union, concatenation, and closure. This process is so useful that

a notation called regular expressions has come into common use for describing all the languages

that can be built from these operators applied to the symbols of some alphabet. In this notation, if

letter- is established to stand for any letter or the underscore, and digit- is established to stand for

any digit, then we could describe the language of C

identifiers by:

letter- (letter- I digit)*

The vertical bar above means union, the parentheses are used to group subexpressions, the star

means "zero or more occurrences of," and the juxtaposition of letter- with the remainder of the

expression signifies concatenation. The regular expressions are built recursively out of smaller

regular expressions, using the rules described below. Each regular expression r denotes a

language L(r), which is also defined recursively from the languages denoted by r's

subexpressions. Here are the rules that define the regular expressions over some alphabet C and

the languages that those expressions denote.

BASIS: There are two rules that form the basis:

1. E is a regular expression, and L (E) is {E) , that is, the language whose sole member is the

empty string.

2. If a is a symbol in C, then a is a regular expression, and L(a) = {a), that is, the language with

one string, of length one, with a in its one position.

Note that by convention, we use italics for symbols, and boldface for their corresponding regular

expression.'

INDUCTION: There are four parts to the induction whereby larger regular expressions are built

from smaller ones. Suppose r and s are regular expressions denoting languages L(r) and L(s),

respectively.

1. (r)1 (9) is a regular expression denoting the language L(r) U L(s).

2. (r) (s) is a regular expression denoting the language L(r) L(s) .

3. (r) * is a regular expression denoting (L (r)) * .

4. (r) is a regular expression denoting L(r). This last rule says that we can add additional pairs of

parentheses around expressions without changing the language they denote. As defined, regular

expressions often contain unnecessary pairs of parentheses. We may drop certain pairs of

parentheses if we adopt the conventions that:

a) The unary operator * has highest precedence and is left associative.

b) Concatenation has second highest precedence and is left associative.

c) | has lowest precedence and is left associative.

Under these conventions, for example, we may replace the regular expression (a) I ((b) * (c)) by

a/ b*c. Both expressions denote the set of strings that are either a single a or are zero or more b's

followed by one c.

Example : Let C = {a, b}.

1. The regular expression a1 b denotes the language {a, b}.

14

2. (a1 b) (alb) denotes {aa, ab, ba, bb), the language of all strings of length two over the alphabet

C. Another regular expression for the same language is aalablbal bb.

3. a* denotes the language consisting of all strings of zero or more a's, that is, {E, a, aa, aaa, . . .

}.

4. (alb)* denotes the set of all strings consisting of zero or more instances of a or b, that is, all

strings of a's and b's: {e, a, b, aa, ab, ba, bb, aaa, . . .}. Another regular expression for the same

language is (a*b*)*.

5. ala*b denotes the language {a, b, ab, aab,aaab,. . .), that is, the string a and all strings

consisting of zero or more a's and ending in b. A language that can be defined by a regular

expression is called a regular set. If two regular expressions r and s denote the same regular set,

we say they are equivalent and write r = s. For instance, (alb) = (bla). There are a number of

algebraic laws for regular expressions; each law asserts that expressions of two different forms

are equivalent. Figure below shows some of the algebraic laws that hold for arbitrary regular

expressions r, s, and t.

Regular definitions

For notational convenience, we may wish to give names to certain regular expressions and use

those names in subsequent expressions, as if the names were themselves symbols. If C is an

alphabet of basic symbols, then a regular definition is a sequence of definitions of the form

where:

1. Each di is a new symbol, not in C and not the same as any other of the d's

 2. Each ri is a regular expression over the alphabet C U {dl, d2,. . . , di-l).

By restricting ri to C and the previously defined d's, we avoid recursive definitions, and we can

construct a regular expression over C alone, for each ri. We do so by first replacing uses of dl in

r2 (which cannot use any of the d's except for dl), then replacing uses of dl and d2 in r3 by rl and

(the substituted) 7-2, and so on. Finally, in rn we replace each di, for i = 1,2,. . . ,n - 1, by the

substituted version of ri, each of which has only symbols of C.

Example : C identifiers are strings of letters, digits, and underscores. Here is a regular definition

for the language of C identifiers. We shall conventionally use italics for the symbols defined in

regular definitions.

letter- + A (B I . - . [Z 1 a 1 b l . - - l z 1 -

15

digit -+ 01 1 1 - - . 1 9

id + letter- (letter- I digit)*

Extensions of Regular Expressions

Since Kleene introduced regular expressions with the basic operators for union, concatenation,

and Kleene closure in the 1950s, many extensions have been added to regular expressions to

enhance their ability to specify string patterns.

Here we mention a few notational extensions that were first incorporated into Unix utilities such

as Lex that are particularly useful in the specification lexical analyzers. The references to this

chapter contain a discussion of some regularexpression variants in use today.

1. One or more instances. The unary, postfix operator + represents the positive closure of a

regular expression and its language. That is, if r is a regular expression, then (r)+d enotes the

language (~ (r)) 'T. he operator

has the same precedence and associativity as the operator *. Two useful algebraic laws, r* = r+Jc

and rf = rr* = r*r relate the Kleene closure and positive closure.

2. Zero or one instance. The unary postfix operator ? means "zero or one occurrence." That is, r?

is equivalent to rlc, or put another way, L(r?) = L(r) U (€1. The ? operator has the same

precedence and associativity as

* and +.

3. Character classes. A regular expression allazl. .. lan, where the ai's are each symbols of the

alphabet, can be replaced by the shorthand [ala2 . . . a,]. More importantly, when a1 , a2, . . . , a,

form a logical sequence, e.g., consecutive uppercase letters, lowercase letters, or digits, we can

replace them by al-a,, that is, just the first and last separated by a hyphen. Thus, [abc] is

shorthand for a|b|c, and [a-z] is shorthand for a | b |. . . |z.

RECOGNITION OF TOKENS:
In the previous section we learned how to express patterns using regular expressions. Now, we

must study how to take the patterns for all the needed tokens and build a piece of code that

examines the input string and finds a prefix that is a lexeme matching one of the patterns. Our

discussion will make use of the following running example.

stmt -> if expr then stmt

 I if expr then stmt else stmt

 I other

expr -> term relop term

 I term

term -> id

 I number

 This syntax is similar to that of the language Pascal, in that then appears explicitly after

conditions.

For relop, we use the comparison operators of languages like Pascal or SQL, where = is "equals"

and <> is "not equals," because it presents an interesting structure of lexemes. The terminals of

the grammar, which are if, then, else, relop, id, and number, are the names of tokens as far as the

lexical analyzer is concerned. The patterns for these tokens are described using regular

definitions

16

For this language, the lexical analyzer will recognize the keywords i f , then, and else, as well as

lexemes that match the patterns for relop, id, and number. To simplify matters, we make the

common assumption that keywords are also reserved words: that is, they are not identifiers, even

though their lexemes match the pattern for identifiers. In addition, we assign the lexical analyzer

the job of stripping out whitespace, by recognizing the "token" ws defined by:

 ws -+ (blank I tab (newline)+

Here, blank, tab, and newline are abstract symbols that we use to express the ASCII characters of

the same names. Token ws is different from the other tokens in that, when we recognize it, we do

not return it to the parser, but rather restart the lexical analysis from the character that follows

the whitespace. It is the following token that gets returned to the parser.

Transition diagram:

As an intermediate step in the construction of a lexical analyzer, we first convert patterns into

stylized flowcharts, called "transition diagrams.

State:

17

Transition diagrams have a collection of nodes or circles, called states. Each state represents a

condition that could occur during the process of scanning the input looking for a lexeme that

matches one of several patterns.

Edges:

Edges are directed from one state of the transition diagram to another. Each edge is labeled by a

symbol or set of symbols. If we are in some state s, and the next input symbol is a, we look for

an edge out of state s labeled

by a (and perhaps by other symbols, as well). If we find such an edge, we advance the forward

pointer arid enter the state of the transition diagram to which that edge leads.

We shall assume that all our transition diagrams are deterministic, meaning that there is never

more than one edge out of a given state with a given symbol among its labels. Starting in Section

3.5, we shall relax the condition of determinism, making life much easier for the designer of a

lexical analyzer, although trickier for the implementer.

Some important conventions about transition diagrams are:

 1.Certain states are said to be accepting, or final. These states indicate that a lexeme has been

found, although the actual lexeme may not consist of all positions between the LexemeBegin and

forward pointers. We always indicate an accepting state by a double circle, and if there is an

action to be taken - typically returning a token and an attribute value to the parser - we shall

attach that action to the accepting state.

2. In addition, if it is necessary to retract the forward pointer one position (i.e., the lexeme does

not include the symbol that got us to the accepting state), then we shall additionally place a *

near that accepting state. In our example, it is never necessary to retract forward by more than

one position, but if it were, we could attach any number of *'s to the accepting state.

3. One state is designated the start state, or initial state; it is indicated by an edge, labeled "start ,"

entering from nowhere. The transition diagram always begins in the start state before any input

symbols have been read.

Example: Transition diagrams for relational operations.

Recognizing keywords and identifiers :

Recognizing keywords and identifiers presents a problem. Usually, keywords like if or then are

reserved (as they are in our running example), so they are not identifiers even though they look

like identifiers. Thus, although we typically use a transition diagram like that of Fig. 3.14 to

search for identifier lexemes, this diagram will also recognize the keywords i f , then, and else of

our running example.

18

letter or digit:

 A transition diagram for id's and keywords

There are two ways that we can handle reserved words that look like identifiers:

1. Install the reserved words in the symbol table initially. A field of the symbol-table entry

indicates that these strings are never ordinary identifiers, and tells which token they represent.

We have supposed that this method is in use in Fig. 3.14. When we find an identifier, a call to

installID places it in the symbol table if it is not already there and returns a pointer to the

symbol-table entry for the lexeme found. Of course, any identifier not in the symbol table during

lexical analysis cannot be a reserved word, so its token is id. The function getToken examines

the symbol table entry for the lexeme found, and returns whatever token name the symbol table

says this lexeme represents - either id or one of the keyword tokens that was initially installed in

the table.

2. Create separate transition diagrams for each keyword; an example for the keyword then is

shown in Fig. 3.15. Note that such a transition diagram consists of states representing the

situation after each successive letter of the keyword is seen, followed by a test for a "nonletter-

or-digit," i.e., any character that cannot be the continuation of an identifier. It is necessary to

check that the identifier has ended, or else we would return token then in situations where the

correct token was id, with a lexeme like thenext value that has then as a proper prefix. If we

adopt this approach, then we must prioritize the tokens so that the reserved-word tokens are

recognized in preference to id, when the lexeme matches both patterns.

 Hypothetical transition diagram for the keyword then

The transition diagram for a token number is given below

19

 If a dot is seen we have an fraction number. Three diagrams in which first one is the

recognition of number which has fractional and exponent part or only exponent part.

 Second diagram is the recognition of number which has only fractional part.

 Third diagram is the recognition of number which has only decimal value.

A transition diagram for whitespace is given below

In the diagram we look for one or more whitespace characters represented by delim in the

diagram –typically these characters would be blank,tab,newline

20

21

THE LEXICAL- ANALYZER GENERATOR - LEX

In this section, we introduce a tool called Lex, or in a more recent implementation Flex, that

allows one to specify a lexical analyzer by specifying regular expressions to describe patterns for

tokens. The input notation for the Lex tool is referred to as the Lex language and the tool itself is

the Lex compiler. Behind the scenes, the Lex compiler transforms the input patterns into a

transition diagram and generates code, in a file called lex . yy . c, that simulates this transition

diagram. The mechanics of how this translation from regular expressions to transition diagrams

occurs is the subject of the next sections; here we only learn the Lex language.

Use of Lex:

An input file lex1 is written in the lex language and describes the lexical analyzer to be

generated . The Lex compiler transforms lex1 to a c program in a file that is always named

lex.yy.c

Structure of a lex program:

A Lex program has the following form:

declarations

%%

translation rules

%%

auxiliary functions

The declarations section includes declarations of variables, manifest constants (identifiers

declared to stand for a constant, e.g., the name of a token), and regular definitions

The translation rules each have the form

Pattern { Action)

Each pattern is a regular expression, which may use the regular definitions of the declaration

section. The actions are fragments of code, typically written in C.

The third section holds whatever additional functions are used in the actions.

Alternatively, these functions can be compiled separately and loaded with the lexical analyzer.

The lexical analyzer created by Lex behaves as follows :

1. When called by the parser, the lexical analyzer begins reading its remaining input, one

character at a time, until it finds the longest prefix of the input that matches one of the patterns

Pi.

22

2.It then executes the associated action Ai. Typically, Ai will return to the parser, but if it does

not (e.g., because Pi describes whitespace or comments), then the lexical analyzer proceeds to

find additional lexemes, until one of the corresponding actions causes a return to the parser.

3.The lexical analyzer returns a single value, the token name, to the parser, but uses the shared,

integer variable yylval to pass additional information about the lexeme found, if needed.

Lex program for token :
%{

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */
delim [\t\nl

ws (delim)+

letter [A-Za-z]

digit [o-9]

id {letter} {(letter) | {digit})*
number {digit)+ (\ . {digit}+)? (E [+-] ?{digit}+)?

%%
{ws} (/* no action and no return */)
if {return(IF) ; }

then {return(THEN) ; }

else {return(ELSE) ; }

{id} {yylval = (int) installID(); return(ID);}

{number} {yylval = (int) installNum() ; return(NUMBER) ; }

“<” {yylval = LT; return(REL0P); }

“<=” {yylval = LE; return(REL0P); }

“=” {yylval = EQ ; return(REL0P); }

“<>” {yylval = NE; return(REL0P);}

“>” {yylval = GT; return(REL0P);}

“>=” {yylval = GE; return(REL0P);}

%%

int installID0 {/* function to install the lexeme, whose
first character is pointed to by yytext,

and whose length is yyleng, into the

symbol table and return a pointer

thereto */

}
int installNum() {/* similar to installID, but puts numerical

constants into a separate table */

}

In the declarations section we see a pair of special brackets, %(and %). Anything within these

brackets is copied directly to the file lex . yy . c, and is not treated as a regular definition.The

manifest constants are placed inside it

Also the languages occur as a sequence of regular definitions .

Regular definitions that are used in later definitions or in the patterns of the translation rules are

surrounded by curly braces. Thus, for instance, delim is defined to be a shorthand for the

character class consisting of the blank, the tab, and the newline; the latter two are represented, as

in all UNIX commands, by backslash followed by t or n, respectively

23

In the auxiliary-function section, we see two such functions, installID()and installNum() . Like

the portion of the declaration section that appears between everything in the auxiliary section is

copied directly to file lex. yy . c, but may be used in the actions.

First, ws, an identifier declared in the first section, has an associated empty action. If we find

whitespace, we do not return to the parser, but look for another lexeme. The second token has

the simple regular expression pattern

i f . Should we see the two letters if on the input, and they are not followed by another letter or

digit (which would cause the lexical analyzer to find a longer prefix of the input matching the

pattern for id), then the lexical analyzer consumes these two letters from the input and returns the

token name IF, that is, the integer for which the manifest constant IF stands. Keywords then and

else are treated similarly. The fifth token has the pattern defined by id. Note that, although

keywords like i f match this pattern as well as an earlier pattern, Lex chooses whichever pattern

is listed first in situations where the longest matching prefix matches two or more patterns. The

action taken when id is matched is given as follows:

I. Function installID() is called to place the lexeme found in the symbol table.

2. This function returns a pointer to the symbol table, which is placed in global variable yylval,

where it can be used by the parser or a later component of the compiler. Note that installID () has

available to it two variables that are set automatically by the lexical analyzer that Lex generates:

(a) yytext is a pointer to the beginning of the lexeme

(b) yyleng is the length of the lexeme found.

3. The token name I D is returned to the parser.

FINITE AUTOMATA:

We shall now discover how Lex turns its input program into a lexical analyzer. At the heart of

the transition is the formalism known as finite automata. These are essentially graphs, like

transition diagrams, with a few differences:

1. Finite automata are recognizers; they simply say "yes" or "no" about each

possible input string.

2. Finite automata come in two flavors:

(a) Nondeterministic finite automata (NFA) have no restrictions on the

labels of their edges. A symbol can label several edges out of the

same state, and E, the empty string, is a possible label.

(b) Deterministic finite automata (DFA) have, for each state, and for

each symbol of its input alphabet exactly one edge with that symbol

leaving that state.

Both deterministic and nondeterministic finite automata are capable of recognizing the same

languages. In fact these languages are exactly the same languages, called the regular languages,

that regular expressions can describe

NDFA:

A nondeterministic finite automaton (NFA) consists of:

1. A finite set of states S.

2. A set of input symbols C, the input alphabet. We assume that E, which stands for the

empty string, is never a member of C.

3. A transition function that gives, for each state, and for each symbol a set of next states.

4. A state so from S that is distinguished as the start state (or initial state).

5. A set of states F, a subset of S, that is distinguished as the accepting states (or final

states).

24

We can represent either an NFA or DFA by a transition graph, where the nodes are states

and the labeled edges represent the transition function. There is an edge labeled a from

state s to state t if and only if t is one of the next states for state s and input a

DFA:

A deterministic finite automaton (DFA) is a special case of an NFA where:

1. There are no moves on input

2. For each state s and input symbol a, there is exactly one edge out of s

labeled a.

If we are using a transition table to represent a DFA, then each entry is a single state. we may

therefore represent this state without the curly braces that we use to form sets. While the NFA is

an abstract representation of an algorithm to recognize the strings of a certain language, the DFA

is a simple, concrete algorithm for recognizing strings. It is fortunate indeed that every regular

expression and every NFA can be converted to a DFA accepting the same language, because it is

the DFA that we really implement or simulate when building lexical analyzers.

MINIMIZATION OF DFA:

Two method of solving

1) by using table filling algorithm

Example:

25

Minimize the given regular expression (a|b)*abb.

ε – closure (0) = {0, 1, 2, 4, 7 } = A

Dtran[A, a] = ε – closure

(move(A, a))

= ε – closure (3, 8)

= {1, 2, 3, 4, 6, 7, 8 }

= B

Dtran[A, b] = ε – closure (move(A, b))

= ε – closure (5)

= {1, 2, 4, 5, 6, 7 }

= C

Dtran[B, a] = ε – closure (move(B, a))

= ε – closure (3, 8)

= {1, 2, 3, 4, 6, 7, 8 }

= B

26

Dtran[B, b] = ε – closure (move(B, b))

= ε – closure (5, 9)

= {1, 2, 4, 5, 6, 7, 9 }

= D

Dtran[C, a] = ε – closure (move(C, a))

= ε – closure (3, 8)

= {1, 2, 3, 4, 6, 7, 8 }

= B

Dtran[C, b] = ε – closure (move(C, b))

= ε – closure (5)

= {1, 2, 4, 5, 6, 7 }

= C

Dtran[D, a] = ε – closure (move(D, a))

= ε – closure (3, 8)

= {1, 2, 3, 4, 6, 7, 8 }

= B

Dtran[D, b] = ε – closure (move(D, b))

= ε – closure (5, 10)

= {1, 2, 4, 6, 7, 10 }

= E

Dtran[E, a] = ε – closure (move(E, a))

= ε – closure (3, 8)

27

= {1, 2, 3, 4, 6, 7, 8 }

= B

Dtran[E, b] = ε – closure (move(E, b))

= ε – closure (5)

= {1, 2, 4, 5, 6, 7 }

= C

NFA State DFA State a b

{0, 1, 2, 4, 7 } A B C

{1, 2, 3, 4, 6, 7, 8 } B B D

{1, 2, 4, 5, 6, 7 } C B C

{1, 2, 4, 5, 6, 7, 9 } D B E

{1, 2, 4, 6, 7, 10 } E B C

Fig. Transition table Dtran for DFA D

Finally optimize the above one by using table filling algorithm. Refer Class notes.

2) by using direct method

o By concatenating a unique right endmarker # to a regular expression r, we give

the accepting state for r a transition on #, making it an important state of the

NFA for (r)#.

o By using the augmented regular expression (r)#, any state with a transition on #

28

must be an accepting state.

o to present the regular expression by its syntax tree, where the leaves correspond

to operands and the interior nodes correspond to operators.

An interior node is called

a cat-node is labeled by the concatenation operator

(dot) or-node is labeled by union operator |

star-node is labeled by star operator *

Leaves in a syntax tree are labeled by ε or by an alphabet symbol. To each leaf

not labeled ε, we attach a unique integer. We refer to this integer as the position of the

leaf and also as a position of its symbol.

Functions Computed From the Syntax Tree:

To construct a DFA directly from a regular expression, we construct its syntax tree

and then compute four functions: nullable, firstpos, lastpos, and followpas.

Each definition refers to the syntax tree for a particular augmented regular expression

(r) #.

1. nullable(n) is true for a syntax-tree node n if and only if the subexpression

29

represented by n has ε in its language.

2. firstpos(n) is the set of positions in the subtree rooted at n that correspond to the

first symbol of at least one string in the language of the subexpression rooted at n.

3. lastpos(n) is the set of positions in the subtree rooted at n that correspond to the

last symbol of at least one string in the language of the subexpression rooted at n.

4. followpos(p), for a position p, is the set of positions q in the entire syntax tree

such that there is some string x = a1a2…. an, in L ((r)#) such that for some i,

there is a way to explain the membership of x in L((r)#) by matching ai to

position p of the syntax tree and ai+l to position q.

Example:

The expression (a|b)*a. We claim nullable(n) is false, since this node generates all

strings of a's and b's ending in an a; it does not generate ε.

firstpos(n) = {1,2,3)

lastpos(n) = (3)

followpos(1) = {1,2,3)

Computing nullable, firstpos, and lastpos:

The basis & induction rules for nullable(n), firstpos(n) lastpos(n) & followpos(n) is

as follows.

30

Computing followpos:

There are only two ways that a position of a regular expression can be made

to follow another.

1. If n is a cat-node with left child C1 and right child C2, then for every position i in

lastpos(c1), all positions in firstpos(c2) are in followpos(i).

2. If n is a star-node, and i is a position in lastpos(n), then all positions in firstpos(n)

are in followpos(i) .

31

The followpos is almost an NFA without ε-transitions for the underlying regular

expression, and would become one if we:

1. Make all positions in firstpos of the root be initial states,

2. Label each arc from i to j by the symbol at position i, and

3. Make the position associated with endmarker # be the only accepting state.

Compilation and interpretation:
Compilation and interpretation are two different approaches to executing computer
programs. They are fundamental concepts in computer science and programming. Let's
explore each of them:

Compilation:
1. **Process:** In compilation, the source code written by the programmer is translated into
machine code or an intermediate code by a compiler before it is executed. The compiler
reads the entire source code and generates an executable file or binary code, which can be
run multiple times without the need for recompilation (unless the source code is modified).

2. **Speed:** Compiled programs generally execute faster than interpreted programs
because the translation from source code to machine code happens ahead of time. This
means that the compilation process optimizes the code for the target platform.

3. **Examples:** C, C++, and Rust are examples of programming languages that are
typically compiled. These languages produce standalone executable files.

4. **Advantages:** Compilation can catch syntax errors and some semantic errors in the
code before the program runs. It also allows for performance optimizations, making it
suitable for applications where speed is critical.

5. **Disadvantages:** Compilation can be time-consuming, especially for large programs, as
the entire code needs to be translated before execution. It may also be less flexible than
interpretation because changes to the source code require recompilation.

Interpretation:

1. **Process:** In interpretation, the source code is executed directly by an interpreter line by
line, without generating a separate executable file. The interpreter reads the code,
processes it, and executes it in real-time.

2. **Speed:** Interpreted programs are generally slower than compiled programs because
there is no optimization phase where the entire code is translated into machine code
beforehand.

3. **Examples:** Python, Ruby, and JavaScript are examples of languages that are typically
interpreted. These languages often use an interpreter to run the code directly from the
source.

4. **Advantages:** Interpretation provides more flexibility because changes to the source
code take effect immediately without the need for recompilation. It is also often easier for
debugging since errors are detected and reported as they occur.

5. **Disadvantages:** Interpreted programs may run slower than compiled ones due to the
lack of pre-optimization. Additionally, syntax and semantic errors might not be caught until
runtime, potentially leading to unexpected behavior during execution.

In practice, some programming languages and environments offer a combination of both
compilation and interpretation. For example, Java uses a combination of compilation to
bytecode (which is then interpreted by the Java Virtual Machine) to achieve platform
independence. Other languages, like C# in the .NET framework, use a just-in-time (JIT)
compiler to translate bytecode into machine code at runtime for performance reasons.

The choice between compilation and interpretation depends on factors like the specific
programming language, the project's requirements, performance considerations, and
development preferences.

Phases Of Compiler:

A compiler is a complex piece of software that translates source code written in a high-level
programming language into machine code or some other lower-level representation that can
be executed by a computer. The compilation process typically consists of several distinct
phases, each responsible for specific tasks. Here are the standard phases of a compiler:

1. **Lexical Analysis (Scanning):**
- The first phase, often called lexical analysis or scanning, reads the source code character

by character.
- It breaks the input into smaller units called tokens, which are the basic building blocks of

the language (e.g., keywords, identifiers, literals, and operators).
- Lexical analysis also discards comments and whitespace.

2. **Syntax Analysis (Parsing):**
- Syntax analysis, also known as parsing, takes the stream of tokens generated by the

lexical analysis and organizes them into a hierarchical structure called a syntax tree or
abstract syntax tree (AST).
- This phase checks if the source code adheres to the grammar rules of the programming

language.
- It identifies the relationships between different parts of the code, such as function calls,

variable declarations, and control structures.

3. **Semantic Analysis:**
- Semantic analysis checks the meaning of the code beyond its syntax.
- It enforces type checking to ensure that variables and expressions have compatible

types, and it verifies other language-specific rules.
- This phase also resolves references between variables and functions (e.g., scope

resolution).

4. **Intermediate Code Generation:**
- Some compilers generate an intermediate representation of the code after syntax and

semantic analysis. This intermediate code is often platform-independent and easier to
optimize.
- The intermediate code generation phase simplifies the compilation process and enables

various optimizations.

5. **Optimization:**
- The optimization phase is responsible for improving the efficiency of the code generated

by the compiler.
- It applies various transformations to the intermediate code or directly to the target code to

make it run faster and use fewer resources.
- Optimization techniques can vary widely, from basic optimizations like constant folding to

more advanced techniques like loop unrolling and inlining.

6. **Code Generation:**
- The code generation phase translates the optimized or intermediate code into machine

code or another lower-level representation specific to the target platform.
- It handles memory management, registers allocation, and instruction selection, tailoring

the code for the target architecture.
- Code generation ensures that the program can be executed on the target machine.

7. **Symbol Table Management:**
- Throughout the compilation process, a symbol table is maintained. It stores information

about variables, functions, and other program entities, helping with scope resolution, type
checking, and code generation.

8. **Error Handling:**
- The compiler must handle errors gracefully. It reports syntax errors, semantic errors, and

other issues to the programmer, providing information about the location and nature of the
errors.

9. **Output:**
- Finally, the compiler produces the output, which may be an executable file, an object file,

or some other representation suitable for the target platform.

These phases may not always be strictly sequential, as some compilers use techniques like
incremental compilation to speed up the process or apply optimizations at various stages.
Nonetheless, understanding these phases helps clarify the complex task a compiler
performs in translating high-level code into executable machine code.

Language for Specifying Lexical Analyzers:

Lexical analyzers (also known as lexers or scanners) are responsible for breaking down the
input source code into a sequence of tokens for further processing by a compiler or
interpreter. To specify the rules for lexers, you often use specialized languages or tools
designed for this purpose. Here are some common languages and tools used to specify
lexical analyzers:

1. **Regular Expressions:**
- Regular expressions are a powerful and widely used method for specifying lexical rules.

They describe patterns of characters, making it easy to recognize tokens like keywords,
identifiers, numbers, and symbols.

- Popular programming languages like Python, Java, and C++ support regular expressions
for defining lexical rules.

2. **Lex (Lexical Analyzer Generator):**
- Lex is a widely used lexer generator that allows you to specify lexical rules using regular

expressions. It generates the corresponding C code for the lexer.
- Flex is a popular variant of Lex and is often used in Unix-based environments.

3. **ANTLR (ANother Tool for Language Recognition):**
- ANTLR is a powerful parser generator that can also be used for defining lexers. It uses a

specialized grammar notation to specify lexer rules.
- ANTLR can generate lexers and parsers in various programming languages, including

Java, C#, and Python.

4. **JFlex:**
- JFlex is a lexer generator for Java that enables you to specify lexical rules using regular

expressions and Java code embedded in special sections.
- It generates efficient Java code for the lexer.

5. **Ragel:**
- Ragel is a state machine compiler that allows you to define lexers (and parsers) using a

domain-specific language for state machines.
- It can generate code in various programming languages, including C, C++, and Ruby.

6. **Lexical Specification in Programming Languages:**
- Some programming languages have built-in support for specifying lexical rules. For

example, in the Haskell programming language, you can define lexers using parser
combinators or monadic parsers.

7. **Custom Lexer Specification:**
- In some cases, you might write custom lexer specifications by hand, especially for simple

languages or when using programming languages that lack built-in lexer generators.
- This involves writing code that reads the input characters, applies lexical rules, and

generates tokens.

When choosing a method or tool for specifying lexical analyzers, consider factors like the
complexity of the language you're working with, the target programming language for your
compiler or interpreter, and your familiarity with the tools available. Lexer generators like
Lex, Flex, and ANTLR are particularly useful for creating robust and efficient lexers for
complex languages, while regular expressions are suitable for simpler tasks or quick
prototyping.

UNIT II SYNTAX ANALYSIS 12

Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar –

Top Down Parsing - General Strategies Recursive Descent Parser Predictive Parser-LL(1)

Parser-Shift Reduce Parser-LR Parser-LR (0)Item Construction of SLR Parsing Table -

Introduction to LALR Parser - Error Handling and Recovery in Syntax Analyzer-YACC.

SYNTAX ANALYSIS

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and

generates a syntax tree or parse tree.

Advantages of grammar for syntactic specification:

1. A grammar gives a precise and easy-to-understand syntactic specification of a programming

language.
2. An efficient parser can be constructed automatically from a properly designed grammar.
3. A grammar imparts a structure to a source program that is useful for its translation into

object code and for the detection of errors.
4. New constructs can be added to a language more easily when there is a grammatical

description of the language.

THE ROLE OF PARSER

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and

verifies that the string can be generated by the grammar for the source language. It reports any

syntax errors in the program. It also recovers from commonly occurring errors so that it can

continue processing its input.

 Position of parser in compiler model

source lexical token parser parse rest of intermediate

program analyzer
 get next token

 tree front end representation

symbol

table

Functions of the parser :

1. It verifies the structure generated by the tokens based on the grammar.
2. It constructs the parse tree.
3. It reports the errors.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

4. It performs error recovery.

Issues :

Parser cannot detect errors such as:

1. Variable re-declaration
2. Variable initialization before use.
3. Data type mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

Syntax error handling :

Programs can contain errors at many different levels. For example :
1. Lexical, such as misspelling a keyword.
2. Syntactic, such as an arithmetic expression with unbalanced parentheses.
3. Semantic, such as an operator applied to an incompatible operand.
4. Logical, such as an infinitely recursive call.

Functions of error handler :

1. It should report the presence of errors clearly and accurately.
2. It should recover from each error quickly enough to be able to detect subsequent errors.
3. It should not significantly slow down the processing of correct programs.

Error recovery strategies :

The different strategies that a parse uses to recover from a syntactic error are:

1. Panic mode
2. Phrase level
3. Error productions
4. Global correction

Panic mode recovery:

On discovering an error, the parser discards input symbols one at a time until a

synchronizing token is found. The synchronizing tokens are usually delimiters, such as semicolon

or end. It has the advantage of simplicity and does not go into an infinite loop. When multiple

errors in the same statement are rare, this method is quite useful.

Phrase level recovery:

On discovering an error, the parser performs local correction on the remaining input that allows

it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon etc.

Error productions:

The parser is constructed using augmented grammar with error productions. If an error

production is used by the parser, appropriate error diagnostics can be generated to indicate the

erroneous constructs recognized by the input.

Global correction:

Given an incorrect input string x and grammar G, certain algorithms can be used to find a parse

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

tree for a string y, such that the number of insertions, deletions and changes of tokens is as small as

possible. However, these methods are in general too costly in terms of time and space.

CONTEXT-FREE GRAMMARS

A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, start

symbol and productions.

Terminals : These are the basic symbols from which strings are formed.

Non-Terminals : These are the syntactic variables that denote a set of strings. These help to define

the language generated by the grammar.

Start Symbol : One non-terminal in the grammar is denoted as the “Start-symbol” and the set of

strings it denotes is the language defined by the grammar.

Productions : It specifies the manner in which terminals and non-terminals can be combined to

form strings. Each production consists of a non-terminal, followed by an arrow, followed by a

string of non-terminals and terminals.

Example of context-free grammar: The following grammar defines simple arithmetic

expressions:

expr → expr op expr

expr → (expr)
expr → - expr

expr → id

 op → +

 op → -

 op → *

 op → /

 op → ↑

In this grammar,

 id + - * / ↑() are terminals. 
 expr , op are non-terminals. 
 expr is the start symbol. 
 Each line is a production. 

Derivations:

Two basic requirements for a grammar are :
1. To generate a valid string.
2. To recognize a valid string.

Derivation is a process that generates a valid string with the help of grammar by replacing the non-

terminals on the left with the string on the right side of the production.

Example : Consider the following grammar for arithmetic expressions :

E → E+E |E*E |(E) | - E | id

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

To generate a valid string - (id+id) from the grammar the steps are

1. E → - E
2. E → - (E)
3. E → - (E+E)
4. E → - (id+E)
5. E → - (id+id)

In the above derivation,
 E is the start symbol. 



 - (id+id) is the required sentence (only terminals). 


 Strings such as E, -E, -(E), . . . are called sentinel forms. 

Types of derivations:

The two types of derivation are:

1. Left most derivation
2. Right most derivation.

 In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for

replacement. 



 In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first

for replacement. 

Example:

Given grammar G : E → E+E |E*E |(E) | - E |id

Sentence to be derived : – (id+id)

LEFTMOST DERIVATION RIGHTMOST DERIVATION

E → - E E → - E

E → - (E) E → - (E)

E → - (E+E) E → - (E+E)

E → - (id+E) E → - (E+id)

E → - (id+id) E → - (id+id)

 String that appear in leftmost derivation are called left sentinel forms. 


 String that appear in rightmost derivation are called right sentinel forms. 

Sentinels:

Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or

terminals, then α is called the sentinel form of G.

Yield or frontier of tree:

Each interior node of a parse tree is a non-terminal. The children of node can be a terminal

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

or non-terminal of the sentinel forms that are read from left to right. The sentinel form in the parse

tree is called yield or frontier of the tree.

Ambiguity:

A grammar that produces more than one parse for some sentence is said to be ambiguous

grammar.

Example : Given grammar G : E → E+E | E*E | (E) | - E | id

The sentence id+id*id has the following two distinct leftmost derivations:

E → E+ E E → E* E

E → id + E E → E + E * E

E → id + E * E E → id + E * E

E → id + id * E E → id + id * E

E → id + id * id E → id + id * id

 E

 E

E + E E * E

id E * E E + E id

 id id

 id id

WRITING A GRAMMAR

There are four categories in writing a grammar:

1. Regular Expression Vs Context Free Grammar
2. Eliminating ambiguous grammar.
3. Eliminating left-recursion
4. Left-factoring.

Each parsing method can handle grammars only of a certain form hence, the initial grammar may

have to be rewritten to make it parsable.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Regular Expressions vs. Context-Free Grammars:

REGULAR EXPRESSION CONTEXT-FREE GRAMMAR

It is used to describe the tokens of programming

languages.

It is used to check whether the given input is

valid or not using transition diagram.

It consists of a quadruple where S → start

symbol, P → production, T → terminal, V →

variable or non- terminal.
It is used to check whether the given input is

valid or not using derivation.

The transition diagram has set of states and

edges.

It has no start symbol.

The context-free grammar has set of

productions.

It has start symbol.

It is useful for describing the structure of lexical

constructs such as identifiers, constants,

keywords, and so forth.

 It is useful in describing nested structures

such as balanced parentheses, matching

begin-end’s and so on.

 The lexical rules of a language are simple and RE is used to describe them. 


 Regular expressions provide a more concise and easier to understand notation for tokens

than grammars. 


 Efficient lexical analyzers can be constructed automatically from RE than from

grammars. 


 Separating the syntactic structure of a language into lexical and nonlexical parts provides

a convenient way of modularizing the front end into two manageable-sized components. 

Eliminating ambiguity:

Ambiguity of the grammar that produces more than one parse tree for leftmost or rightmost

derivation can be eliminated by re-writing the grammar.

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following

two parse trees for leftmost derivation:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 stmt

if expr then

stmt

 E1

 if expr then stmt else stmt

2.

 stmt

E

2

 S1

S2

if expr then stmt else stmt

 E

1

 S

2

 if expr then stmt

E2 S1

To eliminate ambiguity, the following grammar may be used:

stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt | other

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt

Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that there is a

derivation A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive

grammars. Hence, left recursion can be eliminated as follows:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

If there is a production A → Aα |β it can be replaced with a sequence of two productions

A → βA’

A’→ αA’ | ε without

changing the set of strings derivable from A.

Example : Consider the following grammar for arithmetic expressions:

E → E+T |T

T → T*F |F

F→ (E) |id

First eliminate the left recursion for E

as E → TE’

E’ → +TE’ |ε

Then eliminate for T

as T → FT’

T’→ *FT’ | ε

Thus the obtained grammar after eliminating left recursion

is E → TE’

E’ → +TE’ | ε

T → FT’

T’ → *FT’ | ε

F → (E) |id

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An.
2. for i := 1 to n do begin

for j := 1 to i-1 do begin
replace each production of the form Ai → A j γ by

the productions Ai → δ1 γ | δ2γ | . . . | δk γ

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions;
end
eliminate the immediate left recursion among the Ai-productions

end

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing. When it is not clear which of two alternative productions to use to

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we have

seen enough of the input to make the right choice.

If there is any production A → αβ1 | αβ2 , it can be rewritten as

A → αA’

A’→ β1 | β2

Consider the grammar , G : S → iEtS | iEtSeS | a

E → b

Left factored, this grammar becomes

S → iEtSS’ | a
S’→ eS |ε
E → b

PARSING

It is the process of analyzing a continuous stream of input in order to determine its

grammatical structure with respect to a given formal grammar.

Parse tree:

Graphical representation of a derivation or deduction is called a parse tree. Each interior

node of the parse tree is a non-terminal; the children of the node can be terminals or non-

terminals.

Types of parsing:

1. Top down parsing
2. Bottom up parsing

 Top–down parsing : A parser can start with the start symbol and try to transform it to the

input string. 


Example : LL Parsers. 


 Bottom–up parsing : A parser can start with input and attempt to rewrite it into the start

symbol. 


Example : LR Parsers. 

TOP-DOWN PARSING

It can be viewed as an attempt to find a left-most derivation for an input string or an

attempt to construct a parse tree for the input starting from the root to the leaves.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Types of top-down parsing :

1. Recursive descent parsing
2. Predictive parsing

1. RECURSIVE DESCENT PARSING

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of

recursive procedures to scan its input. 


 This parsing method may involve backtracking, that is, making repeated scans of the

input. 

Example for backtracking :

Consider the grammar G : S → cAd

A → ab |a
and the input string w=cad.

The parse tree can be constructed using the followingtop-down approach :

Step1:

Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first symbol

of w. Expand the tree with the production of S.

 S

c A d

Step2:

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second

symbol of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative.

S

c A d

a b

Step3:

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer

to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input

symbol d.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Hence discard the chosen production and reset the pointer to second position. This is called

backtracking.

Step4:

Now try the second alternative for A.

S

c A d

a

Now we can halt and announce the successful completion of parsing.

PREDICTIVE PARSER:

It is implemented by using non backtracking concept. It is categorized into two types,

1. recursive Predictive parser

2. non recursive Predictive parser

RECURSIVE PREDICTIVE PARSER

It is implemented by using recursion mechanism. A left-recursive grammar can cause a

recursive Predictive parser to go into an infinite loop. Hence, elimination of left-recursion

must be done before parsing.

Consider the grammar for arithmetic expressions

E → E+T |T

T → T*F |F

F→ (E) |id

After eliminating the left-recursion the grammar

becomes, E → TE’

E’ → +TE’ | ε

T → FT’

T’ → *FT’ | ε

F → (E) |id

Now we can draw transition diagram for each of the non terminal,

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

From the above diagram we can reduce the number of states in E’ diagram and substitute it in

Nonterminal E diagram as follows,

Similarly reducing T’ Diagram, the resultant transition diagram are,

write the procedure based on above grammar as follows:

Recursive procedure:

Procedure E()

begin
T();

EPRIME();

end

Procedure EPRIME()

begin
If input_symbol=’+’ then ADVANCE();
T(); EPRIME();

End

Procedure T()

 begin
F(); TPRIME();

end

Procedure TPRIME()

begin
If input _symbol=’*’ then ADVANCE(

);
F(); TPRIME();

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

end

Procedure F()

 begin
If input -symbol=’id’ then ADVANCE(

);
else if input-symbol=’(‘ then ADVANCE(

);
E();
else if input-symbol=’)’ then ADVANCE(

);
end

else ERROR();

2. PREDICTIVE PARSING (Non Recursive Predictive Parser)

 Predictive parsing is a special case of recursive descent parsing where no backtracking is

required. 


 The key problem of predictive parsing is to determine the production to be applied for a

non- terminal in case of alternatives. 

Non-recursive predictive parser

 INPUT a + b $

STACK

X

Predictive parsing program

OUTPUT

 Y

Z

$

Parsing Table M

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

The table-driven predictive parser has an input buffer, stack, a parsing table and an output

stream.

Input buffer:

It consists of strings to be parsed, followed by $ to indicate the end of the input string.

Stack:

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack.

Initially, the stack contains the start symbol on top of $.

Parsing table:

It is a two-dimensional array M[A, a], where ‘A’ is anon-terminal and ‘a’ is aterminal.

Predictive parsing program:

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the

current input symbol. These two symbols determine the parser action. There are three

possibilities:

1. If X = a = $, the parser halts and announces successful completion of parsing.
2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next

input symbol.
3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. This

entry will either be an X-production of the grammar or an error entry.

If M[X , a] = {X → UVW},the parser replaces X on top of the stack by

WVU. If M[X , a] = error, the parser calls an error recovery routine.

Algorithm for nonrecursive predictive parsing:

Input : A string w and a parsing table M for grammar G.

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for

the input is as follows:

set ip to point to the first symbol of w$;

repeat
let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then
if X = a then

pop X from the stack and advance ip

else error()
else /* X is a non-terminal */

if M[X, a] = X →Y1Y2 … Yk then begin

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 pop X from the stack;

 push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top;

 output the production X → Y1 Y2 . . . Yk

 end

until X = $

else error()

/* stack is empty */

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar G :

1. FIRST

2. FOLLOW

Rules for first():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non- terminal and X → aα is a production then add a to FIRST(X).

4. If X is non- terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some

i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε

is in FIRST(Y j) for all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():

1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in

follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

Output : Parsing table M

Method :

1. For each production A →α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].

4. Make each undefined entry of M be error.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Example:

Consider the following grammar :

E → E+T |T
T → T*F |F
F→ (E) |id

After eliminating left-recursion the grammar is

E → TE’
E’ → +TE’ |ε
T → FT’
T’ → *FT’ | ε
F → (E) |id

First() :

FIRST(E) ={ (, id}

FIRST(E’) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T’) ={*, ε }

FIRST(F) ={ (, id }

Follow():

FOLLOW(E) ={ $,) }

FOLLOW(E’) ={ $,) }

FOLLOW(T) ={ +, $,) }

FOLLOW(T’) = { +, $,) }

FOLLOW(F) ={+, * , $,) }

 Predictive parsing table :

NON- id + * () $

 TERMINAL

 E E → TE’ E → TE’

 E’ E’ → +TE’ E’ → ε E’→ ε

 T T → FT’ T → FT’

 T’ T’→ ε T’→ *FT’ T’ → ε T’ → ε

 F F→ id F→ (E)

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 Stack implementation:

stack

Input Output

 $E id+id*id $

 $E’T id+id*id $ E → TE’

 $E’T’F id+id*id $ T → FT’

 $E’T’id id+id*id $ F→ id

 $E’T’ +id*id $

 $E’ +id*id $ T’ → ε

 $E’T+ +id*id $ E’ → +TE’

 $E’T id*id $

 $E’T’F id*id $ T → FT’

 $E’T’id id*id $ F→ id

 $E’T’ *id $

 $E’T’F* *id $ T’ → *FT’

 $E’T’F id $

 $E’T’id id $ F→ id

 $E’T’ $

 $E’ $ T’ → ε

 $ $ E’ → ε

LL(1) grammar :

The parsing table entries are single entries. So each location has not more than one entry. This

type of grammar is called LL(1) grammar.

Consider this following grammar:

S → iEtS | iEtSeS | a
E → b

After eliminating left factoring, we have

S → iEtSS’ |a
S’→ eS | ε
E → b

To construct a parsing table, we need FIRST()and FOLLOW() for all the non-terminals.

FIRST(S) ={ i, a }

FIRST(S’) = {e, ε }

FIRST(E) ={ b}

FOLLOW(S) ={ $,e }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

FOLLOW(S’) = { $,e }

FOLLOW(E) = {t}

Parsing table:

NON- a b e i t $

TERMINAL

S S → a S → iEtSS’

S’ S’→ eS S’→ ε

 S’→ ε

E E → b

Since there are more than one production, the grammar is not LL(1) grammar.

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.
2. Construct FIRST() and FOLLOW() for all non-terminals.
3. Construct predictive parsing table.
4. Parse the given input string using stack and parsing table.

BOTTOM-UP PARSING

Constructing a parse tree for an input string beginning at the leaves and going towards the root is

called bottom-up parsing.

A general type of bottom-up parser is a shift-reduce parser. Other type is called LR Parser.

SHIFT-REDUCE PARSING

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree

for an input string beginning at the leaves (the bottom) and working up towards the root (the

top).

Example:
Consider the grammar:
S → aABe
A → Abc | b
B→ d
The sentence to be recognized is abbcde.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Reduction (leftmost) Rightmost derivation

abbcde (A → b) S → aABe

aAbcde (A → Abc) → aAde

aAde (B → d) → aAbcde

aABe (S → aABe) → abbcde

S
The reductions trace out the right-most derivation in reverse.

Handles:

A handle of a string is a substring that matches the right side of a production, and whose

reduction to the non-terminal on the left side of the production represents one step along the

reverse of a rightmost derivation.

Example:

Consider the grammar:

E → E+E
E → E*E
E → (E)
E → id

And the input string id1+id2*id3

The rightmost derivation is :

E → E+E

→ E+E*E
→ E+E*id3
→ E+id2*id 3
→ id1+id2*id 3

In the above derivation the underlined substrings are called handles.

Handle pruning:

A rightmost derivation in reverse can be obtained by “handle pruning”.

(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the n
th

 right-

sentinel form of some rightmost derivation.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Stack implementation of shift-reduce parsing :

 Stack Input Action

 $ id1+id2*id3 $ shift

 $ id1 +id2*id3 $ reduce by E→id

 $ E +id2*id3 $ shift

 $ E+ id2*id3 $ shift

 $ E+id2 *id3 $ reduce by E→id

 $ E+E *id3 $ shift

 $ E+E* id3 $ shift

$ E+E*id3

 $

 reduce by E→id

 $ E+E*E $ reduce by E→ E *E

 $ E+E $ reduce by E→ E+E

 $ E $ accept

Actions in shift -reduce parser:
 shift – The next input symbol is shifted onto the top of the stack.
 reduce – The parser replaces the handle within a stack with a

non-terminal. 
 accept – The parser announces successful completion of parsing. 
 error – The parser discovers that a syntax error has occurred and

calls an error recovery routine.

Conflicts in shift-reduce parsing:

There are two conflicts that occur in shift shift-reduce parsing:

1. Shift-reduce conflict: The parser cannot decide whether to shift

or to reduce.

2. Reduce-reduce conflict: The parser cannot decide which of

several reductions to make.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Viable prefixes:
 α is a viable prefix of the grammar if there is w such that αw is a right sentinel form. 


 The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser

are called viable prefixes. 


 The set of viable prefixes is a regular language. 

LR PARSERS
An efficient bottom-up syntax analysis technique that can be used to parse a large class of

CFG is called LR(k) parsing. The ‘L’ is for left-to-right scanning of the input, the ‘R’ for

constructing a rightmost derivation in reverse, and the ‘k’ for the number of input symbols.

When ‘k’ is omitted, it is assumed to be 1.

Advantages of LR parsing:
 It recognizes virtually all programming language constructs for which CFG can be

written. 


 It is an efficient non-backtracking shift-reduce parsing method. 


 A grammar that can be parsed using LR method is a proper superset of a grammar that

can be parsed with predictive parser. 


 It detects asyntactic error as soon as possible. 

Drawbacks of LR method:
It is too much of work to construct a LR parser by hand for a programming language

grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC.

Types of LR parsing method:
1. SLR- Simple LR

 Easiest to implement, least powerful. 


2. CLR- Canonical LR
 Most powerful, most expensive. 



3. LALR- Look -Ahead LR
 Intermediate in size and cost between the other two methods. 

The LR parsing algorithm:

The schematic form of an LR parser is as follows:

INPUT
a1 …

ai …

an $

Sm LR parsing program OUTPUT

Xm

Sm-1

Xm-1

… action goto

S0

STACK

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

It consists of : an input, an output, a stack, a driver program, and a parsing table that has two

parts (action and goto).

 The driver program is the same for all LR parser. 


 The parsing program reads characters from an input buffer one at a time. 


 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on top.

Each Xi is a grammar symbol and each si is a state. 


 The parsing table consists of two parts : action and goto functions. 

Action : The parsing program determines sm, the state currently on top of stack, and ai, the

current input symbol. It then consults action[sm,ai] in the action table which can have one of four

values :

1. shift s, where s is a state,
2. reduce by a grammar production A → β,
3. accept, and
4. error.

Goto : The function goto takes a state and grammar symbol as arguments and produces a state.

LR Parsing algorithm:

Input: An input string w and an LR parsing table with functions action and goto for grammar G.

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input

buffer. The parser then executes the following program :

set ip to point to the first input symbol of

w$; repeat forever begin

 let s be the state on top of the stack

and a the symbol pointed to by ip;
if action[s, a] =shift s’ then begin push

a then s’ on top of the stack;

advance ip to the next input symbol

end
else if action[s, a]=reduce A→β then begin

pop 2* |β |symbols off the stack;
let s’ be the state now on top of the stack;

push A then goto[s’, A] on top of the

stack; output the production A→ β

end
else if action[s, a]=accept then

return

else error()
end

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CONSTRUCTING SLR(1) PARSING TABLE:

To perform SLR parsing, take grammar as input and do the following:
1. Find LR(0) items.
2. Completing the closure.
3. Compute goto(I,X), where, I is set of items and X is grammar symbol.

LR(0) items:

An LR(0) item of a grammar G is a production of G with a dot at some position of the

right side. For example, production A → XYZ yields the four items :

A → . XYZ
A → X . YZ
A → XY . Z
A → XYZ .

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from

I by the two rules:

1. Initially, every item in I is added to closure(I).
2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it is

not already there. We apply this rule until no more new items can be added to closure(I).

Goto operation:

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such

that [A→ α . Xβ] is in I.

Steps to construct SLR parsing table for grammar G are:

1. Augment G and produce G’
2. Construct the canonical collection of set of items C for G’
3. Construct the parsing action function action and goto using the following algorithm that

requires FOLLOW(A) for each non-terminal of grammar.

Algorithmfor construction of SLR parsing table:

Input : An augmented grammar G’
Output : The SLR parsing table functions action and goto for G’
Method :
1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for G’.
2. State i is constructed from Ii.. The parsing functions for state i are determined as follows:

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be

terminal.
(b) If[A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A).
(c) If [S’→S.] is in Ii, then set action[i,$] to “accept”.

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

3. The goto transitions for state i are constructed for all non-terminals A using the rule: If

goto(Ii,A)= Ij, then goto[i,A] = j.
4. All entries not defined by rules (2) and (3) are made “error”
5. The initial state of the parser is the one constructed from the set of items containing

[S’→.S].

Example for SLR parsing:
Construct SLR parsing for the following grammar :
G : E → E + T | T

T → T * F | F
F→ (E) | id

The given grammar is :
G : E → E + T ------ (1)

E →T ------ (2)

T → T * F ------ (3)

T → F ------ (4)

F→ (E) ------ (5)

F→ id ------ (6)

Step 1 : Convert given grammar into augmented grammar.
Augmented grammar :

E’ → E
E → E + T
E → T
T → T * F
T → F
F→ (E)
F→ id

Step 2 : Find LR (0) items.

I0 : E’ → . E
E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → . id

GOTO (I0 , E) GOTO (I4 , id)

I1 : E’ → E . I5 : F→ id .

E → E . + T

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

GOTO (I0 , T)
I2 : E → T .

T → T . * F

GOTO (I0 , F)
I3 : T → F .

GOTO (I0 , ()
I4 : F → (. E)

E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → . id

GOTO (I0 , id)
I5 : F→ id .

GOTO (I1 , +)
I6 : E → E + . T

T → . T * F

T → . F
F → . (E)

F → . id

GOTO (I2 , *)
I7 : T → T * . F

F → . (E)

F → . id

GOTO (I4 , E)
I8 : F→ (E .) E

→ E . + T

GOTO (I4 , T)
I2 : E →T .

T → T . * F

GOTO (I4 , F)
I3 : T → F .

GOTO (I6 , T)
I9 : E → E + T .

T → T . * F

GOTO (I6 , F)
I3 : T → F .

GOTO (I6 , ()
I4 : F→ (. E)

GOTO (I6 , id)
I5 : F→ id .

GOTO (I7 , F)
I10 : T → T * F .

 GOTO (I7 , ()
 I4 : F→ (. E)

 E → . E + T
 E → . T
 T → . T * F
 T → . F
 F → . (E)
 F → . id

 GOTO (I7 , id)
 I5 : F → id .

 GOTO (I8 ,))
 I11 : F→ (E) .

GOTO (I8 , +)
I6 : E → E + . T

T → . T * F
T → . F
F→ . (E)
F→ . id

GOTO (I9 , *)
I7 : T → T * . F

F→ . (E)
F→ . id

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

GOTO (I4 , ()
I4 : F → (. E)

E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → id

FOLLOW (E) = { $,) , +)
FOLLOW (T) = { $, + ,) , * }
FOOLOW (F) = { * , + ,) , $ }

SLR parsing table:

 ACTION GOTO

 id + * () $

 E T F

I0 s5 s4 1 2 3

I1 s6 ACC

I2 r2 s7 r2 r2

I3 r4 r4 r4 r4

I4 s5 s4 8 2 3

I5 r6 r6 r6 r6

I6 s5 s4 9 3

I7 s5 s4 10

I8 s6 s11

I9 r1 s7 r1 r1

I10 r3 r3 r3 r3

I11 r5 r5 r5 r5

Blank entries are error entries.

Stack implementation:

Check whether the input id + id * id is valid or not.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

STACK

0

0 id 5

0 F 3

0 T 2

0 E 1

0 E 1 + 6

0 E 1 + 6 id 5

0 E 1 + 6 F 3

INPUT

id + id * id $

+ id * id $

+ id * id $

+ id * id $

+ id * id $

id * id $

 * id $

 * id $

ACTION

GOTO (I0 , id) = s5 ; shift

GOTO (I5 , +) = r6 ; reduce by F→id

GOTO (I0 , F) = 3
GOTO (I3 , +) = r4 ; reduce by T → F

GOTO (I0 , T) = 2
GOTO (I2 , +) = r2 ; reduce by E → T

GOTO (I0 , E) = 1
GOTO (I1 , +) = s6 ; shift

GOTO (I6 , id) = s5 ; shift

 GOTO (I5 , *) = r6 ; reduce by F→ id

 GOTO (I6 , F) = 3
 GOTO (I3 , *) = r4 ; reduce by T → F

 0 E 1 + 6 T 9 * id $ GOTO (I6 , T) = 9

 GOTO (I9 , *) = s7 ; shift

 0 E 1 + 6 T 9 * 7 id $ GOTO (I7 , id) = s5 ; shift

 0 E 1

+ 6 T 9 * 7

id 5 $ GOTO (I5 , $) = r6 ; reduce by F→ id

 0 E 1

+ 6 T 9 * 7

F 10 $ GOTO (I7 , F) = 10

 GOTO (I10 , $) = r3 ; reduce by T → T * F

 0 E 1 + 6 T 9 $ GOTO (I6 , T) = 9

 GOTO (I9 , $) = r1 ; reduce by E → E + T

 0 E 1 $ GOTO (I0 , E) = 1

 GOTO (I1 , $) = accept

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

29

CANONICAL LR PARSING:

Example:

S  CC
C cC|d.

1. Number the grammar productions:

1. S CC

2. C cC

3. C d

2. The Augmented grammar is:

SI
S

S CC

C cC

C d.

3.Constructing the sets of LR(1) items:

We begin with:

Sl .S,$ begin with look-a-head (LAH) as $. Here after with the help of closure other items are

added.

Closure():

For the production A->α.Ba ,Function closure tells us to add [B.r,b] for each production Br and

terminal b in FIRST (a). Now r must be SCC, and since  is  and a is $, b may only be $.

Thus,

 S.CC,$

We continue to compute the closure by adding all items [C.r,b] for b in FIRST [C$] i.e., matching

[S.CC,$] against [A.B,a] we have, A=S, =, B=C and a=$. FIRST (C$) = FIRST ©

FIRST© = {c,d} We add items:

C.cC,C

CcC,d

C.d,c

30

C.d,d

None of the new items have a non-terminal immediately to the right of the dot, so we have completed

our first set of LR(1) items. The initial I0 items are:

I0 : S
I
.S,$ S.CC,$ C.CC,c/d C.d.c/d

Now we start computing goto (I0,X) for various non-terminals i.e.,

Goto (I0,S):

I1 : S
I
S.,$  reduced item.

Goto (I0,C)

I2 : SC.C, $

C.cC,$

C.d,$

Goto (I0,c) :

I3 : Cc.C,c/d

C.cC,c/d

 C.d,c/d

Goto (I0,d)

I4 Cd., c/d reduced item.

Goto (I2,C)

 I5 SCC.,$  reduced item.

Goto (I2,c)

31

 I6

Cc.C,$

 C.cC,$

 C.d,$

Goto (I2,d)

 I7 Cd.,$  reduced item.

Goto (I3,C)

 I8 CcC.,c/d  reduced item.

Goto (I3,c) I3

 Cc.C, c/d

 C.cC,c/d

C.d,c/d

Goto (I3,d) I4

 Cd.,c/d.  reduced item.

Goto (I6,C)

 I9 CcC.,$  reduced item.

Goto (I6,c) I6

 Cc.C,$

 C,cC,$

 C.d,$

Goto (I6,d) I7

Cd.,$  reduced item.

All are completely reduced. So now we construct the canonical LR (1) parsing table –

Here there is no need to find FOLLOW () set, as we have already taken look-a-head for

each set of productions while constructing the states.

Constructing LR(1) Parsing table:

 Action goto

State C D $ S C

0 S3 S4 1 2

32

1 Accept

2 S6 S7 5

3 S3 S4 8

4 R4 R4

5 R1

6 S6 S7 9

7 R4

8 R3 R3

9 R3

1. Consider I0 items:

The item S.S.$ gives rise to goto [I0,S] = I1 so goto [0,s] = 1.

The item S.CC, $ gives rise to goto [I0,C] = I2 so goto [0,C] = 2.

The item C.cC, c/d gives rise to goto [I0,c] = I3 so goto [0,c] = shift 3

The item C.d, c/d gives rise to goto [I0,d] = I4 so goto [0,d] = shift 4

2. Consider I0 items:

The item S
I
S.,$ is in I1, then set action [1,$] = accept

3. Consider I2 items:

The item SC.C,$ gives rise to goto [I2,C] = I5. so goto [2,C] = 5

The item C.cC, $ gives rise to goto [I2,c] = I6. so action [0,c] = shift 6. The item C.d,$ gives

rise to goto [I2,d] = I7. so action [2,d] = shift 7

4. Consider I3 items:

The item C.cC, c/d gives rise to goto [I3,C] = I8. so goto [3,C] = 8

The item C.cC, c/d gives rise to goto [I3,c] = I3. so action [3,c] = shift 3. The item C.d, c/d

gives rise to goto [I3,d] = I4. so action [3,d] = shift 4.

5. Consider I4 items:

The item C.d, c/d is the reduced item, it is in I4 so set action [4,c/d] to reduce cd.

(production rule no.3)

6. Consider I5 items:

33

The item SCC.,$ is the reduced item, it is in I5 so set action [5,$] to SCC (production rule no.1)

7. Consider I6 items:

The item Cc.C,$ gives rise to goto [I6 ,C] = I9. so goto [6,C] = 9

The item C.cC,$ gives rise to goto [I6 ,c] = I6. so action [6,c] = shift 6

The item C.d,$ gives rise to goto [I6 ,d] = I7. so action [6,d] = shift 7

8. Consider I7 items:
The item Cd., $ is the reduced item, it is in I7.

So set action [7,$] to reduce Cd (production no.3)

9. Consider I8 items:

The item CcC.,c/d in the reduced item, It is in I8, so set action[8,c/d] to reduce CcC

(production rule no .2)

10. Consider I9 items:

The item C cC, $ is the reduced item, It is in I9, so set action [9,$] to reduce CcC

(Production rule no.3)

If the Parsing action table has no multiply –defined entries, then the given grammar is called as

LR(1) grammar

LALR PARSING:

Example:

1. Construct C={I0,I1,… ,In} The collection of sets of LR(1) items

2. For each core present among the set of LR (1) items, find all sets having that core, and

replace there sets by their Union# (group them into a single term)

I0 same as previous

I1  “

I2  “

I36 –> Clubbing item I3 and I6 into one I36 item.

34

C cC,c/d/$

CcC,c/d/$

 Cd,c/d/$

I5 same as previous

I47-> Clubbing item I4 and I7 into one I47 item

Cd,c/d/$

 I89  Clubbing item I8 and I9 into one I89 item



 CcC, c/d/$

LALR parsing table construction:

State
Action Goto

c d C

Io S36 S47 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 r3 r3

5 r1

89 r2 r2 r2

35

36

Design of a Syntax Analyzer for a Sample Language:

Designing a syntax analyzer (parser) for a sample programming language involves defining
the grammar of the language and implementing the parsing algorithm. Here's a step-by-step
guide to designing a syntax analyzer for a simple language, using a hypothetical
"SampleLang" as an example:

Step 1: Define the Grammar

Start by defining the grammar for your SampleLang. This grammar should describe the
syntax rules of the language using a formal notation like Backus-Naur Form (BNF) or
Extended Backus-Naur Form (EBNF). Here's a simplified example:

<program> ::= <statement>+
<statement> ::= <assignment> | <if_statement> | <while_loop>
<assignment> ::= <identifier> '=' <expression>
<if_statement> ::= 'if' '(' <condition> ')' '{' <statement>+ '}' ['else' '{' <statement>+ '}']
<while_loop> ::= 'while' '(' <condition> ')' '{' <statement>+ '}'
<condition> ::= <expression> ('<' | '>' | '==' | '!=' | '<=' | '>=') <expression>
<expression> ::= <term> ('+' | '-') <term>
<term> ::= <factor> ('*' | '/') <factor>
<factor> ::= <number> | <identifier> | '(' <expression> ')'
<identifier> ::= [a-zA-Z][a-zA-Z0-9]*
<number> ::= [0-9]+

This grammar defines a simple programming language with assignments, if statements,
while loops, and basic arithmetic expressions.

Step 2: Choose a Parsing Algorithm

There are various parsing algorithms to choose from, such as recursive descent parsing, LL
parsing, and LR parsing. The choice depends on the complexity of your language's grammar
and your specific requirements. For simplicity, let's consider a recursive descent parser for
this example.

Step 3: Implement the Parser

Now, you need to implement the parser based on the chosen parsing algorithm. In the case
of recursive descent parsing, you'll create functions for each non-terminal symbol in your
grammar.

Here's a simplified Python-like pseudocode for the parser:

def parse_program():
while not end_of_input():
parse_statement()

def parse_statement():
if current_token() == 'if':
parse_if_statement()

elif current_token() == 'while':
parse_while_loop()

else:
parse_assignment()

def parse_assignment():
identifier = expect_identifier()
expect('=')
expression = parse_expression()

def parse_if_statement():
expect('if')
expect('(')
condition = parse_condition()
expect(')')
expect('{')
parse_program()
expect('}')
if current_token() == 'else':
expect('else')
expect('{')
parse_program()
expect('}')

def parse_while_loop():
expect('while')
expect('(')
condition = parse_condition()
expect(')')
expect('{')
parse_program()
expect('}')

def parse_condition():
left_expr = parse_expression()
operator = expect_comparison_operator()
right_expr = parse_expression()

def parse_expression():

This pseudocode represents the structure of a recursive descent parser for the SampleLang
grammar. You would need to implement the actual parsing logic for each non-terminal
function.

Step 4: Integrate with Lexical Analyzer

Your syntax analyzer should work in conjunction with a lexical analyzer (lexer) that tokenizes
the input source code. The lexer provides the parser with a stream of tokens to parse.

Step 5: Error Handling

Implement error handling mechanisms to report syntax errors gracefully, including error
messages with line and column numbers.

Step 6: Testing and Debugging

Thoroughly test your parser with various input programs to ensure it correctly recognizes
valid programs and reports errors for invalid ones. Debugging tools and techniques, like
printing parsing stack traces, can be invaluable.

Designing a syntax analyzer is a complex task that requires careful consideration of the
language's grammar and the parsing algorithm. This example provides a high-level overview,
but the actual implementation details will depend on your specific language and
requirements.

UNIT III INTERMEDIATE CODE GENERATION 8

Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate

Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of

Expressions, Type Checking.

SYNTAX – DIRECTED TRANSLATION

Syntax-Directed Translations

• Translation of languages guided by CFGs

• Information associated with programming language constructs

– Attributes attached to grammar symbols

– Values of attributes computed by “semantic rules” associated with grammar

productions

• Two notations for associating semantic rules

– Syntax-directed definitions

– Translation schemes

Semantic Rules

• Semantic rules perform various activities:

– Generation of code

– Save information in a symbol table

– Issue error messages

– Other activities

• Output of semantic rules is the translation of the token stream

Conceptual View

• Implementations do not need to follow outline literally

• Many “special cases” can be implemented in a single pass

SYNTAX DIRECTED DEFINITIONS

 Syntax directed definition is a generalization of a context free grammar in which

each grammar symbol has an associated set of attributes, partitioned into two subsets

called synthesized attributes and inherited attributes.

Attributes

• Each grammar symbol (node in parse tree) has attributes attached to it ex: a string, a

number, a type, a memory location etc.

• Values of a Synthesized attributes at a node is computed from the values of attributes at

the children of that node in the parse tree.

• Values of a Inherited attributes at a node is computed from the values of attributes at the

siblings and parent of that node.

 A dependency graph represents dependencies between attributes

A parse tree showing the values of attributes at each node is an annotated parse tree

• Each semantic rule for production A -> α has the form

 b := f(c1, c2, …, ck)

– f is a function

– b may be a synthesized attribute of A or

UNIT-3 SYNTAX DIRECTED TRANSLATION & INTERMEDIATE CODE GENERATION

– b may be an inherited attribute of one of the grammar symbol on the right side of

the production

– c1, c2, …, ck are attributes belonging to grammar symbols of production

• An attribute grammar is one in which the functions in semantic rule cannot have side

effects

NOTE: a semantic rule may have side effects ex: printing a value or updating a global

variable.

S-attributed Definitions

• Synthesized attributes are used extensively in practice

• S-attributed definition: A syntax-directed definition using only synthesized attributes

• Parse tree can be annotated by evaluation nodes during a single bottom up pass

S-attributed Definition Example

Desk calculator

Production Semantic Rules

L  E n print(E.val)

E  E
1
 + T E.val := E

1
.val + T.val

E  T E.val := T.val

T  T
1
 * F T.val := T

1
.val * F.val

T  F T.val := F.val

F  (E) F.val := E.val

F  digit F.val := digit.lexval

Annotated Parse Tree Example

NOTE

In a syntax directed definations, terminals are assumed to have

 Synthesized attributes only,as the definations does not provide any semantic rules for

terminals.values for attributes of terminals are usually supplied by the lexical

analyser.Start symbol is assumed not to have any inherited attribute otherwise stated.

Inherited Attributes

• Inherited Attributes:

– Value at a node in a parse tree depends

 on attributes of parent and/or siblings

– Convenient for expressing dependencies of programming language constructs on

context

• It is always possible to avoid inherited attributes, but they are often convenient

Inherited Attributes Example

Production Semantic Rules

D  T L L.in := T.type

T  int T.type := integer

T  real T.type := real

L  L
1
, id

L
1
.in := L.in

addtype(id.entry, L.in)

L  id addtype(id.entry, L.in)

Annotated Inherited Attributes

Dependency Graphs

• Dependency graph:

– Depicts interdependencies among synthesized and inherited attributes

– Includes dummy nodes for procedure calls

• Numbered with a topological sort

– If mi  mj is an edge from mi to mj, then mi appears before mj in the ordering

– Gives valid order to evaluate semantic rules

Creating a Dependency Graph

for each node n in parse tree

 for each attribute a of grammar symbol at n

 construct a node in dependency graph for a

for each node n in parse tree

 for each semantic rule b := f(c1, c2, …, ck)

 associated with production used at n

 for i := 1 to k

 construct edge from node for ci to node for b

Example(inherited attribute)

Two sub-classes of the syntax-directed definitions:

– S-Attributed Definitions: only synthesized attributes used in the syntax-directed

definitions.

– L-Attributed Definitions: in addition to synthesized attributes, we may also use

inherited attributes in a restricted fashion.

 To implement S-Attributed Definitions and L-Attributed Definitions we can evaluate

semantic rules in a single pass during the parsing.

 Implementations of S-attributed Definitions are a little bit easier than

implementations of L-Attributed Definitions

BOTTOM-UP EVALUATION OF S-ATTRIBUTED DEFINITIONS

• We put the values of the synthesized attributes of the grammar symbols into a parallel

stack.

– When an entry of the parser stack holds a grammar symbol X (terminal or non-

terminal), the corresponding entry in the parallel stack will hold the synthesized

attribute(s) of the symbol X.

• We evaluate the values of the attributes during reductions.

Bottom-Up Evaluation Example

Production Code Fragment

(1) L  E \n Print(val[top])

(2) E  E
1
 + t val[ntop] := val[top-2] + val[top]

(3) E  T

(4) T  `T
1
 * F val[ntop] := val[top-2] * val[top]

(5) T  F

(6) F  (E) val[ntop] := val[top-1]

(7) F  digit

Bottom-Up Evaluation Example

Input State Val Rule

3*5+4\n --- ---

*5+4\n 3 3

*5+4\n F 3 (7)

*5+4\n T 3 (5)

5+4\n T* 3_

+4\n T*5 3_5

+4\n T*F 3_5 (7)

+4\n T 3_5 (4)

+4\n E 15 (3)

4\n E+ 15_

\n E+4 15_4

\n E+F 15_4 (7)

\n E+T 15_4 (5)

\n E 19 (2)

E\n 19_

L 19 (1)

TOP DOWN EVALUATION OF L-ATTRIBUTED DEFINITION

A top-down parser can evaluate attributes as it parses if the attribute values can be computed in a

top-down fashion. Such attribute grammars are termed L-Attributed. First, we introduce a

new type of symbol called an action symbol. Action symbols appear in the grammar in any place

a terminal or nonterminal may appear. They may also have their own attributes. They may,

however, be pushed onto their own stack, called a semantic stack or attribute stack.

 We illustrate action symbols using the notation "<>" which indicates that the symbol within

the brackets is to be pushed onto the semantic stack when it appears at the top of the parse stack.

By inserting this action in appropriate places, we will create a translator which converts from

infix expressions to postfix expressions.

We parse and translate a + b * c. The top is on the left for both stacks.

When the semantic stack is popped, the translated string is:

 a b c * +

the input string translated to postfix. In Example 6, the action symbol did not have any attached

attributes.

 The BNF in Example 6 is in LL(1) form. This is necessary for the top-down parse.

 The formal definition of an L-attributed grammars is as follows. An attribute grammar is L-

attributed if and only if for each production X0 -> X1 X2. . . Xi. . . Xn,

 (1) {Xi.inh} = f ({Xj.inh} , {Xk.att}) i, j >= 1, 0<=k<i

 (2) {X0.syn} = f ({X0.inh} , {Xj.att}) 1<=j<=n

 (3) {ActionSymbol.Syn} = f ({ActionSymbol.Inh})

 (1) says that each inherited attribute of a symbol on the right-hand side depends only on

inherited attributes of the right-hand side and arbitrary attributes of the symbols to the left of the

given right-hand side symbol.

 (2) says that each synthesized attributes of the left-hand-side symbol depends only on

inherited attributes of that symbol and arbitrary attributes of right-hand-side symbols.

 (2) says that the synthesized attributes of any action symbol depend only on the inherited

attributes of the action symbol.

 Conditions (1), (2), and (3) allow attributes to be evaluated in one left-to-right pass

 If the underlying grammar is LL(1), then an L-attributed grammar allows attributes to be

evaluated while parsing. The evaluation algorithm is:

INTRODUCTION – Intermediate Code generator

The front end translates a source program into an intermediate representation from

which the back end generates target code.

Benefits of using a machine-independent intermediate form are:

1. Retargeting is facilitated. That is, a compiler for a different machine can be created

by attaching a back end for the new machine to an existing front end.

2. A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

 intermediate

parser static intermediate code

 checker code generator code generator

INTERMEDIATE LANGUAGES

Three ways of intermediate representation:

 Syntax tree 


 Postfix notation 


 Three address code 

The semantic rules for generating three-address code from common programming language

constructs are similar to those for constructing syntax trees or for generating postfix notation.

Graphical Representations:

SYNTAX TREE:

A syntax tree depicts the natural hierarchical structure of a source program. A dag

(Directed Acyclic Graph) gives the same information but in a more compact way because

common subexpressions are identified. A syntax tree and dag for the assignment statement a : =

b * - c + b * - c are as follows:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 assign assign

 a + a +

 * * *

b uminus b uminus b uminus

 c c c

 (a) Syntax tree (b) Dag

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of

the tree in which a node appears immediately after its children. The postfix notation for the

syntax tree given above is

a b c uminus * b c uminus * + assign

Syntax-directed definition for construction of Syntax Tree:

Syntax trees for assignment statements are produced by the syntax-directed definition.

Non-terminal S generates an assignment statement. The two binary operators + and * are

examples of the full operator set in a typical language. Operator associativities and precedences

are the usual ones, even though they have not been put into the grammar. This definition

constructs the tree from the input a : = b * - c + b* - c.

PRODUCTION SEMANTIC RULE

S  id : = E S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr)

E  E1 +E2 E.nptr : = mknode(‘+’, E1.nptr, E2.nptr)

E  E1 * E2 E.nptr : = mknode(‘*’, E1.nptr, E2.nptr)

E  - E1 E.nptr : = mknode(‘uminus’, E1.nptr)

E  (E1) E.nptr : = E1.nptr

E  id E.nptr : = mkleaf(id, id.place)

Syntax-directed definition to produce syntax trees for assignment statements

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

The token id has an attribute place that points to the symbol-table entry for the identifier.

A symbol-table entry can be found from an attribute id.name, representing the lexeme

associated with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of

characters, then attribute name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows. In (a) each node is represented as a

record with a field for its operator and additional fields for pointers to its children. In (b), nodes

are allocated from an array of records and the index or position of the node serves as the pointer

to the node. All the nodes in the syntax tree can be visited by following pointers, starting from

the root at position 10.

Two representations of the syntax tree

0

 a id b

 assign

1

id

c

id

a

 2

 uminus2

 1

 3

 *

 0

2

 +

 4

 id

 b

 5

 id

 c

*

 *

 6

 uminus

 5

id

 b

 id

 b

 7 * 4 6

 8 +

 3 7

uminus

 uminus

 9 id

 a

id c id c

 10

 assign 9

8

 (a) (b)

THREE-ADDRESS CODE:

Three-address code is a sequence of statements of the general form

x : = y op z

where x, y and z are names, constants, or compiler-generated temporaries; op stands for any

operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-

valued data. Thus a source language expression like x+ y*z might be translated into asequence

t1 : = y * z

 t2 : = x + t1

where t1 and t2 are compiler-generated temporary names.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Advantages of three-address code:

 The unraveling of complicated arithmetic expressions and of nested flow-of-control

statements makes three-address code desirable for target code generation and

optimization. 


 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged – unlike postfix notation. 

Three-address code is a linearized representation of a syntax tree or a dag in which

explicit names correspond to the interior nodes of the graph. The syntax tree and dag are

represented by the three-address code sequences. Variable names can appear directly in three-

address statements.

Three-address code corresponding to the syntax tree and dag given above

t1 : = - c t1 : = -c

t2 : = b * t1 t2 : = b * t1

t3 : = - c t5 : = t2 + t2

t4 : = b * t3 a : = t5

t5 : = t2 + t4

a : = t5

(a) Code for the syntax tree (b) Code for the dag

The reason for the term “three-address code” is that each statement usually contains three

addresses, two for the operands and one for the result.

Types of Three -Address Statements:

The common three-address statements are:

1. Assignment statements of the form x : = y op z, where op is a binary arithmetic or logical

operation.

2. Assignment instructions of the form x : = op y, where op is a unary operation. Essential unary

operations include unary minus, logical negation, shift operators, and conversion operators

that, for example, convert a fixed-point number to a floating-point number.

3. Copy statements of the form x : = y where the value of y is assigned to x.

4. The unconditional jump goto L. The three-address statement with label L is the next to be

executed.

5. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (

<, =, >=, etc.) to x and y, and executes the statement with label L next if x stands in relation

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

relop to y. If not, the three-address statement following if x relop y goto L is executed next,

as in the usual sequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned value

is optional. For example,

param x1

param x2

. . .
param xn

call p,n

generated as part of a call of the procedure p(x1, x2, …. ,xn).

7. Indexed assignments of the form x : = y[i] and x[i] : = y.

8. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.

Syntax-Directed Translation into Three-Address Code:

When three-address code is generated, temporary names are made up for the interior

nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary

t, followed by the assignment id.place : = t.

Given input a : = b * - c + b * - c, the three-address code is as shown above.

The synthesized attribute S.code represents the three-address code for the assignment S.

The nonterminal E has two attributes :

1. E.place, the name that will hold the value of E , and
2. E.code, the sequence of three-address statements evaluating E.

Syntax -directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES

S  id : = E S.code : = E.code || gen(id.place ‘:=’ E.place)

E  E1 + E2 E.place := newtemp;

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place)

E  E1 * E2 E.place := newtemp;

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place)

E  - E1 E.place := newtemp;

 E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place)

E  (E1) E.place : = E1.place;

 E.code : = E1.code

E  id E.place : = id.place;

 E.code : = ‘ ‘

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 The function newtemp returns a sequence of distinct names t1,t2,….. in response to

successive calls. 


 Notation gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z.

Expressions appearing instead of variables like x, y and z are evaluated when passed to

gen, and quoted operators or operand, like ‘+’ are taken literally. 


 Flow-of–control statements can be added to the language of assignments. The code for S

whileEdoS1is generated using new attributesS.beginandS.afterto mark

the firststatement in the code for E and the statement following the code for S, respectively. 

 The function newlabel returns a new label every time it is called. 


 We assume that a non-zero expression represents true; that is when the value of E

becomes zero, control leaves the while statement. 

Write three address code for the below expression.

 a=b+c*d-e/f

 t1=c*d

 t2=e/f

 t3=b+t1

 t4=t3-t2

 a=t4

Implementation of Three-Address Statements:

A three-address statement is an abstract form of intermediate code. In a compiler,

these statements can be implemented as records with fields for the operator and the operands.

Three such representations are:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 Quadruples 


 Triples 


 Indirect triples 

Quadruples:

 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result. 



 The op field contains an internal code for the operator. The three-address statement x : =

y op z is represented by placing y in arg1, z in arg2 and x in result. 


 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table

entries for the names represented by these fields. If so, temporary names must be entered

into the symbol table as they are created. 

Triples:

 To avoid entering temporary names into the symbol table, we might refer to a temporary

value by the position of the statement that computes it. 


 If we do so, three-address statements can be represented by records with only three

fields: op, arg1 and arg2. 


 The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table

or pointers into the triple structure (for temporary values). 


 Since three fields are used, this intermediate code format is known as triples. 

 op arg1 arg2 result

(0) uminus c t1

(1) * b t1 t2

(2) uminus c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) : = t3 a

(a) Quadruples

 op arg1 arg2

 (0) uminus c

(1) * b (0)

(2) uminus c

(3) * b (2)

(4) + (1) (3)

(5) assign a (4)

(b) Triples

Quadruple and triple representation of three-address statements given above

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below

while x : = y[i] is naturally represented as two operations.

 op arg1 arg2

(0) [] = x i

(1) assign (0) y

(a) x[i] : = y

 op arg1 arg2

(0) = [] y i

(1) assign x (0)

(b) x : = y[i]

Indirect Triples:

 Another implementation of three-address code is that of listing pointers to triples,

rather than listing the triples themselves. This implementation is called indirect triples. 


 For example, let us use an array statement to list pointers to triples in the desired

order. Then the triples shown above might be represented as follows: 

 statement op arg1 arg2

(0) (14) (14) uminus c

(1) (15) (15) * b (14)

(2) (16) (16) uminus c

(3) (17) (17) * b (16)

(4) (18) (18) + (15) (17)

(5) (19) (19) assign a (18)

Indirect triples representation of three-address statements

DECLARATIONS

As the sequence of declarations in a procedure or block is examined, we can lay out

storage for names local to the procedure. For each local name, we create a symbol-table entry

with information like the type and the relative address of the storage for the name. The relative

address consists of an offset from the base of the static data area or the field for local data in an

activation record.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Declarations in a Procedure:
The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a

single procedure to be processed as a group. In this case, a global variable, say offset, can

keep track of the next available relative address.

In the translation scheme shown below:

 Nonterminal P generates a sequence of declarations of the form id : T. 



 Before the first declaration is considered, offset is set to 0. As each new name is seen ,

that name is entered in the symbol table with offset equal to the current value of offset,

and offset is incremented by the width of the data object denoted by that name. 


 The procedure enter(name, type, offset) creates a symbol-table entry for name, gives its

type type and relative address offset in its data area. 


 Attribute type represents a type expression constructed from the basic types integer and

real by applying the type constructors pointer and array. If type expressions are

represented by graphs, then attribute type might be a pointer to the node representing a

type expression. 


 The width of an array is obtained by multiplying the width of each element by the

number of elements in the array. The width of each pointer is assumed to be 4. 

 Computing the types and relative addresses of declared names

P  D { offset : = 0 }

D  D ; D

D  id : T { enter(id.name, T.type, offset);
offset : = offset + T.width }

T  integer { T.type : = integer;
T.width : = 4 }

T  real { T.type : = real;
T.width : = 8 }

T  array [num] of T1 { T.type : = array(num.val, T1.type);
T.width : = num.val X T1.width }

T  ↑ T1 { T.type : = pointer (T1.type);

T.width : = 4 }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Keeping Track of Scope Information:

When a nested procedure is seen, processing of declarations in the enclosing procedure is

temporarily suspended. This approach will be illustrated by adding semantic rules to the

following language:

P  D

D  D ; D | id : T | proc id ; D ; S

One possible implementation of a symbol table is a linked list of entries for names.

A new symbol table is created when a procedure declaration D  proc id D1;S is seen,

and entries for the declarations in D1 are created in the new table. The new table points back to

the symbol table of the enclosing procedure; the name represented by id itself is local to the

enclosing procedure. The only change from the treatment of variable declarations is that the

procedure enter is told which symbol table to make an entry in.

For example, consider the symbol tables for procedures readarray, exchange, and

quicksort pointing back to that for the containing procedure sort, consisting of the entire

program. Since partition is declared within quicksort, its table points to that of quicksort.

 Symbol tables for nested procedures

 sort

 nil header

 a

 x

 readarray to readarray

 exchange to exchange

 quicksort

 readarray exchange quicksort

 header

header

header

 i k

 v

 partition

 partition

 header

 i

 j

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

The semantic rules are defined in terms of the following operations:

1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The

argument previous points to a previously created symbol table, presumably that for the

enclosing procedure.

2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed

to by table. Again, enter places type type and relative address offset in fields within the entry.

3. addwidth(table, width) records the cumulative width of all the entries in table in the header

associated with this symbol table.

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table

pointed to by table. The argument newtable points to the symbol table for this procedure

name.

Syntax directed translation scheme for nested procedures

P  M D { addwidth (top(tblptr) , top (offset));

 pop (tblptr); pop (offset) }

M  ɛ { t : = mktable (nil);

 push (t,tblptr); push (0,offset) }

D  D1 ; D2

D  proc id ; N D1 ; S { t : = top (tblptr);

 addwidth (t, top (offset));
 pop (tblptr); pop (offset);
 enterproc (top (tblptr), id.name, t) }

D  id : T { enter (top (tblptr), id.name, T.type, top (offset));

top (offset) := top (offset) + T.width }

N  ɛ { t := mktable (top (tblptr));

push (t, tblptr); push (0,offset) }

 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and

partition when the declarations in partition are considered. 


 The top element of stack offset is the next available relative address for a local of

the current procedure. 


 All semantic actions in the subtrees for B and C in 

A  BC {actionA}

are done before actionA at the end of the production occurs. Hence, the action associated

with the marker M is the first to be done.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 The action for nonterminal M initializes stack tblptr with a symbol table for the

outermost scope, created by operation mktable(nil). The action also pushes relative

address 0 onto stack offset. 


 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new

symbol table. The argument top(tblptr) gives the enclosing scope for the new table. 


 For each variable declaration id: T, an entry is created for id in the current symbol table.

The top of stack offset is incremented by T.width. 


 When the action on the right side of D  proc id; ND1; S occurs, the width of all

declarations generated by D1 is on the top of stack offset; it is recorded using addwidth.

Stacks tblptr and offset are then popped. 


At this point, the name of the enclosed procedure is entered into the symbol table of

its enclosing procedure. 

BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes. They are used to compute logical

values, but more often they are used as conditional expressions in statements that alter the flow

of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators (and, or, and not) applied

to elements that are boolean variables or relational expressions. Relational expressions are of the

form E1 relop E2, where E1 and E2 are arithmetic expressions.

Here we consider boolean expressions generated by the following grammar :

E  E or E | E and E | not E | (E) | id relop id | true | false

Methods of Translating Boolean Expressions:

There are two principal methods of representing the value of a boolean expression. They are :

 To encode true and false numerically and to evaluate a boolean expression analogously

to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false. 


 To implement boolean expressions by flow of control, that is, representing the value of a

boolean expression by a position reached in a program. This method is particularly

convenient in implementing the boolean expressions in flow-of-control statements, such

as the if-then and while-do statements. 

Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from

left to right, in a manner similar to arithmetic expressions.

For example :

The translation for

a or b and not c is the three-address sequence

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

t1 : = not c t2

: = b and t1 t3

: = a or t2

A relational expression such as a < b is equivalent to the conditional statement

if a < b then 1 else 0

which can be translated into the three-address code sequence (again, we arbitrarily

start statement numbers at 100) :

100 : if a < b goto 103
101 : t : = 0
102 : goto 104
103 : t : = 1
104 :

 Translation scheme using a numerical representation for booleans

E  E1 or E2 { E.place : = newtemp;

E  E1 and E2

emit(E.place ‘: =’ E1.place ‘or’E2.place)}

{ E.place : = newtemp;

E  not E1

emit(E.place ‘: =’ E1.place ‘and’E2.place)}

{ E.place : = newtemp;

 emit(E.place ‘: =’ ‘not’ E 1.place)}

E  (E1) { E.place : = E1.place }

E  id1 relop id2 { E.place : = newtemp;

 emit(‘if’ id1.place relop.op id2.place ‘goto’ nextstat + 3);

 emit(E.place ‘: =’ ‘0’);

 emit(‘goto’ nextstat +2);

 emit(E.place ‘: =’ ‘1’) }

E  true { E.place : = newtemp;

E false

 emit(E.place ‘: =’ ‘1’) }

 { E.place : = newtemp;

 emit(E.place ‘: =’ ‘0’) }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Short-Circuit Code:

We can also translate a boolean expression into three-address code without generating code

for any of the boolean operators and without having the code necessarily evaluate the entire

expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is

possible to evaluate boolean expressions without generating code for the boolean operators and, or,

and not if we represent the value of an expression by a position in the code sequence.

Translation of a < b or c < d and e < f

100 : if a < b goto 103 107 : t2 : = 1

101 : t1 : = 0 108 : if e < f goto 111

102 : goto 104 109 : t3 : = 0

103 : t1 : = 1 110 : goto 112

104 : if c < d goto 107 111 : t3 : = 1

105 : t2 : = 0 112 : t4 : = t2 and t3

106 : goto 108 113 : t5 : = t1 or t4

Control-Flow Translation of Boolean Expressions:

 With the help of control flow mechanism, the Boolean operator and conditional statements in

which Boolean expression are part of it are translated into three address code as follows.

 Syntax-directed definition to produce three-address code for booleans

 PRODUCTION SEMANTIC RULES

E  E1 or E2 E1.true : = E.true;

 E1.false : = newlabel;

 E2.true : = E.true;

 E2.false : = E.false;

 E.code : = E1.code || gen(E1.false ‘:’) || E2.code

E  E1 and E2 E1.true : = newlabel;

 E1.false : = E.false;

 E2.true : = E.true;

 E2.false : = E.false;

 E.code : = E1.code || gen(E1.true ‘:’) || E2.code

E  not E1 E1.true : = E.false;

 E1.false : = E.true;

 E.code : = E1.code

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

E1.true : = E.true;

E1.false : = E.false;

 E  (E1)

 E.code : = E1.code

E  id1 relop id2 E.code : = gen(‘if’ id1.place relop.op id2.place

 ‘goto’ E.true) || gen(‘goto’ E.false)

E  true E.code : = gen(‘goto’ E.true)

E  false E.code : = gen(‘goto’ E.false)

Flow-of-Control Statements

We now consider the translation of boolean expressions into three-address code in the

context of if-then, if-then-else, and while-do statements such as those generated by the following

grammar:

S  if E then S1
| if E then S1 else S2

| while E do S1

In each of these productions, E is the Boolean expression to be translated. In the translation, we

assume that a three-address statement can be symbolically labeled, and that the function

newlabel returns a new symbolic label each time it is called.

 E.true is the label to which control flows if E is true, and E.false is the label to which

control flows if E is false. 


 The semantic rules for translating a flow-of-control statement S allow control to flow

from the translation S.code to the three-address instruction immediately following

S.code. 


 S.next is a label that is attached to the first three-address instruction to be executed after

the code for S. 

 Code for if-then , if-then-else, and while-do statements

 E.code to E.true E.true:

E.true : E.false

 S1.code
 E.false:

E.false : . . .

S.next:

(a) if-then
(b) if-then

 -else

 to E.true

 E.code
 to E.false

 S1.code

 goto S.next

 S2.code

. .

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

S.begin: E.code to E.true

 to E.false

E.true: S1.code

goto S.begin

E.false: . . .

(c) while-do

Syntax-directed definition for flow-of-control statements

PRODUCTION

SEMANTIC RULES

S  if E then S1 E.true : = newlabel;

 E.false : = S.next;

 S1.next : = S.next;

 S.code : = E.code || gen(E.true ‘:’) || S1.code

S  if E then S1 else S2 E.true : = newlabel;

 E.false : = newlabel;

 S1.next : = S.next;

 S2.next : = S.next;

 S.code : = E.code || gen(E.true ‘:’) || S1.code ||

 gen(‘goto’ S.next) ||

 gen(E.false ‘:’) || S2.code

S  while E do S1 S.begin : = newlabel;

 E.true : = newlabel;

 E.false : = S.next;

 S1.next : = S.begin;

 S.code : = gen(S.begin ‘:’)|| E.code ||

 gen(E.true ‘:’) || S1.code ||

 gen(‘goto’ S.begin)

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

TYPE CHECKING

A compiler must check that the source program follows both syntactic and semantic

conventions of the source language.
This checking, called static checking, detects and reports programming errors.

Some examples of static checks:

1. Type checks – A compiler should report an error if an operator is applied to an

incompatible operand. Example: If an array variable and function variable are added

together.

2. Flow-of-control checks – Statements that cause flow of control to leave a construct must

have some place to which to transfer the flow of control. Example: An error occurs when an

enclosing statement, such as break, does not exist in switch statement.

 Position of type checker

token

syntax

syntax

intermediate

parser typechecker intermediate

stream code generator

 A type checker verifies that the type of a construct matches that expected by its context.

For example : arithmetic operator mod in Pascal requires integer operands, so a type

checker verifies that the operands of mod have type integer. 


 Type information gathered by a type checker may be needed when code is generated. 

TYPE SYSTEMS

The design of a type checker for a language is based on information about the syntactic

constructs in the language, the notion of types, and the rules for assigning types to

language constructs.

For example : “ if both operands of the arithmetic operators of +,- and * are of type integer,

then the result is of type integer ”

Type Expressions

 The type of a language construct will be denoted by a “type expression.” 


 A type expression is either a basic type or is formed by applying an operator called a

type constructor to other type expressions. 


 The sets of basic types and constructors depend on the language to be checked. 

The following are the definitions of type expressions:

1. Basic types such as boolean, char, integer, real are type expressions.

A special basic type, type_error , will signal an error during type checking; void denoting

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

“the absence of a value” allows statements to be checked.

2. Since type expressions may be named, a type name is a type expression.

3. A type constructor applied to type expressions is a type expression.

Constructors include:
Arrays : If T is a type expression then array (I,T) is a type expression denoting the type

of an array with elements of type T and index set I.

Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is a

type expression.

Records : The difference between a record and a product is that the fields of a record

have names. The record type constructor will be applied to a tuple formed from field

names and field types.

For example:
type row = record

address: integer;
lexeme: array[1..15] of char

end;
var table: array[1...101] of row;

declares the type name row representing the type expression record((address X integer) X

(lexeme X array(1..15,char))) and the variable table to be an array of records of this type.

Pointers : If T is a type expression, then pointer(T) is a type expression denoting the type

“pointer to an object of type T”.
For example, var p: ↑ row declares variable p to have type pointer(row).

Functions : A function in programming languages maps a domain type D to a range type

R. The type of such function is denoted by the type expression D → R

4. Type expressions may contain variables whose values are type expressions.

 Tree representation for char x char → pointer (integer)

 →

x pointer

char char integer

Type systems

 A type system is a collection of rules for assigning type expressions to the various parts of

a program. 


 A type checker implements a type system. It is specified in a syntax-directed manner. 


 Different type systems may be used by different compilers or processors of the same

language. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Static and Dynamic Checking of Types

 Checkingdone by a compiler is said to be static, while checking done when the target

program runs is termed dynamic. 


 Any check can be done dynamically, if the target code carries the type of an element

along with the value of that element. 

Sound type system
A sound type system eliminates the need for dynamic checking for type errors because it

allows us to determine statically that these errors cannot occur when the target program runs.

That is, if a sound type system assigns a type other than type_error to a program part, then type

errors cannot occur when the target code for the program part is run.

Strongly typed language

A language is strongly typed if its compiler can guarantee that the programs it accepts

will execute without type errors.

Error Recovery

 Since type checking has the potential for catching errors in program, it is desirable for

type checker to recover from errors, so it can check the rest of the input. 


 Error handling has to be designed into the type system right from the start; the type

checking rules must be prepared to cope with errors. 

SPECIFICATION OF A SIMPLE TYPE CHECKER

Here, we specify a type checker for a simple language in which the type of each

identifier must be declared before the identifier is used. The type checker is a translation scheme

that synthesizes the type of each expression from the types of its sub expressions. The type

checker can handle arrays, pointers, statements and functions.

A Simple Language

Consider the following grammar:

P → D ; E

D → D ; D | id : T

T → char | integer | array [num] of T | ↑ T

E → literal | num | id | E mod E | E [E] | E ↑

Translation scheme:

P → D ; E

D → D ; D

{ addtype (id.entry , T.type)}

D → id : T

T → char { T.type : = char }

T → integer { T.type : = integer }

T → ↑ T1 { T.type : = pointer(T1.type) }

T → array [num] of T1 { T.type : = array (1… num.val , T1.type) }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

In the above language,
→ There are two basic types : char and integer ;
→ type_error is used to signal errors;
→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression

pointer (integer).

Type checking of expressions

In the following rules, the attribute type forE gives the type expression assigned to the

expression generated by E.

1. E → literal { E.type : = char }

E → num { E.type : = integer }

Here, constants represented by the tokens literal and num have type char and integer.

2. E → id { E.type : = lookup (id.entry) }

lookup (e) is used to fetch the type saved in the symbol table entry pointed to by e.

3. E → E1 mod E2 { E.type : = if E1. type = integer and

E2. type = integer then integer

else type_error }
The expression formed by applying the mod operator to two subexpressions of type integer has

type integer; otherwise, its type is type_error.

4. E → E1 [E2] { E.type : = if E2.type = integer and

 E1.type = array(s,t) then t
 else type_error }

In an array reference E1 [E2] , the index expression E 2 must have type integer. The result

is the element type t obtained from the type array(s,t) of E1.

5. E → E1 ↑ { E.type : = if E1.type = pointer (t) then t

 else type_error }

The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type

t of the object pointed to by the pointer E.

Type checking of statements

Statements do not have values; hence the basic type void can be assigned to them. If an error

is detected within a statement, then type_error is assigned.

Translation scheme for checking the type of statements:

1. Assignment statement:
S → id : = E { S.type : = if id.type = E.type then void else

type_error }

2. Conditional statement:

S → if E then S1 { S.type : = if E.type = boolean then S1.type

else type_error }

3. While statement:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

S → while E do S1 { S.type : = if E.type = boolean then S1.type

else type_error }

4. Sequence of statements:

S → S1 ; S2 { S.type : = if S1.type = void and S2.type = void

then void
else type_error }

Type checking of functions

The rule for checking the type of a function application is :

E → E1 (E2) { E.type : = if E2.type = s and
E1.type = s → t then t

else type_error }

Evaluation of S-Attribute Definitions:

S-attributes, also known as synthesised attributes, are a concept used in compiler design
and parsing theory to attach information to the nodes of a syntax tree or abstract syntax tree
(AST) during parsing. These attributes are computed during a bottom-up parsing process
and are typically used for tasks like type checking, code generation, and semantic analysis.
The evaluation of S-attributes is an essential part of the semantic analysis phase in a
compiler. Here's an evaluation of S-attribute definitions:

Advantages of S-Attributes:

1. **Simplified Semantic Analysis:** S-attributes provide a straightforward way to associate
semantic information with the nodes of the syntax tree. This simplifies the process of
performing semantic checks and transformations.

2. **Ease of Use:** S-attributes are relatively easy to understand and implement. They follow
a predictable flow from the bottom of the tree to the top, allowing for clear and modular
definitions.

3. **Efficiency:** S-attribute evaluation can be performed efficiently during the parsing
process, without the need for a separate pass over the AST. This can save memory and
processing time.

4. **Integration with Parsing:** S-attributes are well-suited for integration with bottom-up
parsing techniques like LR parsing. They complement the parsing process by performing
semantic actions as the parsing algorithm proceeds.

Limitations and Considerations:

1. **Limited Expressiveness:** S-attributes are primarily used for simple tasks like type
checking and basic semantic analysis. They may not be expressive enough for more
complex transformations or optimizations.

2. **Order Dependencies:** The order of S-attribute evaluations matters, as they depend on
attributes computed for child nodes. Care must be taken to ensure that the evaluation order
is well-defined and consistent.

3. **Context Sensitivity:** S-attributes may struggle with context-sensitive analysis, where
semantic decisions depend on a broader context than just the parent and child nodes. In
such cases, additional techniques like symbol tables and context-dependent attributes may
be necessary.

4. **Potential for Code Duplication:** In larger grammars or complex languages, S-attribute
definitions can become verbose, leading to potential code duplication or maintenance
challenges.

5. **Error Handling:** Handling errors during S-attribute evaluation can be complex. Proper
error reporting and recovery mechanisms should be in place to provide meaningful feedback
to the user.

6. **Limited Support for Optimization:** S-attributes are primarily used for semantic analysis
and may not be suitable for advanced compiler optimizations. For optimization, you may
need additional structures or techniques.

In summary, S-attributes are a valuable tool for attaching semantic information to nodes in a
syntax tree during parsing. They simplify many aspects of semantic analysis and integrate
well with bottom-up parsing techniques. However, their expressiveness is limited, and they
may not be suitable for all aspects of compiler design, especially for complex languages or
advanced optimizations. Compiler designers should carefully consider their use in the
context of the specific language and requirements of the compiler being developed.

Design of Predictive Translator:

A predictive translator is a type of compiler or translator that converts source code from one
programming language to another without necessarily preserving the original structure or
semantics. This kind of translator is often used for tasks like code migration, where you want
to move code from an old language to a new one. Here's a step-by-step guide to designing a
predictive translator:

Step 1: Define the Source and Target Languages

Start by defining the source and target languages for your translator. Understand the syntax,
semantics, and features of both languages. It's essential to have a clear understanding of
what constructs in the source language need to be mapped to in the target language.

Step 2: Lexical Analysis (Scanning)

Implement a lexer (lexical analyzer) for the source language. The lexer breaks down the
source code into tokens. This is a necessary step to understand the structure of the source
code.

Step 3: Syntactic Analysis (Parsing)

Create a parser for the source language. The parser should generate a parse tree or
abstract syntax tree (AST) that represents the structure of the source code. If the source
language has a well-defined grammar, use a parser generator like ANTLR or yacc to create
the parser.

Step 4: Define Translation Rules

Define a set of translation rules or patterns that specify how each construct in the source
language should be translated to the target language. This step is crucial as it forms the core
of your translator.

For example, if you're translating code from a procedural language to an object-oriented
language, you'll need rules to map procedures to classes and functions, variables to
attributes, and so on.

Step 5: Tree Traversal and Translation

Write a tree traversal algorithm that traverses the parse tree or AST generated by the parser.
During traversal, apply the translation rules defined in the previous step to generate
equivalent code in the target language.

Here's a simplified pseudocode for tree traversal:

function translate(node):
if node is a procedure_declaration:

generate_class(node)
elif node is a variable_declaration:

generate_attribute(node)
elif node is a function_declaration:

generate_method(node)
Handle other constructs and recursively traverse the tree.
for child in node.children:

translate(child)

Step 6: Code Generation

Implement the code generation phase. This phase involves taking the translated AST and
emitting code in the target language. Ensure that the generated code adheres to the target
language's syntax and conventions.

Step 7: Error Handling

Include error-handling mechanisms to report and handle translation errors. Errors can occur
when the source code cannot be accurately translated into the target language due to
syntactic or semantic differences.

Step 8: Testing and Validation

Test your predictive translator with a variety of source code examples to ensure it produces
correct and valid code in the target language. Validation against a suite of test cases is
crucial for ensuring the accuracy of the translation.

Step 9: Documentation and Usage

Provide documentation on how to use the predictive translator. Explain any limitations and
assumptions made during the translation process.

Step 10: Optimization (Optional)

Consider adding optimization steps to improve the quality of the translated code. These may
include simplification of expressions, removal of dead code, or other optimizations that make
the generated code more efficient.

Remember that designing a predictive translator can be a complex task, particularly when
translating between languages with significant differences in syntax and semantics.
Thoroughly understanding both the source and target languages and carefully defining
translation rules are essential for success.

Specification of Simple Type Checker:

A simple type checker is a component of a compiler or interpreter that verifies the
correctness of types in a program according to the language's type system. It helps catch
type-related errors, ensuring that operations are performed on compatible data types and
that variables are used in a manner consistent with their declarations. Here's a specification
for a simple type checker:

1. Input: The input to the type checker is typically the abstract syntax tree (AST) or
another representation of the source code generated by the parser.

2. Output: The type checker may output error messages or warnings when it encounters
type-related issues in the code. It may also annotate the AST or generate additional data
structures to store type information.

3. Type System: Define the type system of the programming language you are checking.
This includes specifying the basic data types (e.g., int, float, string, boolean) and the rules for
type compatibility, type promotion, and type coercion.

4. Type Annotations: If your AST nodes do not already contain type information,
introduce type annotations for variables, expressions, function parameters, and other
relevant program elements. These annotations help the type checker keep track of types
during analysis.

5. Symbol Table: Maintain a symbol table to store information about declared variables,
their types, and their scopes. The symbol table is essential for looking up variable types
during type checking.

6. Type Checking Rules:

a. **Variable Declarations:** Check that variable declarations are consistent with the types
assigned to them. For example, ensure that the declared type of a variable matches the type
of the expression used to initialize it, or vice versa.

b. **Type Compatibility:** Enforce type compatibility rules for operations, assignments, and
function calls. For instance, addition should be allowed for numeric types, but not for a string
and an integer.

c. **Type Coercion:** Implement rules for type coercion or implicit type conversion when
the language allows it. For instance, if a language permits converting an integer to a float
automatically, the type checker should handle this.

d. **Function Calls:** Verify that function calls match the types and number of arguments
expected by the function's declaration.

e. **Expression Evaluation:** Ensure that expressions are well-typed. For binary operations,
check that the types of operands are compatible.

f. **Type Inference (Optional):** Implement type inference if your language supports it.
Type inference allows the type checker to deduce types for variables or expressions without
explicit type annotations.

7. Error Handling: When a type error is encountered, report an error message that
includes the location (line and column number) of the error and a description of the issue.
Optionally, you can include suggestions for fixing the error.

8. Recursion and Scoping: Implement recursive type checking to handle nested scopes
and function calls. Ensure that variable scope and visibility rules are enforced.

9. Testing: Test the type checker with a variety of input programs, including both valid
and invalid code. Create test cases that cover different aspects of the type system, such as
type coercion, type inference, and complex expressions.

10. Integration: Integrate the type checker into the compiler or interpreter pipeline,
typically after parsing and before code generation or execution.

11. Documentation: Provide documentation for users and developers on how to use and
extend the type checker. Include details on the supported type system and any
language-specific type checking rules.

Building a type checker is a fundamental component of a compiler or interpreter and
requires a deep understanding of the language's type system and syntax. It plays a crucial
role in ensuring program correctness and robustness.

Back Patching:

Backpatching is a technique used in compiler design and code generation to handle jumps
or branches in a program. It's particularly useful when generating code for control flow
constructs like if statements, loops, and goto statements. The purpose of backpatching is to
fill in the target addresses or labels of these control flow instructions after their targets are
known, typically during later stages of code generation. Here's how backpatching works:

Step 1: Identify Placeholder Locations

During the initial code generation phase, when the compiler encounters control flow
instructions with unknown target addresses or labels, it doesn't generate the final address or
label at that point. Instead, it leaves a placeholder or a marker that signifies an unresolved
jump target.

For example, in a hypothetical assembly-like language, when generating code for an `if`
statement:

if condition then
jump_to_????

endif

The "jump_to_????" part represents a placeholder for the target address. The compiler
doesn't yet know where the "endif" label will be placed in the generated code.

Step 2: Record Placeholder Locations

While generating code, the compiler keeps track of the locations of these placeholders and
the control flow instructions that reference them. Typically, it maintains a list or data
structure that records the locations where placeholders were inserted and associates them
with the corresponding control flow instructions.

Step 3: Resolve Target Addresses

Once the compiler has generated the entire code and knows the final locations of labels or
targets (e.g., after processing all statements and control structures), it goes back to the
recorded placeholder locations.

At this point, the compiler can fill in the actual target addresses or labels at the placeholder
locations. This process is called backpatching. The compiler replaces the placeholder with
the correct target information.

Step 4: Generated Code with Resolved Targets

After backpatching, the generated code now looks like this:

if condition then
jump_to_1234 ; "1234" is the actual address of "endif"

endif

The target address has been resolved, and the generated code is now complete and can be
executed correctly.

Use Cases for Backpatching:

1. **If Statements:** Backpatching is commonly used when generating code for if-else
statements. It's used to update the jump targets for both the "if" and "else" branches after the
locations of the "endif" labels are known.

2. **Loops:** For loop constructs like while and for loops, backpatching is used to update
the jump targets for looping conditions and exit points.

3. **Goto Statements:** In languages that support goto statements, backpatching helps
associate labels with the actual locations in the generated code.

4. **Switch Statements:** Backpatching can also be applied in switch statements, where it's
used to resolve the jump targets for different case labels.

Backpatching is an essential technique in code generation, ensuring that control flow
instructions are correctly directed to their targets in the final code. It simplifies the code
generation process and allows for efficient handling of complex control structures.

1

UNIT IV RUN-TIME ENVIRONMENT AND CODE GENERATION 8

Storage Organization, Stack Allocation Space, Access to Non-local Data on the Stack, Heap

Management - Issues in Code Generation - Design of a simple Code Generator.

STORAGE ORGANISATION

 The executing target program runs in its own logical address space in which each program

value has a location. 
 The management and organization of this logical address space is shared between the complier,

operating system and target machine. The operating system maps the logical address into

physical addresses, which are usually spread throughout memory. 

Typical subdivision of run-time memory:

Code

Static Data

Stack

free memory

Heap

 Run-time storage comes in blocks, where a byte is the smallest unit of addressable memory.

Four bytes form a machine word. Multibyte objects are stored in consecutive bytes and given the

address of first byte. 

 The storage layout for data objects is strongly influenced by the addressing constraints of the target

machine. 
 A character array of length 10 needs only enough bytes to hold 10 characters, a compiler may

allocate 12 bytes to get alignment, leaving 2 bytes unused. 
 This unused space due to alignment considerations is referred to as padding. 
 The size of some program objects may be known at run time and may be placed in an area

called static. 
 The dynamic areas used to maximize the utilization of space at run time are stack and heap. 

Activation records:

 Procedure calls and returns are usually managed by a run time stack called the control stack. 
 Each live activation has an activation record on the control stack, with the root of the activation

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

2

tree at the bottom, the latter activation has its record at the top of the stack. 


 The contents of the activation record vary with the language being implemented. The diagram

below shows the contents of activation record. 

Temporaries

Local Data

Machine Status

Control Link

Access Link

Actual Parameters

Return Value

 Temporary values such as those arising from the evaluation of expressions. 
 Local data belonging to the procedure whose activation record this is. 
 A saved machine status, with information about the state of the machine just before the call to

procedures. 
 An access link may be needed to locate data needed by the called procedure but found

elsewhere. 
 A control link pointing to the activation record of the caller. 

 Space for the return value of the called functions, if any. Again, not all called procedures return a

value, and if one does, we may prefer to place that value in a register for efficiency. 

 The actual parameters used by the calling procedure. These are not placed in activation record but

rather in registers, when possible, for greater efficiency. 

STORAGE ALLOCATION STRATEGIES
The different storage allocation strategies are :
1. Static allocation – lays out storage for all data objects at compile time
2. Stack allocation – manages the run-time storage as a stack.
3. Heap allocation – allocates and deallocates storage as needed at run time from a data area known as

heap.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

3

Static allocation

 In static allocation, names are bound to storage as the program is compiled, so there is no need for

a run-time support package. 
 Since the bindings do not change at run-time, everytime a procedure is activated, its names

are bound to the same storage locations. 

 Therefore values of local names are retained across activations of a procedure. That is, when

control returns to a procedure the values of the locals are the same as they were when control left

the last time. 

 From the type of a name, the compiler decides the amount of storage for the name and decides

where the activation records go. At compile time, we can fill in the addresses at which the target

code can find the data it operates on. 

Stack allocation

 All compilers for languages that use procedures, functions or methods as units of user-defined

actions manage at least part of their run-time memory as a stack. 
 Each time a procedure is called , space for its local variables is pushed onto a stack, and when the

procedure terminates, that space is popped off the stack. 

Calling sequences:

 Procedures called are implemented in what is called as calling sequence, which consists of code

that allocates an activation record on the stack and enters information into its fields. 

 A return sequence is similar to code to restore the state of machine so the calling procedure

can continue its execution after the call. 
 The code in calling sequence is often divided between the calling procedure (caller) and the

procedure it calls (callee). 
 When designing calling sequences and the layout of activation records, the following principles

are helpful: 
 Values communicated between caller and callee are generally placed at the beginning of

the callee’s activation record, so they are as close as possible to the caller’s activation

record. 

 Fixed length items are generally placed in the middle. Such items typically include the control

link, the access link, and the machine status fields. 


 Items whose size may not be known early enough are placed at the end of the activation record.

The most common example is dynamically sized array, where the value of one of the callee’s

parameters determines the length of the array. 

 We must locate the top-of-stack pointer judiciously. A common approach is to have it point to the

end of fixed-length fields in the activation record. Fixed-length data can then be accessed by fixed

offsets, known to the intermediate-code generator, relative to the top-of-stack pointer. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

4

Parameters and returned values

caller’s

control link

activation

links and saved status

record

 temporaries and local data

 caller’s

 responsibility

 Parameters and returned values

callee’s

activation control link

record

 links and saved status

 top_sp

 callee’s
 temporaries and local data

 responsibility

 Division of tasks between caller and callee

 The calling sequence and its division between caller and callee are as follows. 



 The caller evaluates the actual parameters. 


 The caller stores a return address and the old value of top_sp into the callee’s activation

record. The caller then increments the top_sp to the respective positions. 


 The callee saves the register values and other status information. 


 The callee initializes its local data and begins execution. 


 A suitable, corresponding return sequence is: 



 The callee places the return value next to the parameters. 


 Using the information in the machine-status field, the callee restores top_sp and other

registers, and then branches to the return address that the caller placed in the status field. 


 Although top_sp has been decremented, the caller knows where the return value is, relative to the

current value of top_sp; the caller therefore may use that value. 

Variable length data on stack:

 The run-time memory management system must deal frequently with the allocation of space for

objects, the sizes of which are not known at the compile time, but which are local to a procedure

and thus may be allocated on the stack. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

5

 The reason to prefer placing objects on the stack is that we avoid the expense of garbage collecting

their space. 
 The same scheme works for objects of any type if they are local to the procedure called and have a

size that depends on the parameters of the call. 

 .

activation

 control link

record for p

 pointer to A

 pointer to B

 pointer to C

arrays of p
 array A

 array B

 array C

 top_sp

activation record for control link

procedure q called by p

 top

arrays of q

Access to dynamically allocated arrays

 Procedure p has three local arrays, whose sizes cannot be determined at compile time. The

storage for these arrays is not part of the activation record for p. 

 Access to the data is through two pointers, top and top-sp. Here the top marks the actual top of

stack; it points the position at which the next activation record will begin. 
 The second top-sp is used to find local, fixed-length fields of the top activation record. 
 The code to reposition top and top-sp can be generated at compile time, in terms of sizes that will

become known at run time. 

Heap allocation
Stack allocation strategy cannot be used if either of the following is possible :
1. The values of local names must be retained when an activation ends.
2. A called activation outlives the caller.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

6

 Heap allocation parcels out pieces of contiguous storage, as needed for activation records or

other objects. 
 Pieces may be deallocated in any order, so over the time the heap will consist of alternate

areas that are free and in use. 

Position in the Activation records in the heap Remarks

activation tree

 s Retained activation

 s record for r

r q (1 , 9) control link

 r

 control link

 q(1,9)

 control link

 The record for an activation of procedure r is retained when the activation ends. 


 Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically. 


 If the retained activation record for r is deallocated, there will be free space in the heap

between the activation records for s and q. 

ISSUES IN THE DESIGN OF A CODE GENERATOR

The following issues arise during the code generation phase :

1. Input to code generator

2. Target program

3. Memory management

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

7

4. Instruction selection

5. Register allocation

6. Evaluation order

1. Input to code generator:
 The input to the code generation consists of the intermediate representation of the source program

produced by front end , together with information in the symbol table to determine run-time

addresses of the data objects denoted by the names in the intermediate representation. 


 Intermediate representation can be : 

a. Linear representation such as postfix notation

b. Three address representation such as quadruples

c. Virtual machine representation such as stack machine code

d. Graphical representations such as syntax trees and dags.

 Prior to code generation, the front end must be scanned, parsed and translated into intermediate

representation along with necessary type checking. Therefore, input to code generation is assumed

to be error-free. 

2. Target program:

 The output of the code generator is the target program. The output may be : 
a. Absolute machine language

- It can be placed in a fixed memory location and can be executed immediately.

b. Relocatable machine language
- It allows subprograms to be compiled separately.

c. Assembly language

- Code generation is made easier.

3. Memory management:

 Names in the source program are mapped to addresses of data objects in run-time memory by

the front end and code generator. 


 It makes use of symbol table, that is, a name in a three-address statement refers to a symbol-

table entry for the name. 


 Labels in three-address statements have to be converted to addresses of instructions. For
example, 

j :gotoigenerates jump instruction as follows :

 ifi<j, a backward jump instruction with target address equal to location of code for

quadruple i is generated. 

 ifi>j, the jump is forward. We must store on a list for quadruplei the location of the

first machine instruction generated for quadruplej. When iis processed, the machine

locations for all instructions that forward jumps to i are filled. 


4. Instruction selection:
 The instructions of target machine should be complete and uniform. 



http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

8

 Instruction speeds and machine idioms are important factors when efficiency of target program

is considered. 


 The quality of the generated code is determined by its speed and size. 



 The former statement can be translated into the latter statement as shown below: 

5. Register allocation

 Instructions involving register operands are shorter and faster than those involving operands in

memory. 


 The use of registers is subdivided into two subproblems : 

Register allocation – the set of variables that will reside in registers at a point inthe program is selected.

 Register assignment – the specific register that a variable will reside in ispicked. 


 Certain machine requires even-odd register pairs for some operands and results. For
example , consider the division instruction of the form : 

D x, y

where, x – dividend even register in even/odd register pair y –

divisor
even register holds the remainder odd

register holds the quotient

6. Evaluation order

 The order in which the computations are performed can affect the efficiency of the target code.

Some computation orders require fewer registers to hold intermediate results than others. 

A SIMPLE CODE GENERATOR

 A code generator generates target code for a sequence of three- address statements and effectively

uses registers to store operands of the statements. 


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

9

Register and Address Descriptors:

 A register descriptor is used to keep track of what is currently in each registers. The register

descriptors show that initially all the registers are empty. 
 An address descriptor stores the location where the current value of the name can be found at run

time.

A code-generation algorithm:

The algorithm takes as input a sequence of three -address statements constituting a basic block. For each

three-address statement of the form x : = y op z, perform the following actions:

1. Invoke a function getreg to determine the location L where the result of the computation y op z should

be stored.

2. Consult the address descriptor for y to determine y’, the current location of y. Prefer the register for

y’ if the value of y is currently both in memory and a register. If the value of y is not already in L,

generate the instruction MOV y’ , L to place a copy of y in L.

3. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to a

memory location if z is in both. Update the address descriptor of x to indicate that x is in location

L. If x is in L, update its descriptor and remove x from all other descriptors.

4. If the current values of y or z have no next uses, are not live on exit from the block, and are in

registers, alter the register descriptor to indicate that, after execution of x : = y op z , those registers

will no longer contain y or z.

The algorithmic sequence of getreg function can be,

1. if x value is in register that register is returned.

2. If (1) fails, new register is returned.

3. If (2) fails, and the operation needs a special register, that register value is temporarily moved to

the memory and the register is returned.

4. If (3) fails, finally memory location is returned.

http://notes.pmr-insignia.org/

10

Generating Code for Assignment Statements:

 The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence: 

t : = a – b

u : = a – c

v : = t + u

d : = v + u

with d live at the end.

Code sequence for the example is:

Statements Code Generated Register descriptor Address descriptor

 Register empty

t : = a - b MOV a, R0 R0 contains t t in R0

 SUB b, R0

u : = a - c MOV a , R1 R0 contains t t in R0

 SUB c , R1 R1 contains u u in R1

v : =t + u ADD R1, R0 R0 contains v u in R1

 R1 contains u v in R0

d : = v + u ADD R1, R0 R0 contains d d in R0

MOV R0, d

 d in R0 and memory

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment statements a : = b [i]

and a [i] : = b

Statements Code Generated

a : = b[i] MOV b(Ri), R

a[i] : = b MOV b, a(Ri)

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

11

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments a : = *p and *p : = a

 Statements Code Generated

 a : = *p MOV *Rp, a

 *p : = a MOV a, *Rp

 Generating Code for Conditional Statements

Statement

 Code

 if x < y goto z

 CMP x, y

 CJ<z

 /* jump to z if condition code

 is negative */

 x : = y +z if x <0 goto z MOV y, R0
 ADD z, R0

MOV R0,x

 CJ< z

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

12

Runtime Environments:

A runtime environment, often referred to as a runtime system or runtime library, is a crucial
component of a programming language's execution model. It provides the necessary
infrastructure to run programs written in that language. The runtime environment includes
various components and services that facilitate the execution of code. Here are the key
components and functions of a runtime environment:

1. **Memory Management:**
- The runtime environment manages memory allocation and deallocation for variables,

objects, and data structures.
- It handles memory leaks, freeing up memory that is no longer in use.

2. **Execution Stack:**
- The runtime environment maintains an execution stack, often referred to as the call stack,

which keeps track of function calls and their local variables.
- It handles the allocation and deallocation of stack frames for function calls.

3. **Garbage Collection:**
- In languages with automatic memory management, the runtime environment includes a

garbage collector responsible for identifying and reclaiming memory that is no longer
reachable.

4. **Type System:**
- The runtime environment enforces the type system of the language, ensuring that

operations are performed on compatible data types.
- It may perform type checking and type coercion during runtime.

5. **Exception Handling:**
- The runtime environment provides mechanisms for handling exceptions, including

try-catch blocks or exception tables.
- It ensures that exceptions are caught, and appropriate actions are taken, such as

jumping to an exception handler.

6. **Dynamic Dispatch (Polymorphism):**
- In object-oriented languages, the runtime environment supports dynamic method

dispatch, allowing method calls on objects to be resolved at runtime based on their actual
types.

7. **I/O Operations:**
- The runtime environment provides functions or libraries for input and output operations,

including reading from and writing to files, console, and network.

8. **Concurrency and Multithreading:**
- In languages that support concurrency and multithreading, the runtime environment

manages threads, synchronization, and thread-specific data.

9. **Dynamic Linking and Loading:**
- The runtime environment may handle dynamic linking and loading of libraries or modules

at runtime.
- It resolves external references and links them to the running program.

10. **Environment Variables and Configuration:**
- The runtime environment allows access to environment variables and system

configuration settings, which can be useful for program configuration and customization.

11. **Standard Library:**
- Most runtime environments include a standard library that provides common utility

functions, data structures, and algorithms.
- Programmers can leverage these libraries to perform various tasks without reinventing

the wheel.

12. **Profiling and Debugging Tools:**
- Some runtime environments come with profiling and debugging tools that help

developers identify performance bottlenecks, memory issues, and logical errors.

13. **Security Features:**
- The runtime environment may include security mechanisms to protect against common

vulnerabilities like buffer overflows, unauthorized access, and code injection attacks.

14. **Platform Abstraction:**
- The runtime environment abstracts the underlying hardware and operating system,

providing a consistent interface for program execution across different platforms.

15. **Resource Management:**
- It manages system resources such as file handles, network sockets, and threads,

ensuring they are properly allocated and released.

The specifics of a runtime environment can vary significantly depending on the programming
language and the execution model. High-level languages like Java, Python, and C# have
robust runtime environments that provide many of these features, while lower-level
languages like C and C++ may have more minimal runtime environments with fewer
abstractions. Understanding the runtime environment is crucial for both application
developers and system programmers, as it impacts program behavior, performance, and
resource usage.

Source Language Issues:

Source language issues refer to various considerations, challenges, and design decisions
that arise when developing or working with a programming language. These issues
encompass language design, syntax, semantics, and pragmatics. Here are some common
source language issues:

1. **Syntax Design:**

- Syntax design involves defining the rules for writing valid programs in the language.
- Decisions include the choice of symbols, keywords, punctuation, and the structure of

statements and expressions.
- Striking a balance between readability, expressiveness, and simplicity is critical.

2. **Semantics:**
- Semantics define the meaning of program constructs in a language.
- Designers need to consider how different language features behave, such as variable

scoping, data types, and operations.
- Ensuring consistent and predictable behavior is essential.

3. **Type System:**
- The type system determines how data types are defined, manipulated, and used in the

language.
- Issues include type safety, type compatibility, type inference, and the presence of

primitive and user-defined types.

4. **Control Flow:**
- Designers must decide on the control flow constructs available in the language, including

conditionals (if-else), loops (for, while), and branching (goto or labeled break/continue).
- Consideration of structured programming principles and readability is important.

5. **Concurrency and Parallelism:**
- Languages need to address the challenges of concurrent and parallel programming.
- Issues include support for threads, synchronization mechanisms, and avoiding race

conditions.

6. **Error Handling:**
- The language should provide mechanisms for error handling, such as exceptions, error

codes, or runtime checks.
- Designing a robust error-handling system can greatly improve program reliability.

7. **Memory Management:**
- Memory management issues include manual memory allocation and deallocation,

garbage collection, and ownership models (e.g., reference counting).
- Decisions impact both performance and safety.

8. **Standard Library:**
- Designing a comprehensive standard library with well-documented functions and

modules is essential.
- The library should cover essential tasks like file I/O, networking, data structures, and

algorithms.

9. **Interoperability:**
- Languages often need to interact with other languages or libraries. Designers must

consider how to facilitate inter-language communication.
- Issues include foreign function interfaces (FFIs), calling conventions, and data

marshaling.

10. **Extensibility and Modularity:**
- Languages should support modular programming through mechanisms like modules,

namespaces, and packages.
- Extensibility via libraries or plugins is also important for language ecosystems.

11. **Backward Compatibility:**
- Maintaining backward compatibility is crucial when evolving a language.
- Decisions about how to handle deprecated features and versioning impact the user

base.

12. **Tooling and Development Environment:**
- Designing a language includes considering the availability of development tools, such as

compilers, debuggers, and IDE support.
- A robust development ecosystem can greatly aid programmers.

13. **Documentation and Learning Curve:**
- The language should have clear and accessible documentation for users, including

tutorials, reference manuals, and examples.
- Minimizing the learning curve for new programmers is essential for language adoption.

14. **Performance Optimization:**
- Language designers must consider performance optimization techniques, including

compiler optimizations, runtime profiling, and the ability to write high-performance code.

15. **Community and Ecosystem:**
- Building and nurturing a community around the language is vital for its long-term

success.
- Supporting package managers, code repositories, and forums fosters collaboration and

growth.

16. **Platform and Architecture Support:**
- Designers must decide which platforms and architectures the language will support.
- Cross-platform compatibility is often a desirable feature.

Source language issues vary depending on the goals and target audience of the language.
Language designers need to carefully weigh these considerations to create a language that
is expressive, efficient, and user-friendly. Additionally, language evolution and community
feedback play significant roles in addressing and refining these issues over time.

Dynamic Storage Allocation:

Dynamic storage allocation refers to the process of allocating and managing memory at
runtime, as opposed to static storage allocation, where memory is allocated at compile time.
Dynamic allocation allows programs to work with data structures whose sizes or lifetimes are
not known until the program is running. It's a critical aspect of memory management in

modern programming languages. Here are some key concepts and methods related to
dynamic storage allocation:

1. **Heap Memory:
- Dynamic storage is typically allocated from a region of memory known as the heap.
- The heap is a region of memory separate from the program's stack, and it is used for

dynamic allocation because it can grow and shrink as needed during program execution.

2. **Allocation and Deallocation:
- Allocation refers to the process of reserving a portion of memory from the heap to store

data dynamically.
- Deallocation is the process of releasing memory that is no longer needed to be used by

the program. This helps prevent memory leaks.

3. **Dynamic Memory Allocation Functions:
- Most programming languages provide functions or mechanisms to allocate memory

dynamically, such as `malloc`, `calloc`, `realloc`, and `free` in C and C++.
- Languages like Python, Java, and C# have built-in memory management systems that

automatically handle dynamic memory allocation and deallocation.

4. **Memory Leaks:
- Memory leaks occur when memory is allocated dynamically, but it is not properly

deallocated when it is no longer needed.
- Over time, memory leaks can lead to the exhaustion of available memory, causing a

program or system to become unstable or crash.

5. **Dangling Pointers:
- Dangling pointers are pointers that reference memory locations that have already been

deallocated.
- Accessing a dangling pointer can lead to unpredictable behavior, including crashes or

data corruption.

6. **Fragmentation:
- Fragmentation occurs when free memory is divided into small, non-contiguous blocks,

making it challenging to allocate large contiguous blocks even when sufficient free memory
is available.
- This can lead to inefficient memory utilization.

7. **Garbage Collection:
- Some languages, like Java, JavaScript, and C#, use automatic garbage collection to

manage dynamic memory.
- Garbage collectors automatically identify and reclaim memory that is no longer reachable

or referenced by the program.

8. **Reference Counting:
- Reference counting is a technique where each dynamically allocated object keeps track

of the number of references to it.

- When the reference count reaches zero, meaning there are no more references to the
object, the memory is automatically deallocated.

9. **Memory Pools and Custom Allocators:
- In some scenarios, custom memory allocation strategies, like memory pools or custom

allocators, are employed to optimize memory allocation for specific use cases.

10. **Thread-Safety:
- In multi-threaded programs, dynamic memory allocation and deallocation should be

thread-safe to avoid race conditions and data corruption.
- Thread-safe memory management often requires synchronization mechanisms.

11. **Memory Overhead:
- Dynamic memory allocation may come with memory overhead due to bookkeeping

information that tracks allocated blocks.
- Efficient management of memory overhead is important for minimizing wasted memory.

Dynamic storage allocation is a powerful feature in programming that enables flexible data
structures and efficient memory utilisation. However, it also requires careful attention to
memory management practices to avoid common pitfalls like memory leaks and dangling
pointers. Different programming languages and environments offer various tools and
techniques for managing dynamic memory effectively.

Optimal Code Generation for Expressions:

Optimal code generation for expressions is a critical aspect of compiler design and code
optimization. The goal is to generate machine code or intermediate code that executes
expressions efficiently while minimizing runtime computation and memory usage. Here are
some techniques and strategies for achieving optimal code generation for expressions:

1. Use Efficient Data Structures:
- Choose appropriate data structures to represent expressions during compilation, such as

abstract syntax trees (ASTs) or intermediate representations (IRs).
- These data structures should facilitate easy traversal and manipulation of the expression

tree.

2. Constant Folding:
- Identify constant subexpressions within an expression and compute their values at

compile time.
- Replace the constant subexpressions with their computed values to reduce runtime

computation.

3. Algebraic Simplification:
- Apply algebraic simplification rules to reduce the complexity of expressions.
- For example, simplify `x + 0` to `x`, `x * 1` to `x`, or `x - x` to `0`.

4. Strength Reduction:

- Replace expensive operations with less expensive equivalents.
- For example, replace multiplication with shifts or divisions with multiplications by

reciprocals.

5. Common Subexpression Elimination (CSE):
- Identify and eliminate redundant calculations of the same subexpression within an

expression.
- Replace repeated calculations with a single computation and reuse the result.

6. Register Allocation:
- Allocate registers efficiently for intermediate values used in expressions.
- Minimize the need to store intermediate results in memory by keeping them in registers.

7. Instruction Selection:
- Choose the most efficient machine instructions for performing operations in an

expression.
- Use SIMD (Single Instruction, Multiple Data) instructions where applicable for vectorized

operations.

8. Optimize Conditional Branching:
- Optimize branching conditions in expressions to reduce the number of branches and

improve branch prediction.
- Use techniques like branch folding to simplify conditional expressions.

9. Loop-Invariant Code Motion:
- Identify expressions within loops that do not change during loop iterations (loop-invariant

expressions).
- Move these expressions outside the loop to avoid redundant computations.

10. Inline Function Calls:
- For small, frequently called functions or expressions, consider inlining them to eliminate

the function call overhead.

11. Compiler Optimizations:
- Take advantage of compiler optimizations, such as loop optimization, constant

propagation, and dead code elimination, to improve code quality for expressions.

12. Target-Specific Optimization:
- Consider target-specific optimizations that take advantage of the architecture's features,

such as instruction pipelining or parallel execution units.

13. Profiling and Feedback-Directed Optimization:
- Use profiling data to identify hotspots in the code, especially in frequently executed

expressions.
- Apply optimization techniques selectively to focus on areas of the code where they have

the most impact.

14. Compiler Flags and Options:

- Utilize compiler flags and options to enable specific optimizations or control the
optimization level for expressions.

15. Benchmarking and Testing:
- Benchmark the generated code to measure its performance against expected goals.
- Thoroughly test the optimized code to ensure correctness.

Optimizing code generation for expressions is a balance between code size, execution
speed, and memory usage. It often requires trade-offs and considerations specific to the
target architecture and compiler. Compiler writers use a combination of the above
techniques to generate efficient code for expressions in a way that benefits the overall
performance of programs.

Dynamic Programming Code Generation:

Dynamic programming is a technique used to solve optimization problems by breaking them
down into smaller subproblems and solving each subproblem only once, storing the results
in a table or cache. This approach can be used in code generation to efficiently generate
code for complex computations or transformations. Here's how dynamic programming can
be applied to code generation:

1. Define the Problem:
- Clearly define the code generation problem you want to solve. This could be optimizing

code generation for mathematical expressions, parsing, or any other task.

2. Identify Subproblems:
- Break down the main code generation problem into smaller, overlapping subproblems.

Each subproblem should be a simpler version of the main problem.

3. Define Recurrence Relations:
- Determine how the solutions to subproblems relate to each other. This is typically done

through recurrence relations or equations.
- Define the base cases, which are the simplest subproblems that can be solved directly.

4. Create a Table or Cache:
- Create a data structure, often a table or cache, to store the results of solved

subproblems. This is used to avoid redundant computations.
- The dimensions of the table should correspond to the parameters or variables that define

the subproblems.

5. Bottom-Up or Top-Down Approach:
- Dynamic programming can be implemented using a bottom-up approach, where you

solve the smallest subproblems first and build up to the main problem, or a top-down
approach, where you start with the main problem and recursively solve smaller subproblems.
- The choice depends on the problem and the structure of the recurrence relations.

6. Memoization (Top-Down Approach):
- In the top-down approach, use memoization to cache the results of subproblems as they

are solved.
- Before solving a subproblem, check if its solution is already in the cache. If so, retrieve

the cached result instead of recomputing it.

7. Table Filling (Bottom-Up Approach):
- In the bottom-up approach, iteratively fill in the table from the base cases to the main

problem.
- Each cell in the table represents the solution to a subproblem.
- Use previously computed solutions to calculate solutions for larger subproblems.

8. Optimize and Store Code:
- As you solve subproblems and populate the table or cache, you can simultaneously

generate and optimize code.
- The code generated for each subproblem should contribute to the final code for the main

problem.

9. Retrieve Final Solution:
- Once the main problem's solution is computed and stored in the table or cache, retrieve it

to obtain the final generated code.

10. Handle Specific Code Generation Logic:
- Depending on the code generation problem, you may need to implement specific logic

for generating code snippets or performing transformations within the dynamic programming
framework.

11. Analyze Complexity:
- Analyze the time and space complexity of your dynamic programming-based code

generation approach. Ensure it meets performance requirements.

Dynamic programming-based code generation is particularly useful for problems involving
complex recursive computations, optimization tasks, or problems with overlapping
subproblems. By breaking down the problem into manageable parts and efficiently storing
and reusing results, dynamic programming can lead to more efficient and optimized code
generation processes.

1

UNIT V CODE OPTIMIZATION 8

Principal Sources of Optimization – Peep-hole optimization - DAG- Optimization of Basic

Blocks- Global Data Flow Analysis - Efficient Data Flow Algorithm.

CODE OPTIMIZATION

INTRODUCTION

The code produced by the straight forward compiling algorithms can often be made to run

faster or take less space, or both. This improvement is achieved by program transformations

that are traditionally called optimizations. Compilers that apply code-improving

transformations are called optimizing compilers.

Optimizations are classified into two categories. They are
 Machine independent optimizations:
 Machine dependant optimizations:

Machine independent optimizations:

 Machine independent optimizations are program transformations that improve the target

code without taking into consideration any properties of the target machine.

Machine dependant optimizations:

 Machine dependant optimizations are based on register allocation and utilization of special

machine-instruction sequences.

The criteria for code improvement transformations:

 The transformation must preserve the meaning of programs.

 A transformation must, on the average, speed up programs by a measurable

amount.

 The transformation must be worth the effort

BASIC BLOCKS AND FLOW GRAPHS

Basic Blocks

 A basic block is a sequence of consecutive statements in which flow of control enters at

the beginning and leaves at the end without any halt or possibility of branching except at

the end.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

2

Basic Block Construction:

Algorithm: Partition into basic blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement in exactly one block

Method:

1. We first determine the set of leaders, the first statements of basic blocks. The

rules we use are of the following:

a. The first statement is a leader.

b. Any statement that is the target of a conditional or unconditional goto is

a leader.

c. Any statement that immediately follows a goto or conditional goto

statement is a leader.

2. For each leader, its basic block consists of the leader and all statements up to

but not including the next leader or the end of the program.

 consider the following source code for dot product of two vectors a and b of length 20

begin

prod :=0;

i:=1; do

begin

prod :=prod+ a[i]* b[i]; i

:=i+1;

end

while i <= 20

end

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

3

 The three -address code for the above source program is given as :

 (1) prod := 0

 (2) i := 1

 (3) t1 := 4* i

 (4) t2 := a[t1] /*compute a[i] */

 (5) t3 := 4*i

 (6) t4 := b[t3] /*compute b[i] */

 (7) t5 := t2*t4

(8) t6 := prod+t5

(9) prod := t6

(10) t7 := i+1

(11) i := t7

(12)

if i<=20 goto

(3)

Basic block 1: Statement (1) to (2)

Basic block 2: Statement (3) to (12)

Flow Graphs

o Flow graph is a directed graph containing the flow-of-control information for the set of

basic blocks making up a program.
o The nodes of the flow graph are basic blocks. It has a distinguished initial node.

o E.g.: Flow graph for the vector dot product is given as follows:

 B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2

o The target of jump from last statement of B1 is the first statement B2, so there is an edge

from B1 (last statement) to B2 (first statement).

B1 is the predecessor of B2, and B2 is a successor of B1

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

4

prod : = 0 B1

i : = 1

t1 : = 4 * i
t2 : = a [t1]
t3 : = 4 * i B2
t4 : = b [t3]
t5 : = t2 * t4
t6 : = prod +

t5 prod : = t6

t7 : = i + 1
i : = t7
ifi<= 20 goto B2

THE DAG REPRESENTATION FOR BASIC BLOCKS

 A DAG for a basic block is a directed acyclic graph with the following labels on nodes: 

1. Leaves are labeled by unique identifiers, either variable names or constants.

2. Interior nodes are labeled by an operator symbol.

3. Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.

 DAGs are useful data structures for implementing transformations on basic blocks. 

 It gives a picture of how the value computed by a statement is used in subsequent

statements. 



 It provides a good way of determining common sub - expressions. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

5

Algorithm for construction of DAG

Input: A basic block

Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior nodes, an
operator symbol.

2. For each node a list of attached identifiers to hold the computed values.
Case (i)x := y OP z

Case (ii)x := OP y

Case (iii)x := y

Method:

Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z) . (Checkingfor common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create such

a node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the noden found in step 2 and set node(x) to n.

Example: Consider the block of three- address statements:

1. t1 := 4* i
2. t2 := a[t1]
3. t3 := 4* i
4. t4 := b[t3]
5. t5 := t2*t4
6. t6 := prod+t5
7. prod := t6
8. t7 := i+1
9. i := t7
10. if i<=20 goto (1)

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

6

Stages in DAG Construction

7

8

Application of DAGs:

1. We can automatically detect common sub expressions.

2. We can determine which identifiers have their values used in the block.
3. We can determine which statements compute values that could be used outside the block.

9

PRINCIPAL SOURCES OF OPTIMISATION

 A transformation of a program is called local if it can be performed by looking only at

the statements in a basic block; otherwise, it is called global.
 Many transformations can be performed at both the local and global levels. Local

transformations are usually performed first.

Function-Preserving Transformations

 There are a number of ways in which a compiler can improve a program without

changing the function it computes.
 The transformations


 Common sub expression elimination,

 Copy propagation,

 Dead-code elimination, and

 Constant folding

are common examples of such function-preserving transformations. The other

transformations come up primarily when global optimizations are performed.

Frequently, a program will include several calculations of the same value, such as an offset in

an array. Some of the duplicate calculations cannot be avoided by the programmer because they

lie below the level of detail accessible within the source language.




 Common Sub expressions elimination:



 An occurrence of an expression E is called a common sub-expression if E was

previously computed, and the values of variables in E have not changed since the

previous computation. We can avoid recomputing the expression if we can use the

previously computed value.
 For example

t1: = 4*i

t2: = a

[t1] t3: =

4*j t4: =

4*i t5: =

n

t6: = b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

t1: =

4*it2: =

a [t1]t3:

= 4*jt5:

= n
t6: = b [t1] +t5

The common sub expression t 4: =4*i is eliminated as its computation is already in t1.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

10

And value of i is not been changed from definition to use.

 Copy Propagation:



 Assignments of the form f : = g called copy statements, or copies for short. The idea

behind the copy-propagation transformation is to use g for f, whenever possible after the

copy statement f: = g. Copy propagation means use of one variable instead of another.

This may not appear to be an improvement, but as we shall see it gives us an opportunity

to eliminate x.
 For

example:

x=Pi;

……

A=x*r*r;

The optimization using copy propagation can be done as follows:

A=Pi*r*r;

Here the variable x is eliminated

Dead-Code Eliminations:

 A variable is live at a point in a program if its value can be used subsequently; otherwise, it

is dead at that point. A related idea is dead or useless code, statements that compute

values that never get used. While the programmer is unlikely to introduce any dead code

intentionally, it may appear as the result of previous transformations. An optimization

can be done by eliminating dead code.

Example:

 i=0;
if(i=1)

{

a=b+5;

}

Here, ‘if’ statement is dead code because this condition will never get satisfied.

 Constant folding:



 We can eliminate both the test and printing from the object code. More generally,

deducing at compile time that the value of an expression is a constant and using the

constant instead is known as constant folding.


 One advantage of copy propagation is that it often turns the copy statement into dead
code.

For example,

a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

11

Loop Optimizations:



 We now give a brief introduction to a very important place for optimizations, namely

loops, especially the inner loops where programs tend to spend the bulk of their time.

The running time of a program may be improved if we decrease the number of

instructions in an inner loop, even if we increase the amount of code outside that loop.
 Three techniques are important for loop optimization:

 code motion, which moves code outside a loop;

 Induction-variable elimination, which we apply to replace variables from inner loop.

 Reduction in strength, which replaces and expensive operation by a cheaper one, such

as a multiplication by an addition.


 Code Motion:

An important modification that decreases the amount of code in a loop is code motion.

This transformation takes an expression that yields the same result independent of the

number of times a loop is executed (a loop-invariant computation) and places the

expression before the loop. Note that the notion “before the loop” assumes the existence

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant

computation in the following while-statement:


while (i <= limit-2) /* statement does not change limit*/

Code motion will result in the equivalent of

 t= limit-2;

while (i<=t) /* statement does not change limit or t */

 Induction Variables :

 Loops are usually processed inside out. For example consider the loop around B3.

 Note that the values of j and t4 remain in lock-step; every time the value of j decreases

by 1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called

induction variables.
 When there are two or more induction variables in a loop, it may be possible to

get rid of all but one, by the process of induction-variable elimination. For the inner loop

around B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in

B4. However, we can illustrate reduction in strength and illustrate a part of the process

of induction-variable elimination. Eventually j will be eliminated when the outer loop of

B2 - B5 is considered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4in Fig. and t4 is not

changed elsewhere in the inner loop around B3, it follows that just after the statement j:=j -1 the

relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 4:= 4*j by t4:= t4-4.

The only problem is that t 4 does not have a value when we enter block B3 for the first time.

Since we must maintain the relationship t4=4*j on entry to the block B3, we place an

initializations of t4 at the end of the block where j itself is initialized, shown by the dashed

addition to block B1 in second Fig.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

12

 Before after

 The replacement of a multiplication by a subtraction will speed up the object code

if multiplication takes more time than addition or subtraction, as is the case on

many machines.

 Reduction In Strength:



 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and

can often be used as special cases of more expensive operators.
 For example, x² is invariably cheaper to implement as x*x than as a call to an

exponentiation routine. Fixed-point multiplication or division by a power of two is

cheaper to implement as a shift. Floating-point division by a constant can be

implemented as multiplication by a constant, which may be cheaper.

PEEPHOLE OPTIMIZATION

A statement-by-statement code-generations strategy often produce target code that contains

redundant instructions and suboptimal constructs .The quality of such target code can be

improved by applying “optimizing” transformations to the target program.

A simple but effective technique for improving the target code is peephole optimization, a

method for trying to improving the performance of the target program by examining a short

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

13

sequence of target instructions (called the peephole) and replacing these instructions by a shorter or

faster sequence, whenever possible.

The peephole is a small, moving window on the target program. The code in the peephole

need not contiguous, although some implementations do require this. It is characteristic of

peephole optimization that each improvement may spawn opportunities for additional

improvements.

We shall give the following examples of program transformations that are characteristic of

peephole optimizations:

 Redundant-instructions elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

 Unreachable Code

Redundant Loads And Stores:
If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value

of ais already in register R 0.If (2) had a label we could not be sure that (1) was always

executed immediately before (2) and so we could not remove (2).

Unreachable Code:

Another opportunity for peephole optimizations is the removal of unreachable instructions.

An unlabeled instruction immediately following an unconditional jump may be removed. This

operation can be repeated to eliminate a sequence of instructions. For example, for debugging

purposes, a large program may have within it certain segments that are executed only if a

variable debug is 1. In C, the source code might look like:

#define debug 0

….

If (debug) {

Print debugging information }

 In the intermediate representations the if-statement may be translated as:

If debug =1 goto L1

goto L2

L1: print debugging information

L2: .. (a)

14

 One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter

what the value of debug; (a) can be replaced by:

If debug≠1 goto L2

Print debugging information

L2: .. (b)

 As the argument of the statement of (b) evaluates to a constant true it can be replaced
by

If debug≠0 goto L2

Print debugging information

L2: ... (c)

 As the argument of the first statement of (c) evaluates to a constant true, it can be replaced

by goto L2. Then all the statement that print debugging aids are manifestly unreachable

and can be eliminated one at a time.

Flows-Of-Control Optimizations:

 The unnecessary jumps can be eliminated in either the intermediate code or the target

code by the following types of peephole optimizations. We can replace the jump

sequence

goto L1

….

L1: goto L2

 by the sequence

 goto L2

 ….

 L1: goto L2

 If there are now no jumps to L1, then it may be possible to eliminate the statement
L1:goto L2 provided it is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1

….

L1: goto L2

can be replaced by

If a < b goto L2

15

….

L1: goto L2

 Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto.

Then the sequence

goto L1

……..

L1: if a < b goto L2

L3: ... (1)

 May be replaced by

If a < b goto L2

goto L3

…….

L3: ... (2)

 While the number of instructions in (1) and (2) is the same, we sometimes skip the

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time

Algebraic Simplification:

 There is no end to the amount of algebraic simplification that can be attempted through

peephole optimization. Only a few algebraic identities occur frequently enough that it is

worth considering implementing them .For example, statements such as

x := x+0 Or

x := x * 1

 Are often produced by straightforward intermediate code-generation algorithms, and they

can be eliminated easily through peephole optimization.

Reduction in Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and can

often be used as special cases of more expensive operators.

 For example, x² is invariably cheaper to implement as x*x than as a call to an exponentiation

16

routine. Fixed-point multiplication or division by a power of two is cheaper to implement

as a shift. Floating-point division by a constant can be implemented as multiplication by a

constant, which may be cheaper.

X2 →X*X

Use of Machine Idioms:

 The target machine may have hardware instructions to implement certain specific operations

efficiently. For example, some machines have auto-increment and auto-decrement

addressing modes. These add or subtract one from an operand before or after using its

value.

 The use of these modes greatly improves the quality of code when pushing or popping a

stack, as in parameter passing. These modes can also be used in code for statements

like

 i:=i+1 → i++

 i:=i-1 → i- -

OPTIMIZATION OF BASIC BLOCKS

There are two types of basic block optimizations. They are :

 Structure-Preserving Transformations

 Algebraic Transformations

Structure-Preserving Transformations:

The primary Structure-Preserving Transformation on basic blocks are:

 Common sub-expression elimination

 Dead code elimination

 Renaming of temporary variables

 Interchange of two independent adjacent statements.



 Common sub-expression elimination:

Common sub expressions need not be computed over and over again. Instead they can be

computed once and kept in store from where it’s referenced when encountered again – of course

providing the variable values in the expression still remain constant.

Example:

a=b+c

 b=a-d

 c=b+c

 d=a-d

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

17

The 2
nd

 and 4
th

 statements compute the same expression: b+c and a-d

Basic block can be transformed to

a: = b+c

b: = a-d

c: = a

d: = b

Dead code elimination:

It’s possible that a large amount of dead (useless) code may exist in the program. This

might be especially caused when introducing variables and procedures as part of construction or

error -correction of a program – once declared and defined, one forgets to remove them in case

they serve no purpose. Eliminating these will definitely optimize the code.

 Renaming of temporary variables:



 A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is

another temporary name, and change all uses of t to u.
In this we can transform a basic block to its equivalent block called normal-form block

Interchange of two independent adjacent statements:



 Two statements

t1:=b+c

t2:=x+y

can be interchanged or reordered in its computation in the basic block when value of t1

does not affect the value of t2.

Algebraic Transformations:

 Algebraic identities represent another important class of optimizations on basic blocks.

This includes simplifying expressions or replacing expensive operation by cheaper ones

i.e. reduction in strength.
 Another class of related optimizations is constant folding. Here we evaluate constant

expressions at compile time and replace the constant expressions by their values. Thus

the expression 2*3.14 would be replaced by 6.28.
 The relational operators <=, >=, <, >, + and = sometimes generate unexpected common

sub expressions.
 Associative laws may also be applied to expose common sub expressions. For example,

if the source code has the assignments

a :=b+c

e :=c+d+b

the following intermediate code may be generated:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

18

a :=b+c

t :=c+d
e :=t+b

 Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y

INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS

 In order to do code optimization and a good job of code generation , compiler needs

to collect information about the program as a whole and to distribute this information

to each block in the flow graph.


 A compiler could take advantage of “reaching definitions” , such as knowing where a

variable like debug was last defined before reaching a given block, in order to

perform transformations are just a few examples of data-flow information that an

optimizing compiler collects by a process known as data-flow analysis.


 Data-flow information can be collected by setting up and solving systems of equations

of the form :

out [S] = gen [S] U (in [S] – kill [S])

This equation can be read as “ the information at the end of a statement is either

generated within the statement , or enters at the beginning and is not killed as control

flows through the statement.”

 The details of how data-flow equations are set and solved depend on three factors.

 The notions of generating and killing depend on the desired information, i.e., on the

data flow analysis problem to be solved. Moreover, for some problems, instead of

proceeding along with flow of control and defining out[s] in terms of in[s], we need to

proceed backwards and define in[s] in terms of out[s].


 Since data flows along control paths, data-flow analysis is affected by the constructs in

a program. In fact, when we write out[s] we implicitly assume that there is unique end

point where control leaves the statement; in general, equations are set up at the level of

basic blocks rather than statements, because blocks do have unique end points.


 There are subtleties that go along with such statements as procedure calls,

assignments through pointer variables, and even assignments to array variables.

Points and Paths:

 Within a basic block, we talk of the point between two adjacent statements, as well as

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

19

the point before the first statement and after the last. Thus, block B1 has four points: one

before any of the assignments and one after each of the three assignments.

 Now let us take a global view and consider all the points in all the blocks. A path from

p1 to pn is a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, either

 Pi is the point immediately preceding a statement and pi+1 is the point

immediately following that statement in the same block, or


 Pi is the end of some block and pi+1 is the beginning of a successor block.



Reaching definitions:

 A definition of variable x is a statement that assigns, or may assign, a value to x. The

most common forms of definition are assignments to x and statements that read a

value from an i/o device and store it in x.


 These statements certainly define a value for x, and they are referred to as

unambiguous definitions of x. There are certain kinds of statements that may define a

value for x; they are called ambiguous definitions. The most usual forms of ambiguous

definitions of x are:

B1

d1 : i :=m-1

d2: j :=n

d3: a := u1
B2

d4 : I := i+1

B3

 d5: j := j-1

B4

B5 B6
d6 :a :=u2

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

20

 A call of a procedure with x as a parameter or a procedure that can access x because x

is in the scope of the procedure.


 An assignment through a pointer that could refer to x. For example, the assignment *q: =

y is a definition of x if it is possible that q points to x. we must assume that an

assignment through a pointer is a definition of every variable.

 We say a definition d reaches a point p if there is a path from the point immediately

following d to p, such that d is not “killed” along that path. Thus a point can be reached

by an unambiguous definition and an ambiguous definition of the same variable

appearing later along one path.

Data-flow analysis of structured programs:

 Flow graphs for control flow constructs such as do-while statements have a useful

property: there is a single beginning point at which control enters and a single end point

that control leaves from when execution of the statement is over. We exploit this

property when we talk of the definitions reaching the beginning and the end of

statements with the following syntax.


S id: = E| S; S | if E then S else S | do S while E

E id + id| id

 Expressions in this language are similar to those in the intermediate code, but the

flow graphs for statements have restricted forms.

S1

S1

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

21

If E goto s1

S1 ; S2

IF E then S1 else S2 do S1 while E

 We define a portion of a flow graph called a region to be a set of nodes N that includes a

header, which dominates all other nodes in the region. All edges between nodes in N are in

the region, except for some that enter the header.
 The portion of flow graph corresponding to a statement S is a region that obeys the further

restriction that control can flow to just one outside block when it leaves the region. 

 We say that the beginning points of the dummy blocks at the entry and exit of a statement’s

region are the beginning and end points, respectively, of the statement. The equations are

inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S], and kill[S] for all

statements S.
 gen[S] is the set of definitions “generated” by S while kill[S] is the set of definitions that

never reach the end of S.

 Consider the following data-flow equations for reaching definitions :

a)

S d : a : = b + c

gen [S] = { d }

kill [S] = Da – { d }

out [S] = gen [S] U (in[S] – kill[S])

 Observe the rules for a single assignment of variable a. Surely that assignment is a definition

of a, say d. Thus


gen[S]={d}

 On the other hand, d “kills” all other definitions of a, so we write Kill[S] = Da – {d}
Where, Da is the set of all definitions in the program for variable a.

S2
If E goto s1

S1 S2

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

22

b)

S S1

S2

gen[S]=gen[S2] U (gen[S1]-kill[S2])

Kill[S] = kill[S2] U (kill[S1] – gen[S2])

in [S1] = in [S] in

[S2] = out [S1] out

[S] = out [S2]

Under what circumstances is definition d generated by S=S1; S2? First of all, if it is generated by

S2, then it is surely generated by S. if d is generated by S1, it will reach the end of S provided it is

not killed by S2. Thus, we write

gen[S]=gen[S2] U (gen[S1]-kill[S2])

 Similar reasoning applies to the killing of a definition, so we have

Kill[S] = kill[S2] U (kill[S1] – gen[S2])



23

Conservative estimation of data-flow information:

 There is a subtle miscalculation in the rules for gen and kill. We have made the

assumption that the conditional expression E in the if and do statements are

“uninterpreted”; that is, there exists inputs to the program that make their branches go

either way.


 We assume that any graph-theoretic path in the flow graph is also an execution path, i.e.,

a path that is executed when the program is run with least one possible input.


 When we compare the computed gen with the “true” gen we discover that the true gen is

always a subset of the computed gen. on the other hand, the true kill is always a superset

of the computed kill.


 These containments hold even after we consider the other rules. It is natural to wonder

whether these differences between the true and computed gen and kill sets present a serious

obstacle to data-flow analysis. The answer lies in the use intended for these data.


 Overestimating the set of definitions reaching a point does not seem serious; it merely

stops us from doing an optimization that we could legitimately do. On the other hand,

underestimating the set of definitions is a fatal error; it could lead us into making a

change in the program that changes what the program computes. For the case of reaching

definitions, then, we call a set of definitions safe or conservative if the estimate is a

superset of the true set of reaching definitions. We call the estimate unsafe, if it is not

necessarily a superset of the truth.


 Returning now to the implications of safety on the estimation of gen and kill for reaching

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in

the safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a

point, and cannot prevent a definition from reaching a place that it truly reached.

Decreasing kill can only increase the set of definitions reaching any given point.

Computation of in and out:

 Many data-flow problems can be solved by synthesized translations similar to those used

to compute gen and kill. It can be used, for example, to determine loop-invariant

computations.


 However, there are other kinds of data-flow information, such as the reaching-definitions

problem. It turns out that in is an inherited attribute, and out is a synthesized attribute

depending on in. we intend that in[S] be the set of definitions reaching the beginning of S,

taking into account the flow of control throughout the entire program, including

statements outside of S or within which S is nested.


 The set out[S] is defined similarly for the end of s. it is important to note the distinction

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

24

without following paths outside S.


 Assuming we know in[S] we compute out by equation, that is

Out[S] = gen[S] U (in[S] - kill[S])

 Considering cascade of two statements S1; S2, as in the second case. We start by

observing in[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2],

since a definition reaches the beginning of S2 if and only if it reaches the end of S1. Now

we can compute out[S2], and this set is equal to out[S].


 Considering if-statement we have conservatively assumed that control can follow either

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the

beginning of S.


In[S1] = in[S2] = in[S]


 If a definition reaches the end of S if and only if it reaches the end of one or both sub

statements; i.e,

Out[S]=out[S1] U out[S2]

Representation of sets:

 Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit

vectors. We assign a number to each definition of interest in the flow graph. Then bit

vector representing a set of definitions will have 1 in position I if and only if the

definition numbered I is in the set.


 The number of definition statement can be taken as the index of statement in an array

holding pointers to statements. However, not all definitions may be of interest during

global data-flow analysis. Therefore the number of definitions of interest will typically be

recorded in a separate table.


 A bit vector representation for sets also allows set operations to be implemented

efficiently. The union and intersection of two sets can be implemented by logical

or and logical and, respectively, basic operations in most systems-oriented

programming languages. The difference A-B of sets A and B can be implemented

by taking the complement of B and then using logical and to compute A .

Local reaching definitions:

 Space for data-flow information can be traded for time, by saving information only at

certain points and, as needed, recomputing information at intervening points. Basic blocks

are usually treated as a unit during global flow analysis, with attention restricted to only

those points that are the beginnings of blocks.


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

25

 Since there are usually many more points than blocks, restricting our effort to blocks is a

significant savings. When needed, the reaching definitions for all points in a block can be

calculated from the reaching definitions for the beginning of a block.

Use-definition chains:

 It is often convenient to store the reaching definition information as” use-definition

chains” or “ud-chains”, which are lists, for each use of a variable, of all the definitions

that reaches that use. If a use of variable a in block B is preceded by no unambiguous

definition of a, then ud-chain for that use of a is the set of definitions in in[B] that are

definitions of a.in addition, if there are ambiguous definitions of a ,then all of these for

which no unambiguous definition of a lies between it and the use of a are on the ud-chain

for this use of a.

Evaluation order:

 The techniques for conserving space during attribute evaluation, also apply to the

computation of data-flow information using specifications. Specifically, the only

constraint on the evaluation order for the gen, kill, in and out sets for statements is that

imposed by dependencies between these sets. Having chosen an evaluation order, we are

free to release the space for a set after all uses of it have occurred.


 Earlier circular dependencies between attributes were not allowed, but we have seen that

data-flow equations may have circular dependencies.

General control flow:

 Data-flow analysis must take all control paths into account. If the control paths are

evident from the syntax, then data-flow equations can be set up and solved in a syntax-

directed manner.


 When programs can contain goto statements or even the more disciplined break and

continue statements, the approach we have taken must be modified to take the actual

control paths into account.


 Several approaches may be taken. The iterative method works arbitrary flow graphs. Since the

flow graphs obtained in the presence of break and continue statements are reducible, such

constraints can be handled systematically using the interval-based methods

 However, the syntax-directed approach need not be abandoned when break and continue

statements are allowed.



http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Recent Trends in Compiler Design:

Compiler design is an ever-evolving field with continuous advancements and trends driven
by changes in programming languages, hardware architectures, and software development
practices. As of my last knowledge update in September 2021, here are some recent trends
and developments in compiler design:

1. **Support for New Programming Languages:**
- Compiler designers are adapting to support new programming languages and language

features. This includes domain-specific languages (DSLs), WebAssembly (Wasm), and
emerging languages like Rust and Julia.

2. **Language Server Protocol (LSP):**
- LSP is becoming increasingly popular for integrating compilers with development

environments. It provides features like autocompletion, code navigation, and real-time error
checking.

3. **Just-In-Time (JIT) Compilation:**
- JIT compilation is used in dynamic languages like Python, JavaScript (V8 engine), and

the Java Virtual Machine (JVM) to improve execution speed. Compiler designers are working
on optimizing JIT compilation techniques.

4. **Parallelism and Concurrency:**
- Modern hardware supports multi-core processors, and compilers are incorporating

techniques for automatic parallelization and concurrency to make better use of these
resources.

5. **Machine Learning and Compiler Optimization:**
- Machine learning is being applied to compiler optimization. AI-driven techniques can help

identify performance bottlenecks and generate more efficient code.

6. **Energy-Efficient Compilation:**
- With the growing concern for energy efficiency, some compiler design efforts are focused

on generating code that minimizes power consumption while maintaining performance.

7. **Quantum Computing:**
- Quantum programming languages are emerging, and compilers for quantum computing

are being developed to translate high-level quantum algorithms into machine-specific
instructions.

8. **Security and Safety:**
- Ensuring secure and safe code generation is critical. Some trends include the

development of languages and compilers with built-in security features and the use of formal
methods for verification.

9. **WebAssembly (Wasm):**
- WebAssembly is gaining traction as a portable compilation target for web browsers.

Compilers are being developed to generate Wasm code from various source languages.

10. **Compiler Optimizations for GPUs:**
- As GPUs are increasingly used for general-purpose computing (GPGPU), compilers are

being enhanced to generate code optimized for GPU architectures.

11. **Static Analysis Tools:**
- Static analysis tools and techniques are integrated into compilers to catch bugs, security

vulnerabilities, and performance issues during compilation.

12. **Hybrid Compilation Techniques:**
- Some compilers use a hybrid approach, combining ahead-of-time (AOT) and just-in-time

(JIT) compilation to balance startup performance and runtime optimization.

13. **Open-Source Compiler Projects:**
- Many open-source compiler projects continue to thrive, providing a collaborative

environment for compiler innovation. Projects like LLVM and GCC are actively developed
and adopted.

14. **Low-Level Optimization:**
- Compiler designers are exploring low-level optimizations, including vectorization, loop

unrolling, and instruction scheduling, to improve the performance of generated code.

15. **Integration with IDEs:**
- Integration between compilers and integrated development environments (IDEs) is

becoming tighter, offering features like real-time code analysis, refactoring support, and
intelligent code completion.

It's important to note that the field of compiler design continues to evolve, and new trends
may have emerged since my last update. Staying current with these trends is essential for
compiler designers, language developers, and anyone involved in software development, as
they can significantly impact the efficiency, security, and maintainability of software systems.

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

CS3501-Compiler Design

 Question Bank

Unit-I

INTRODUCTION TO COMPILERS & LEXICAL ANALYSIS

Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering –

Specification of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular Expressions to

Automata – Minimizing DFA.

Part-A

1. Mention few cousins of the Compiler. M/J 2012

 Pre-processor

 Assembler

 Loader

 Link-Editor

2. What are the two parts of a compilation? Explain. M/J’2016

There are two parts to compilation: analysis and synthesis.

i)Analysis part breaks up the source program into constituent pieces and creates an

intermediate representation of the source program.

ii) Synthesis part constructs the desired target program from the intermediate representation. During

analysis, the operations implied by the source program are determined and recorded in a hierarchical

structure called a tree. A special kind of tree called a syntax tree

3. Illustrate diagrammatically how a language is processed. M/J’2016

4. What are the possible error recovery actions in lexical analyzer? M/J 2012, A/ M’2015

1. Deleting an extraneous character

 2. Inserting a missing character

 3. Replacing an incorrect character by a correct character

 4. Transposing two adjacent characters Shree Sathyam College Of Engineering and Technology Page 1

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

5. Define tokens, Patterns and lexemes M/J’2013, N/D’2016

Tokens: A token is a pair consisting of a token name and an optional attribute value.A token name is

an abstract symbol representing a kind of lexical unit eg:a particular keyword or a sequence of input

character denoting an identifier.

Patterns: A Pattern is a rule describing the set of lexemes that can represent a particular

token in source program. Ex: relation : all six relational operator

Lexeme: A lexeme is a sequence of characters in the source program that is matched by the pattern

for the token. For example in the Pascal‟s statement const pi = 3.1416; the substring pi is a lexeme

for the token identifier

TOKEN SAMPLE LEXEMES INFORMAL DESCRIPTION OF PATTERN

const

if

relation

id

num

literal

Const

if

<,<=,=,<>,>,>=

pi,count,D2

3.1416,0,6.02E23

“core dumped”

const

if

< or <= or = or <> or >= or >

letter followed by letters and digits

any numeric constant

any characters between “ and “ except”

6. Mention the issues in a lexical analyzer. M/J’2013

1)Simpler design is the most important consideration.

 A parser including the conventions for comments and white space is significantly more complex

2) Compiler efficiency is improved.

 Specialized buffering techniques for reading input characters and processing tokens

3) Compiler portability is enhanced.

 Input alphabet peculiarities and other device-specific anomalies can be restricted to the lexical

analyzer.

7. What are the components of LEX? N/D’2015

lex.l
Lex

lex.yy.c

Compiler

lex.yy.c
 C compiler

 a.out

Input a.out sequence of

 stream tokens

8. State any two reasons as to why phases of compiler should be grouped. M/J’2014

(i) Operation of compilation.-Analysis (Front End) and Synthesis(Back End)

(ii) Number of Passes- One Pass and Multi-Pass

 Shree Sathyam College Of Engineering and Technology Page 2

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

9. Define Lexeme. M/J’2014

A lexeme is a sequence of characters in the source program that is matched by the pattern for the

token. For example in the Pascal‟s statement

const pi = 3.1416; the substring pi is a lexeme for the token “identifier”

10. List the operation on languages. M/J’2016

 A language is any countable set of strings over some fixed alphabet.

Operations on languages:
 The following are the operations that can be applied to languages:

1.Union

2.Concatenation

3.Kleene closure

4.Positive closure

11. State the interactions between the lexical analyzer and the parser. N/D’2015

 Its main task is to read the input characters and produces output a sequence of tokens that the

parser uses for syntax analysis.

 As in the figure, upon receiving a “get next token” command from the parser the lexical analyzer

reads input characters until it can identify the next token.

12. Define error recovery strategies. N/D’2015

• Panic mode Recovery

• Phrase level

• Error Production

• Global Correction

• Other Error recovery action

1)Deleting an extraneous character.

2) Inserting a missing character.

3)Replacing an incorrect character by a correct character.

4)Transforming two adjacent characters

13. What is a symbol table? N/D’2016, M/J’2014

 A Symbol table is a data structure containing a record for each identifier with fields for the

attributes of the identifier.

 The data structure allows us to find the record for each identifier quickly and to store or

retrieve data quickly.

 token

getNextToken

get next

token

 Lexical

 analyser

 Parser

 Symbol

 table

Shree Sathyam College Of Engineering and Technology Page 3

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

 Whenever an identifier is detected in any of the phases, it is stored in the symbol table.

 Ex: Var posi, init, rate : real;
pos Real …

init Real …

rate Real …

14. List out various compiler construction tools. N/D’2016

 Scanner Generators

 Parser Generators

 Syntax-Directed Translation Engines

 Automatic Code Generators

 Data-Flow Engines

15. Define a compiler?

A Compiler is a program that reads a program written in one language (source language) and

translate it into an equivalent program in another language (target language). While compilation, the

reports to its user the presence of errors in the source program.

 Source program Target program

Error messages

16. What are the functions of preprocessors?

 Macro processing

 File inclusion

 Rational preprocessors

 Language Extensions

17. Define Interpreter. APRIL/MAY 11

An interpreter is another common kind of language processor. Instead of producing a target

program as a translation, an interpreter appears to directly execute the operations specified in the

source program on inputs supplied by the user, as shown in Fig.

Compiler

Shree Sathyam College Of Engineering and Technology Page 4

http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

18. Describe Assembly code with an example.

Assembly code is a mnemonic version of machine code. In which names are used instead of binary

codes for operations, and names are also given to memory addresses.

A typical sequence of assembly instructions might be

MOV a , R1 0001 01 00 00000000

ADD #2 , R1 0011 01 10 00000010

MOV R1 , b 0010 01 00 00000100

(i) In Which the first four bits are instruction are, with 0001, 0010,0011 standing for load, store

and add.

(ii) The next two bits designate a register. (ie) 01-R1

(iii) The next two bits are 00-> ordinary address and 10-> immediate mode.

Last eight bits refer to memory address.

19. Compare compiler & interpreter.

S.No Compiler Interpreter

1 Program is analyzed only once &

the code is generated.

The source program gets interpreted

every time so that it can be executed.

2 Compilers produce object code. It does not produce object code.

3 More efficient than interpreter. Less efficient.

4 It is a complex program &

requires high memory.

It is simpler & requires less memory.

20. What are the tools available for analysis part? Describe about any two.
 STRUCTURE EDITORS: The structure editor not only performs the text-creation and modification

functions of an ordinary text editor, but it also analyzes the program text, putting an appropriate

hierarchical structure on the source program. 

 Pretty Printers: A pretty printer analyses a program and prints it in such a way that the structure

of the program becomes clearly visible

 Static Checkers: A static checker reads a program, analyzes it, and attempts to discover

potential bugs without running the program. 

 Interpreters: An interpreter might build a syntax tree and then carry out the operations at the

nodes as it walks the tree.

PART B

1. Explain the various phases of compiler in detail, with a neat sketch A/M2012, N/D 2012,

M/J’2013, N/D’2013, M/J’2014,M/J’2016, N/D’2016

Contents:

 Explain all the Phases of Compiler

 Neatly Represent the Diagram

 Shree Sathyam College Of Engineering and Technology Page 5

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

2. Explain language processing system with neat diagram.(8) (cousins of compiler) M/J’2016

Contents:

 Explain all the Cousins of Compiler

 Neatly Represent the Diagram

3. Convert the following NFA into Equivalent DFA

Ans:

Steps for converting NFA to DFA:

Step 1: Convert the given NFA to its equivalent transition table

Step 2: Create the DFA‟s start state

Step 3: Create the DFA‟s transition table

Step 4: Create the DFA‟s final states

Step 5: Simplify the DFA

Transition Table

Transition Diagram

4. Convert the regular expression abb (a|b) to DFA using direct method and minimize it.(AU–

April / May 2017)

 Contents:

 Define Regular expression

 Steps followed to the convention Shree Sathyam College Of Engineering and Technology Page 6

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

 Follow the Standard Rules

 Convert the Regular Expression

 Write the Minimization Algorithm Steps and illustrate the converted Regular expression

5. Draw the Transition Diagram for relational operators and unsigned numbers.(AU
–April /May 2017)

Contents:

 Define Finite Automata

 Write down the Two Notations

 Explain in detail the both notations

 Give any one example

6. Explain In detail About the Input Buffering Methods.

Contents:

 Define Input Buffering

 Write down the Two Methods of Buffering

 Explain in detail the both methods with example

 Write the Advantages and Disadvantages

7. How to Specify the Tokens and explain the concepts. (8 Marks)
Contents:

 Define Tokens

 Write down the Three types of specifications

 Explain in detail the both types with example

8. Explain the Lex Tools in details (5 Marks)

Contents:

 Define LEX

 Explain in detail with example

Part–C (1 x 15 = 15 Marks)

1. What are the Phases of compiler? Explain the Phases in detail. Write down the output

ofeach phases for the expression a: = b + c * 60(AU–April / May 2017)

Contents:

o Define Compiler

o Explain all the Phases of Compiler

o Neatly Represent the Diagram

o Write the Example Expression to be match with all phases ofcompiler

 Shree Sathyam College Of Engineering and Technology Page 7

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

Unit-II

SYNTAX ANALYSIS

Role of Parser – Grammars – Context-free grammars – Writing a grammar Top Down Parsing –

General Strategies – Recursive Descent Parser Predictive Parser-LL(1) – Parser-ShiftReduce Parser-

LR Parser- LR (0)Item Construction of SLR Parsing Table – Introduction to LALR Parser – Error

Handling and Recovery in Syntax Analyzer-YACC tool – Design of a syntax Analyzer for a Sample

Language

Part-A

1. Define Define Recursive Descent Parsing?

A Recursive Descent Parser (RDP) is a type of top-down parsing technique used incomputer

science to analyze and process a language's syntax.

2. Differentiate Top Down parsing and Bottom Up parsing?. A/M 2012

Top Down parsing Bottom Up parsing

It is a parsing strategy that first looks atthe

highest level of the parse tree andworks

down the parse tree by using therules of

grammar.

It is a parsing strategy that first looks atthe

lowest level of the parse tree andworks up

the parse tree by using the rulesof

grammar.

This parsing technique uses Left

MostDerivation.

This parsing technique uses Right

MostDerivation.
Example: Recursive Descent parser. Example: Its Shift Reduce parser.

3. Compare Syntax tree and Parse tree. N/D 2012
Syntax tree:

During analysis, the operations implied by the source program are determined and recorded in a

hierarchical structure called a tree. A special kind of tree called a syntax tree is used, in which each node

represents an operation and the children of a node represent the arguments of the operation.

Parse Tree:

A parse tree may be viewed as a graphical representation for a derivation that filters out the choice

regarding replacement order. Each interior node of a parse tree is labeled by some nonterminal A and that the

children of the node are labeled from left to right by symbols in the right side of the production by which this

A was replaced in the derivation. The leaves of the parse tree are terminal symbols.

4. Write the rule to eliminate left recursion in a grammar. N/D 2012
A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation A=>Aα

for some string α. Top-down parsing methods cannot handle left-recursive grammars. Hence, left recursion

can be eliminated as follows:

If there is a production A → Aα |β it can be replaced with a sequence of two productions

A → βA’
A’→ αA’ | ε without changing the set of strings derivable from A

 Shree Sathyam College Of Engineering and Technology Page 8

http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

5. Mention the role of semantic analysis. N/D 2012

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the

types (integer, real, pointer to array of integers, etc) of the objects involved. This enables checking for

semantic errors and inserting type conversion where necessary.

For example, if y was declared to be a real and x3 an integer, We need to insert (unary, i.e., one operand)

conversion operators “inttoreal” and “realtoint” as shown on the right.

6. Draw the syntax tree for the expression: a=b*-c +b*-c N/D 2012

A syntax tree depicts the natural hierarchical structure of a source program. A DAG (Directed Acyclic

Graph) gives the same information but in a more compact way because common sub-expressions are

identified. A syntax tree for the assignment statement a:=b*-c+b*-c appear in the figure.

.

Fig: Graphical Representation of a := b * -c + b * -c

7. Eliminate left recursion from the following grammar A->Ac/Aad/bd/€. M/J’2013

A->bdA‟/A‟

A‟->cA‟/adA‟/€

8. Eliminate left recursion from the grammar S-> Aa | b ; A-> Ac | Sd | €. N/D’2013

 Ans: S-> Aa | b ; A-> Ac|Aad |bd|€

 Equivalent Rule:

S-> Aa | b

A->bdA‟/A‟

A‟->cA‟/adA‟/€

9. Write a CF grammar to represent palindrome. N/D’2014

S->aSa | bSb | a | b| €

String={aba,bab,abba,ababa,...}

Shree Sathyam College Of Engineering and Technology Page 9

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

10. Write the role of parser. A/ M’2015

 The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and

verifies that the string can be generated by the grammar for the source language.

 It reports any syntax errors in the program.

 It also recovers from commonly occurring errors so that it can continue processing its input.

11. Write a grammar for branching statement. M/J’2016

S ->iEtS | iEtSeS | a

E -> b

12. Write the algorithm for FIRST and FOLLOW in parser. M/J’2016

First() : Let  be a string of grammar symbols. First() is the set that includes every terminal that

appears leftmost in  or in any string originating from .

Follow () : Let A be a non-terminal. Follow(A) is the set of terminals a that can appear directly to

the right of A in some sentential form. (S  Aa, for some  and ).

Rules for follow():
1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

13. Define LL (1) Grammar.

A grammar whose predictive parser has no multiply defined entries is known as LL(1)grammar. LL

(1) means left to right scan of the input to generate the left most derivationby using 1 symbol of look

ahead (can be extended to k symbol look ahead)

14. Define parser.
The parser is that phase of the compiler which takes a token string as input and with thehelp of

existing grammar, converts it into the corresponding IntermediateRepresentation (IR). The parser is

also known as Syntax Analyzer.

15. What is meant by handle pruning? N/D’2016

An Handle of a string is a sub string that matches the right side of production and whose reduction to

the non terminal on the left side of the production represents one step along the reverse of a rightmost

derivation.

The process of obtaining rightmost derivation in reverse is known as Handle Pruning.

Consider the grammar: E → E+E/E*E/(E)/id

And the input string id1+id2*id3

The rightmost derivation is :

 → E+E

→ E+E*E

→ E+E*id3

→ E+id2*id 3

→ id1+id2*id 3

Shree Sathyam College Of Engineering and Technology Page 10

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

16. What are the errors identified in syntax analyzer?

 Syntax errors are errors in the program text; they may be either lexical or grammatical:

(a) A lexical error is a mistake in a lexeme, for examples, typing tehn instead of then, or

missing off one of the quotes in a literal.

(b) A grammatical error is a one that violates the (grammatical) rules of the language, for

example if x = 7 y := 4 (missing then).

(c) A syntactic error, such as an arithmetic expression with missing semicolon or unbalanced

parenthesis.

17. Write the error recovery actions in parser?

 Panic mode recovery

 Phrase level recovery

 Error Production.

 Global Correction.

18. What do you mean by viable prefixes?

The set of prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are

called viable prefixes. An equivalent definition of a viable prefix is that it is a prefix of a right-sentential

form that does not continue past the right end of the rightmost handle of that sentential form.

19. Write the limitations of Recursive decent parser.

 Back tracking is available

 Taking more time and more space

 Not efficient

 Reducing the performance of compiler.

20. List out the conflicts occurred in shift-reduce parsing.

Conflicts in shift-reduce parsing:
There are two conflicts that occur in shift shift-reduce parsing:

a. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce.

b. Reduce-reduce conflict: The parser cannot decide which of several reductions to make.

21. Define YACC.

Yacc - Yet Another Compiler-Compiler

– Tool which will produce a parser for a given grammar.

– YACC (Yet Another Compiler Compiler) is a program designed to compile a LALR(1)

grammar and to produce the source code of the syntactic analyzer of the language produced

by this grammar.

Shree Sathyam College Of Engineering and Technologyg Page 11

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

22. What is LL (1) grammar? Give the properties of LL (1) grammar.

L : Scan input from Left to Right

L : Construct a Leftmost Derivation

1 : Use “1” input symbol as lookahead in conjunction with stack to decide on the parsing action

LL(1) grammars == they have no multiply-defined entries in the parsing table.

Properties of LL(1) grammars:

1. Grammar can‟t be ambiguous or left recursive

2. Grammar is LL(1) when A 

a.  &  do not derive strings starting with the same terminal a

b. Either  or  can derive , but not both.

c. If  derives , then  does not derive any string beginning

 with a terminal in FOLLOW(A)

The parsing table entries are single entries. So each location has not more than one entry. This type of

grammar is called LL(1) grammar.

23. What are the disadvantages of operator precedence parsing?

Advantages of operator precedence parsing:

 It is easy to implement.

 Once an operator precedence relation is made between all pairs of terminals of a grammar ,

the grammar can be ignored. The grammar is not referred anymore during implementation.

Disadvantages of operator precedence parsing:

 It is hard to handle tokens like the minus sign (-) which has two different precedence.

 Only a small class of grammar can be parsed using operator-precedence parser.

Part-B

1. Discuss in detail about the role of parser.
Contents:

 Explain the process of Parser work

 Types of Parser and explain

 Neatly Represent the Diagram

Shree Sathyam College Of Engineering and Technology Page 12

http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

2. Write an Algorithm and construct SLR Parsing Table for the following context freegrammar.

Check whether the string id + id id * is a valid string (AU–April / May 2013)

E→E+T | T

T→T*F | F

F→F*| a| b
Contents:

 Define SLR

 Steps involved for SLR Parser

 Neatly Represent the given CFG Grammar

 Construct the Parsing table

 Check the Input String with stack implementation

3. Explain LR Parsing algorithm with example (AU–Nov / Dec 2017)
Contents:

 Define LR

 Differentiate LL vs LR

 Explain the Concepts

 Advantages & Disadvantages

4. Explain in detail YACC (AU–Nov / Dec 2016)
Contents:

 Define YACC

 Explain the Concepts of Input and output files

 Advantages & Disadvantages

 Example programs

5. Give the LALR for the given grammar.S->AAA->Aa|b
Contents:

 Define LALR

 Neatly Represent the given CFG Grammar

 Construct the Parsing table

Part – C

1. Construct Stack implementation of shift reduce parsing for the grammarE->E+EE->E*EE-

>(E)E->id and the input string id1+id2*id3
Contents:

 Explain the Concepts of Shift Reduce parser

 Neatly Represent the given CFG Grammar

 Check the Input String with stack implementation

 Shree Sathyam College Of Engineering and Technology Page 13

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

Unit-III

SYNTAX DIRECTED TRANSLATION & INTERMEDIATE CODE GENERATION

Syntax directed Definitions-Construction of Syntax Tree-Bottom-up Evaluation of S-Attribute

Definitions- Design of predictive translator – Type Systems-Specification of a simple type Checker

Equivalence of Type Expressions-Type Conversions. Intermediate Languages: Syntax Tree, Three

Address Code, Types and Declarations, Translation of Expressions, Type Checking, Back patching.

Part – A

1. What are the various methods of implementing three address statements? M/J’2013
There are three types of intermediate representation:-

1. Syntax Trees

2. Postfix notation

3. Three Address Code

2. Translate the arithmetic expression a * -(b+c) into syntax tree and postfix notation. N/D’201

Postfix Notation: a b c uminus * b c uminus * + assign

3. Construct a decorated parse tree according to the syntax directed definition for the following

input statement: (4+7.5*3)/2. A/ M’2015

4. Write the 3-address code x=*y ; a=&x, A/ M’2015

 x:=*y MOV *Ry, x

 a:=&x MOV &Rx, a

Shree Sathyam College Of Engineering and Technology Page 14

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

5. Write down syntax Directed definition of a simple desk calculator(AU –Nov / Dec 2016)
Syntax Directed Definition (SDD) is a kind of abstract specification. The combination of

context free grammar and semantic rules

6. What are synthesized attributes? N/D’2015

a. Synthesized Attributes. They are computed from the values of the attributes of the children

nodes.

b. Inherited Attributes. They are computed from the values of the attributes of both the siblings

and the parent nodes.

7. Mention the rules for type checking (AU– April / May 2016)
 A compiler must check that the source program should follow the syntactic and semantic

conventions of the source language and it should also check the type rules of the language.

8. Write down syntax directed definition of a simple desk calculator. N/D’2016

9. Define syntax directed definition.

 Syntax Directed Definitions are a generalization of context-free grammars in which:

1. Grammar symbols have an associated set of Attributes;

2. Productions are associated with Semantic Rules for computing the values of attributes.

 Such formalism generates Annotated Parse-Trees where each node of the tree is a record with a

field for each attribute (e.g., X.a indicates the attribute a of the grammar symbol X).

10. Define S-Attributes.

S-Attributed Definitions

Definition : An S-Attributed Definition is a Syntax Directed Definition that uses only synthesized

attributes.

• Evaluation Order. Semantic rules in a S-Attributed Definition can be evaluated by a bottom-up, or

Post Order, traversal of the parse-tree.

 • Example. The above arithmetic grammar is an example of an S-Attribute d Definition. The

annotated parse-tree for the input 3*5+4n is:

Shree Sathyam College Of Engineering and Technology Page 15

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

11. Define Dependency Graph.

• Dependency Graphs are the most general technique used to evaluate syntax directed definitions

with both synthesized and inherited attributes.

• A Dependency Graph shows the interdependencies among the attributes of the various nodes of a

parse-tree.

– There is a node for each attribute;

– If attribute b depends on an attribute c there is a link from the node for c to the node for b (b ←

c).

• Dependency Rule: If an attribute b depends from an attribute c, then we need to fire the semantic

rule for c first and then the semantic rule for b.

12. Mention the two rules of type checking. NOV/DEC2011

a. A type checker verifies that the type of a construct matches that expected by its context.

b. Type information gathered by a type checker may be needed when code is generated.

13. What is the significance of intermediate code? MAY/JUNE 14, APRIL/MAY 11, APRIL/MAY

 Retargeting is facilitated; a compiler for a different machine can be created by attaching a

back end for the new machine to an existing front end.

 A machine-independent code optimizer can be applied to the intermediate representation.

14. What are the functions used to create the nodes of syntax trees?

 Mknode (op, left, right)

 Mkleaf (id,entry)

 Mkleaf (num, val)

15. What are the functions for constructing syntax trees for expressions?

 The construction of a syntax tree for an expression is similar to the translation of the

expression into postfix form.

 Each node in a syntax tree can be implemented as a record with several fields.

16. Define back patching. (AU – Nov / Dec 2013)
Back patching is a technique for converting flow-of-control statements into a single pass. During the

code generation process, it is the action of filling in blank labels with undetermined data. During

bottom-up parsing, back patching is utilized to generate quadruples for boolean expressions.

Shree Sathyam College Of Engineering and Technology Page 16

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

17. Define type systems.

 Type systems allow defining interfaces between different parts of a computer program, and

then checking that the parts have been connected in a consistent way. This checking can happen

statically (at compile time), dynamically (at run time), or as a combination of both.

18. Define a syntax-directed translation?

Syntax-directed translation specifies the translation of a construct in terms of Attributes associated

with its syntactic components. Syntax-directed translation uses a context free grammar to specify

the syntactic structure of the input. It is an input- output mapping.

19. Define an attribute. Give the types of an attribute?

An attribute may represent any quantity, with each grammar symbol, it

associates a set of attributes and with each production, a set of semantic rules for computing values

of the attributes associated with the symbols appearing in that production. Example: a type, a

value, a memory location etc.,

a. Synthesized attributes.

b. Inherited attributes.

20. Compare synthesized attributes and inherited attributes

Synthesized attributes Inherited attributes

The production must have non-terminalas its

head.

 The production must have non-terminalas a

symbol in its body

It can be evaluated during a singlebottom-up

traversal of parse tree.

 It can be evaluated during a single top-down

and sideways traversal of parsetree.

Synthesized attribute is used by both S-

attributed SDT and L-attributed SDT.

Inherited attribute is used by only L-

attributed SDT.

Part – B

1. Explain in detail about Specification of a simple type checker. (AU – April / May 2017)

Contents:

 Explain the concept of type checking expression

 Explain in Types checking statement

 Explain in Equivalence of type expression

 Neatly Represent the Diagram

2. Discuss the following in detail about the Syntax Directed Definitions.Inherited Attributes and

Synthesized attributes
Contents:

 Define SDD

 Steps involved for SDD Shree Sathyam College Of Engineering and Technology Page 17

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

 Explain in detail two methods of attributes

 Neatly Represent the given CFG Grammar

3. Create variants of Syntax tree. Explain in detail about it with suitable examples
Contents:

 Define Syntax Tree

 Explain the Concepts

 Explain in details the variants of Tree Structure

4. State the rules for type checking with example
Contents:

 Define Type checking

 Explain the Concepts of two types of checking

 Advantages & Disadvantages

5. What is Type conversion? What are the two types of type conversion? Formulate therules for

the type conversion.
Contents:

 Explain the concept of type conversion or casting

 Explain the Concepts of two types of conversion

 Give an Example of each types.

Part– C

1. Write the Translation scheme for translating assignment statement having scalarvariables and

array reference to three - address statements(AU April / May 2013)
Contents:

 Explain the Concepts of Three Address code

 Write the applications

 Implementation of Three address code and types

 Give an Example of each types.

Shree Sathyam College Of Engineering and Technology Page 18

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

Unit-IV

RUN-TIME ENVIRONMENT AND CODE GENERATION

Runtime Environments – source language issues – Storage organization – Storage Allocation

Strategies: Static, Stack and Heap allocation – Parameter Passing-Symbol Tables – Dynamic

Storage Allocation – Issues in the Design of a code generator – Basic Blocks and Flow graphs –

Design of a simple Code Generator –Optimal Code Generation for Expressions– Dynamic

Programming Code Generation.

Part -A

1. Define Flow Graph. A/M 2012

Basic block

A sequence of consecutive statements which may be entered only at the beginning and when

entered are executed in sequence without halt or possibility of branch , are called basic blocks.

Flow graph

 The basic block and their successor relationships shown by a directed graph is called a

flow graph.

 The nodes of a flow graph are the basic blocks.

2. How to perform register assignment for outer loop? A/M 2012

If an outer loop L1 contains an inner loop L2 , the names allocated registers in L2 need not be

allocated registers in L1 - L2 . Similarly, if we choose to allocate x a register in L2 but not L1 , we must

load x on entrance to L2 and store x on exit from L2 . We leave as an exercise the derivation of a criterion

for selecting names to be allocated registers in an outer loop L, given that choices have already been made

for all loops nested within L.

3. Give examples of static checks. M/J’2013

A compiler must check that the source program follows both the syntactic and semantic

conventions of the source language. This checking, called static checking, ensures that certain

kinds of programming errors will be detected and reported.

Examples of static checks include:

 Type checking

 Flow-of-control checks

 Uniqueness checks

 Name-related checks

4. List out the various storage allocation strategies. N/D’2014

1. Static allocation – lays out storage for all data objects at compile time
2. Stack allocation – manages the run-time storage as a stack.
3. Heap allocation – allocates and de-allocates storage as needed at run time from a data area known

as heap.

Shree Sathyam College Of Engineering and Technology Page 19

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

5. What do you mean by binding of names? (AU April / May 2017)
Name binding is the process of finding the declaration for each name that is explicitly or

implicitly used in a template. The compiler may bind a name in the definition of a template,

or it may bind a name at the instantiation of a template.

6. What is the limitation of static allocation? APRIL/MAY 11

1. The size of the data object and constraints on its position in memory must be known at

compile time.

2. Recursive procedures are restricted, because all activations of a procedure use the same

bindings for local names.

3. Data structures cannot be created dynamically, since there is no mechanism for storage

allocation at run time.

7. List the different storage allocation strategies.

The strategies are:

 Static allocation

 Stack allocation

 Heap allocation

8. Brief about the techniques for parameter passing.(AU –Nov / Dec 2013)
When using call by value, the compiler adds the R-value of the actual parameters that were passed
to the calling procedure to the called procedure's activation record.

9. What is dynamic scoping?

In dynamic scoping a use of non-local variable refers to the non-local data declared in most

recently called and still active procedure. Therefore each time new findings are set up for local

names called procedure. In dynamic scoping symbol tables can be required at run time.

10. What is heap allocation?
Heap allocation is the most flexible allocation scheme. Allocation and deallocation ofmemory can

be done at any time and any place depending upon the user's requirement.Heap allocation is used

to allocate memory to the variables dynamically and when thevariables are no more used then

claim it back

11. How the activation record is pushed onto the stack.
Activation record is used to manage the information needed by a single execution of
aprocedure. An activation record is pushed into the stack when a procedure is called andit is
popped when the control returns to the caller function.

12. What are the properties of optimizing compiler?

The source code should be such that it should produce minimum amount of target code.

There should not be any unreachable code.

Dead code should be completely removed from source language.

The optimizing compilers should apply following code improving transformations on

source language.

a. common subexpression elimination

Shree Sathyam College Of Engineering and Technologyg Page 20

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

b. dead code elimination

c. code movement

d. strength reduction

13. What are the various ways to pass a parameter in a function?

 Call by value

 Call by reference

 Copy-restore

 Call by name

14. Suggest a suitable approach for computing hash function.

 Using hash function we should obtain exact locations of name in symbol table.

The hash function should result in uniform distribution of names in symbol table.

 The hash function should be such that there will be minimum number of collisions.

Collision is such a situation where hash function results in same location for storing the

names.

15. Give short note about call-by-name?

Call by name, at every reference to a formal parameter in a procedure body the

name of the corresponding actual parameter is evaluated. Access is then made to the

effective parameter.

16. How parameters are passed to procedures in call-by-value method?

This mechanism transmits values of the parameters of call to the called

program. The transfer is one way only and therefore the only way to returned can

be the value of a function.

Main ()

{ print (5);

} Int

Void print (int n)

{ printf (“%d”, n); }

17. Define static allocations and stack allocations

Static allocation is defined as lays out for all data objects at compile time.

Names are bound to storage as a program is compiled, so there is no need for a run time

support package.

Stack allocation is defined as process in which manages the run time as a Stack. It is

based

on the idea of a control stack; storage is organized as a stack, and activation records are

pushed and popped as activations begin and end.

18. Write the grammar for flow-of-control statements?

The following grammar generates the flow-of-control statements, if-then, if- then-else,

and while-do statements.

S -> if E

then S1

| If E then S1 else S2

Shree Sathyam College Of Engineering and Technology Page 21

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

| While E do S1.

19. What are the control-flow constraints? N/D’2015

 The unnecessary jumps can be eliminated in either the intermediate code or the target code by

the following types of peephole optimizations. We can replace the jump sequence 

goto L1

….

L1: gotoL2

by the sequence

goto L2

….

L1: goto L2

 If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto

L2 provided it is preceded by an unconditional jump .Similarly, the sequence 

if a < b goto L1

….

L1: goto L2

can be replaced by

Ifa < b goto L2

….

L1: goto L2

20. Write three address code sequence for the assignment statement. M/J’2016

D= (a-b)+(a-c)+(a-c)

temp1:= a-c

temp2:=a-b

temp3:=temp2+temp1

D:=temp3+temp1

Part-B

1. Explain in detail the following with respect to code generation phase . (AU – Nov /Dec 2016)
 Contents:

 Explain the concept of type checking expression

 Explain in Types checking statement

 Explain in Equivalence of type expression

 Neatly Represent the Diagram

2. What are the different storage allocation strategies?(AU April / May 2017)
Contents:

 Define Storage allocation

 Write the three Strategies

 Explain in detail all three strategies

 Neatly Represent with advantage and disadvantage

Shree Sathyam College Of Engineering and Technology Page 22

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

3. Explain in detail about the parameter passing (AU– April / May 2017)
Contents:

 Define Syntax Tree

 Explain the Concepts

 Explain in details the variants of Tree Structure

4. Explain about Runtime storage management.(AU –Nov / Dec 2017)
Contents:

 Define Runtime Environment

 Explain the Concepts of two types of checking

 Advantages & Disadvantages

5. Generate optimal code using Dynamic Programming techniques for the assignmentstatement

, X: = (a/b - c) / d. assume unit instruction costs (AU Nov / Dec 2013)

Contents:

 Explain the concept of type conversion or casting

 Explain the Concepts of two types of conversion

 Give an Example of each types.

Part– C

1. Discuss the Various issues in Design of code generator (AU –April / May 2017)
Contents:

 Explain the Concepts of Three Address code

 Write the applications

 Implementation of Three address code and types

 Give an Example of each types.

Shree Sathyam College Of Engineering and Technology Page 23

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

Unit-V

CODE OPTIMIZATION

Principal Sources of Optimization – Peep-hole optimization – DAG- Optimization of Basic Blocks

– Global Data Flow Analysis – Efficient Data Flow Algorithm – Recent trends in Compiler Design

Part -A

1. List out two properties of reducible flow graph. A/M 2012

 Reducible flow graphs are special flow graphs, for which several code optimization

transformations are especially easy to perform, loops are unambiguously defined, dominators

can be easily calculated.

 Data flow analysis problems can also be solved efficiently.

2. List the advantage and application of DAG. N/D 2012, M/J’2013

 We can automatically detect common sub expressions.

 We can determine the statements that compute the values, which could be used outside the

block.

 We can determine which identifiers have their values used in the block.

3. What are the uses of register and address descriptor in code generator? N/D 2012

 A register descriptor keeps track of what is currently in each register.

 An address descriptor keeps track of the location where the current value of the name can be

found at run time.

4. Define Live variable. N/D 2012

The framework is similar to reaching definitions, except that the transfer function runs

backward. A variable is live at the beginning of a block if it is either used before definition in the

block or is live at the end of the block and not redefined in the block.

5. What is data flow analysis ? N/D 2012, N/D’2014

Data-flow analysis" refers to a body of techniques that derive information about the flow of

data along program execution paths. For example, one way to implement global common sub

expression elimination requires us to determine whether two textually identical expressions evaluate

to the same value along any possible execution path of the program.

6. Define Basic blocks and Flow graph. M/J’2013, N/D’2014

Basic block

A sequence of consecutive statements which may be entered only at the beginning and when entered

are executed in sequence without halt or possibility of branch , are called basic blocks.

Flow graph

 The basic block and their successor relationships shown by a directed graph is called a flow

graph.

 The nodes of a flow graph are the basic blocks.

7. What is constant folding ? M/J’2013

 We can eliminate both the test and printing from the object code. More generally, deducing at

compile time that the value of an expression is a constant and using the constant instead is known Shree Sathyam College Of Engineering and Technology Page 24

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

as constant folding. 

 One advantage of copy propagation is that it often turns the copy statement into dead code. 

For example,

a=3.14157/2 can be replaced by

a=1.570 thereby eliminating a division operation.

8. What are the properties of optimizing compiler? M/J’2013, N/D’2013, M/J’2016

1. Transformation must preserve the meaning of programs.

2. Transformation must, on the average, speed up the programs by a measurable amount

3. A Transformation must be worth the effort.

9. What is the Next-Use information? N/D’2013

If the name in a register is no longer needed, then we remove the name from the register and the

register can be used to store some other names.

Input: Basic block B of three-address statements

Output: At each statement i: x= y op z, we attach to i the liveliness and next-uses of x,

y and z.

Method: We start at the last statement of B and scan backwards.

1. Attach to statement i the information currently found in the symbol table

regarding the next-use and liveliness of x, y and z.

2. In the symbol table, set x to “not live” and “no next use”.

3. In the symbol table, set y and z to “live”, and next-uses of y and z to i.

10. Define Loop unrolling with an example. N/D’2013

In region-based scheduling, the boundary of a loop iteration is a barrier to code motion.

Operations from one iteration cannot overlap with those from another. One simple but highly

effective technique to mitigate this problem is to unroll the loop a small number of times before

code scheduling. A for-loop such as

for (i = 0; i < N; i++) {

SCi) ;

}

can be written as in Fig . 10.16(a) . Similarly, a repeat-loop such as

repeat

S;

unt il C

11. Name the techniques in loop optimization. M/J’2014

Three techniques are important for loop optimization: 

code motion, which moves code outside a loop; 

Induction-variable elimination, which we apply to replace variables from inner loop. 

Reduction in strength, which replaces and expensive operation by a cheaper one, such as a

multiplication by an addition.





Shree Sathyam College Of Engineering and Technology Page 25

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

12. How would you represent the dummy blocks with no statements indicated in global data flow

analysis. M/J’2014

 We say that the beginning points of the dummy blocks at the entry and exit of a statement‟s

region are the beginning and end points, respectively, of the statement. The equations are

inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S], and kill[S] for all

statements S.

13. Draw DAG to represent a[i] =b[i]; a[i] = &t. N/D’2014

14. What role does the target machine play on the code generation phase of the compiler? A/

M’2015

Familiarity with the target machine and its instruction set is a prerequisite for designing a

good code generator.

The target computer is a byte-addressable machine with 4 bytes to a word.

It has n general-purpose registers, R0, R1, . . . , Rn-1.

It has two-address instructions of the form:

op source, destination

where, op is an op-code, and source and destination are data fields.

 It has the following op-codes :

MOV (move source to destination)

ADD (add source to destination)

SUB (subtract source from destination)

The source and destination of an instruction are specified by combining registers and

memory locations with address modes.

15. Generate code for the following C statement assuming three registers are available:

 x=a/(b+c)-d*(e+f) A/ M’2015

Three address code:

 t1= e+f

 t2=b+c

 t3=a/t2

 t4=d*t1

 t5=t3-t4

 x=t5

Assembly Code (Target Code):

 MOV e, R1

 ADD f,R1

 MOV b,R2

 ADD c,R2 Shree Sathyam College Of Engineering and Technology Page 26

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

 MOV a,R3

 DIV R3,R2

 MUL d,R1

 SUB R1,R2

 MOV R2,x

16. Write the algorithm that orders the DAG nodes for generating optimal target code. A/ M’2015

The heuristic ordering algorithm attempts to make the evaluation of a node immediately

follow the evaluation of its leftmost argument.

The algorithm shown below produces the ordering in reverse.

Algorithm:
1. while unlisted interior nodes remain do begin

2. select an unlisted node n, all of whose parents have been listed;

3. list n;

4. while the leftmost child m of n has no unlisted parents and is not a leaf

do begin
5. list m;

6. n : = m

end

end

17. Define Dead code elimination. N/D’2015

A variable is live at a point in a program if its value can be used subsequently; otherwise that

values never get used. While the programmer is unlikely to introduce any dead

 code intentionally, it may appear as the result of previous transformations. An

 optimization can be done by eliminating dead code.

 Example:

i=0;

if(i=1)

{

a=b+5;

}

Here, „if‟ statement is dead code because this condition will never get satisfied.

18. What are the issues in the design of code generator? N/D’2015

The following issues arise during the code generation phase :

1. Input to code generator

2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order

Shree Sathyam College Of Engineering and Technology Page 27

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

19. What are the global common sub expressions? N/D’2015

 An occurrence of an expression E is called a common sub-expression if E was previously

computed, and the values of variables in E have not changed since the previous computation. We

can avoid recomputing the expression if we can use the previously computed value. 

 For example 

t1: =4*i t2: =a

[t1]

t3: =4*j t4:=4*i

t5: =n

t6: =b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

t1: =4*i

t2: =a [t1] t3:

=4*j

t5: =n

t6: =b [t1] +t5

The common sub expression t 4: =4*i is eliminated as its computation is already in t1. And value

of i is not been changed from definition to use.

20. What is DAG? M/J’2016

 A DAG for a basic block is a directed acyclic graph with the following labels on nodes: 

 Leaves are labeled by unique identifiers, either variable names or constants.

 Interior nodes are labeled by an operator symbol.

 Nodes are also optionally given a sequence of identifiers for labels to store the computed

values.

 DAGs are useful data structures for implementing transformations on basic blocks. 

 It gives a picture of how the value computed by a statement is used in subsequent statements. 

 It provides a good way of determining common sub - expressions.



21. What are the characteristics of peephole optimization.

 A simple but effective technique for improving the target code is peephole optimization, a

method for trying to improving the performance of the target program by examining a short

sequence of target instructions (called the peephole) and replacing these instructions by a shorter

or faster sequence, whenever possible. 

 Characteristic of peephole optimizations: 

 Redundant-instructions elimination 

 Flow-of-control optimizations 

 Algebraic simplifications 

 Use of machine idioms 

 Unreachable Code 



Shree Sathyam College Of Engineering and Technology Page 28

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

Part -B



1. Explain in detail about Global Data flow analysis of structural programs.(16) NOV/DEC2012,

M/J’2013, N/D’2013, M/J’2014, N/D’2015, N/D’2016

Contents

 Define Global Data flow analysis

 Explain Points and Paths:

 Draw Diagram Neatly

 Write Data-flow analysis of structured programs:

2. For the flow graph shown below, write the three address code and construct the DAG. (8)

M/J’2013

(1) t1 = 4*i

(2) t2 = a[t1]

(3) t3 = 4 *i

(4) t4 = b[t2]

(5) t5= t2 * t4

(6) t6 = prod + t5

(7) prod = t6

(8) t7 = i+1

(9) i = t7

(10) if i<=20 goto (1)

Shree Sathyam College Of Engineering and Technology Page 29

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

3. Write short notes on structure preserving transformation of basic blocks.(8) NOV/DEC2013,

N/D’2014, N/D’2015

Contents

 Structure-Preserving Transformation

 Dead-code elimination

 Renaming temporary variables

 Interchange of statements

4. Construct DAG and three address statement for the following C Program. N/D’2013, N/D’2014

i=1;

s=0;

while(i<=10)

{

s=s+a[i][i]

i=i+1;

}

 Contents

 Define DAG

 Write the three address code

 Draw the DAG disgram

5. Define a directed acyclic graph. Construct a DAG and write the sequence of instructions for

the expression a+a*(b-c)+(b-c)*d. (16)MAY/JUNE 14

Contents

 Construct a DAG and Equivalence of Instructions

 Three address code for given ecpression

 Write the Instruction code

6. Explain the steps carried out for generating code from DAGs with an example.(8) N/D’2015

Contents

 Rearranging the order

 Write Generated code sequence for basic block

 Write the algorithm

 Give a suitable example

Shree Sathyam College Of Engineering and Technology Page 30

CS3501-COMPILER DESIGN Dept of CSE–III Yr/V Sem

PART C

1. Discuss about the following:

i). Copy Propagation ii) Dead-code Elimination and iii) Code motion(6) NOV/DEC2012,

MAY/JUNE 2012

Contents

 Copy Propagation

 Dead-Code Eliminations

 Constant folding

 Loop Optimizations

 Code Motion

2. Explain peephole optimization. (8) NOV/DEC2013 ,NOV/DEC2012, MAY/JUNE 2012

Contents

 Write the Reduntant Loads And Stores

 Write the Unreachable Code
 Elimination Of Common Subexpressions

 Elimination Of Dead Code
 Reduction In Strength

 Use Of Machine Idioms
 Getting Better Performance

Shree Sathyam College Of Engineering and Technology Page 31

	ε – closure (0) = {0, 1, 2, 4, 7 } = A Dtran[A, a] = ε – closure (move(A, a))
	Functions Computed From the Syntax Tree:
	Example:
	Computing nullable, firstpos, and lastpos:
	CANONICAL LR PARSING:
	1. Number the grammar productions:
	2. The Augmented grammar is:
	1. Consider I0 items:
	2. Consider I0 items:
	3. Consider I2 items:
	4. Consider I3 items:
	5. Consider I4 items:
	6. Consider I5 items:
	7. Consider I6 items:
	8. Consider I7 items:
	9. Consider I8 items:
	10. Consider I9 items:
	LALR PARSING:
	LALR parsing table construction:
	TOP DOWN EVALUATION OF L-ATTRIBUTED DEFINITION
	PEEPHOLE OPTIMIZATION
	Redundant Loads And Stores:
	Unreachable Code:
	Flows-Of-Control Optimizations:
	Algebraic Simplification:
	Reduction in Strength:
	Use of Machine Idioms:

